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ABSTRACT

Reliable and timely fault detection and isolation are neces-
sary tasks to guarantee continuous performance in complex
industrial systems, avoiding failure propagation in the system
and helping to minimize downtime. Model-based diagnosis
fulfils those requirements, and has the additional advantage
of using reusable models. However, reusing existing complex
non-linear models for diagnosis in large industrial systems is
not straightforward. Most of the times the models have been
created for other purposes different from diagnosis, and many
times the required analytical redundancy is small. In this
work we propose to use Possible Conflicts, which is a model
decomposition technique, to provide the structure (equations,
inputs, outputs, and state variables) of minimal models able
to perform fault detection and isolation. Such structural in-
formation can be used to design a gray box model by means
of state space neural networks. We demonstrate the feasibil-
ity of the approach in an evaporator for a beet sugar factory
using real data.

1. INTRODUCTION

Prognostics and Health Management are very important tasks
for continuous operation and to comply with safety require-
ments of large industrial systems. In such systems, moni-
toring and early fault diagnostics are also fundamental tasks
to avoid fault effects propagation, to prevent failures, and to
minimize downtime. Hence, reliable and fast fault detection
and isolation are needed, providing additionally an accurate
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input for the prognostic stage.

Model-based reasoning provides different kinds of methods
to fulfil those requirements. Model-based diagnosis uses a
model of the system to estimate the proper behaviour and to
compare with current observations in order to detect anoma-
lies. In the last three decades model-based diagnosis has been
approached by two different communities DX (Hamscher,
Console, & Kleer (Eds.), 1992) –using Artificial Intelli-
gence techniques–, and FDI (Gertler, 1998; Blanke, Kinnaert,
Lunze, & Staroswiecki, 2006; Patton, Frank, & Clark, 2000)
–based on Systems Theory and Control. Both communities
provide different but complementary techniques, as demon-
strated by recent works (Cordier, Dague, Lévy, Montmain, &
Travé-Massuyès, 2004).

Our proposal elaborates on the similarities of both approaches
and focus on consistency-based diagnosis using numeri-
cal models (Pulido, Alonso-González, & Acebes, 2001).
Consistency-based diagnosis proceeds in three stages: first,
fault detection is performed by detecting minimal conflicts
in the system (minimal set of equations or components in-
volved in predicting a discrepancy); second, fault isolation is
achieved by computing the minimal hitting-sets of the con-
flicts; third, fault identification requires using fault models to
predict the faulty behaviour (Reiter, 1987; Dressler & Struss,
1996), and rejecting those fault modes that are not consis-
tent with current observations. In this work, we use Possi-
ble Conflicts (Pulido & Alonso-González, 2004), PCs for
short, that are computed off-line and are the complete set of
minimal redundant models that can become conflicts. PCs
provide the structural model– equations, input, output, and
state variables– that can be used for fault detection and iso-
lation, or can be also used to simplify the fault prognostics
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stage (Daigle, Bregon, & Roychoudhury, 2011).

While using PCs we need to build off-line simulation or state-
observer models (Pulido, Bregon, & Alonso-González, 2010)
to track the subsystem behaviour. This step requires the
analysis of the model, and sometimes to rewrite the original
equations for diagnosis purposes. Main advantage of model-
based diagnosis is reusing existing models, but this is also
its main difficulty. Frequently the models were created for
purposes different from diagnosis, and the required analytical
redundancy in the system is small, due to the price of addi-
tional sensors, and because they allocation is related to pro-
cess control. Both problems exist in large industrial systems
where complexity comes from the highly non-linear mod-
els required to mimic system performance. Consequently,
reusing existing non-linear models for diagnosis in those sys-
tems is not straightforward. We propose to use the structural
information in each Possible Conflict to design different kind
of executable models. In this work, where precise analytical
models1 is difficult to handle, we propose to build grey-box
models based on a state space neural network architecture de-
rived from that structural information.

Preliminary results in an evaporation unit for a beet sugar fac-
tory in Spain using real data show the feasibility of the ap-
proach. The system has slow dynamics and due to the high
costs of the start-up mode, it should work for weeks uninter-
rupted. Main difficulty in the existing models comes from the
number of unknown parameters to be identified in the model,
and the presence of non-linearities that requires expert manip-
ulation in order to derive diagnosis-oriented models. An addi-
tional problem to test any approach is that there is few infor-
mation about faults actually happening. Hence, any feedback
from the model-based diagnosis system will be very helpful
for the system operators.

The organization of this paper is as follows. First, we present
the real system to be studied. Second, we introduce the Pos-
sible Conflicts technique used to find minimal models. Third,
we introduce the state space neural network approach to ob-
tain grey box models for the Possible Conflicts. Next, we test
the first principle and the neural network models in the case
study, drawing some conclusions.

2. DESCRIPTION OF THE CASE STUDY: AN EVAPORA-
TION UNIT IN A BEET SUGAR FACTORY

We will test our proposal in an evaporation station of a beet
sugar factory. In such processes there are four main stages:
diffusion, purification, evaporation and crystallization. Evap-
oration is the stage in which the water contained in a juice
with low sugar concentration is evaporated in order to obtain
higher sugar concentration. Afterwards, the resulting syrup
is used to obtain sugar crystals in a set of vacuum pans. Fig-

1Based on Physics first principles, usually a collection of ODEs.

ure 1 shows the main elements in an evaporation plant: the
evaporation units.

Figure 1. Five evaporation units for the evaporation section
in a beet sugar factory in Spain.

Each evaporator has two chambers. The heating chamber sur-
rounds a set of vertical tubes that contain boiling juice. A
flow of steam enters these chambers and transfers heat to the
juice providing the energy needed for boiling. The steam con-
denses around the tubes and leaves the evaporator as conden-
sate. The interior tubes, plus the evaporator upper and bot-
tom spaces, it is named the juice chamber. A sugar solution
of low concentration (juice) flows continuously into the base
of the evaporator and starts boiling. Consequently, we get
a solution of higher concentration at the output. The steam
produced from the water evaporation reaches the upper space
and leaves the juice chamber by a pipe at the top.

2.1. The simulation models

The simulated plant consists on a set of five effects intercon-
nected through pipelines and valves. Each effect is formed by
one or several evaporation units. The steam generated in one
effect is used to provide energy to the heating chambers of the
evaporators of the next effect, while the juice flows from one
effect to another increasing the sugar concentration. In this
multiple-effect arrangement only the first effect is fed with
boilers steam and purified juice. In the last effect, the evapo-
rated steam escapes from the juice chamber to the condensers
and then to atmosphere.

The use of dynamic modelling and simulation techniques in
the process industry is an activity mainly oriented towards the
design of installations and the training of the working staff but
it can be also used to test new control or diagnosis strategies.
For this factory there is a training simulator developed at the
University of Valladolid, Spain (Merino, Alves, & Acebes,
2005). The main console of the training simulator for the
evaporation section is shown in Figure 2.
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Figure 2. Schematic of the available simulator for training operators.

The simulator is articulated in two big systems: a simulation
program and a distributed control system, where one of the
control units works as an instructor console. The objective
of the simulation program is to reproduce in the most reli-
able way the global dynamic performance of the process of
sugar production. The simulation is made using the Ecosim-
Pro (EcosimPro, 2012) simulation language, and the model is
developed using libraries of elemental units developed in an
object oriented modelling approach (Acebes, Merino, Alves,
& Prada, 2009). Additionally, the simulation code must work
in real time and use an OPC (OLE for Process Control) in-
terface (Alves, Normey-Rico, A., Acebes, & Prada, 2008) to
communicate with the distributed control system. OPC is a
de facto standard for communications on Windows applica-
tions in industrial processes and it is included in almost every
modern SCADA. The OPC simulation program performs two
tasks in parallel: solve the dynamic mathematical models of
the process in real time, and attend requests from OPC clients.
The SCADA system, that can be configured as operator or as
instructor console, acts as an OPC client, receives data from
the simulation, changes the boundary conditions and activate
faults in the simulation program.

When building a model, the degree of complexity is variable
depending on the use of the model. In the case of evapora-
tion units, it is possible to use different approximations to the
model (Luyben, 1990; Merino, 2008). In the training sim-

ulator, a detailed model is used, including dynamics in the
liquid and vapour phase and complex phenomena such as ac-
cumulation of incondensable gases or the absence of juice in
the evaporator, which allows steam flow via the juice pipes.
These features are necessary in order to provide training ca-
pabilities to the simulator. As an example of the type of equa-
tions used in the simulator, energy balances to the juice cham-
ber are shown:

dTjo

dt = Wjo(Hjo−Hjo)− ∂H
∂T Wji(Csi−Cso)

mt
∂Hjo
∂Tjo

−

E
“

HE−Hjo+
∂Hjo
∂Cso

Cso

”
mt

∂Hjo
∂Tjo

Where:
∂Hjo

∂Cso
= −0.025104 · Tjs + 3.6939 · 10−5 · T 2

jo

∂Hjo

∂Tso
= 4.06−0.025104·Cso+

(
5.418936 · 10−4 · C2

so

)
Tso

Together with these equations, mass balances, heat transmis-
sion equations, state equations, etc., must be added for the
liquid and vapour phases, resulting in a very complex non-
linear model. Furthermore, in the physical model, there are
several parameters that must be adjusted dynamically. In the
relatively simple case studied in this article, only four param-
eter were necessary. These were the set of equations that we
need to analyse and modify in order to perform model-based
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diagnosis, to obtain from the model the value of a variable
that is being measured, so that it is possible to compare both
values. For this to occur, it is necessary that the number of
measured variables in the process is sufficiently large to al-
low calculating one measured variable from other ones. On
the other hand, there is no need of a match between the phys-
ical causality of the modelled system and the causality im-
posed by the availability of the measures. This involves the
symbolic manipulation of the mathematical model, which is
usually complex, even when using object oriented modelling
languages that allow non-causal modelling. For example, in
the case of evaporation, the juice level is a measured vari-
able. This variable, from the point of view of the physical
modelling, is a state variable that is calculated by numerical
integration. In the case of fault diagnosis, this variable is a
measured one that cannot be calculated by the model by inte-
gration without appearing a high index problem. This makes
it necessary to manipulate the model so that the present bind-
ing disappears.

3. POSSIBLE CONFLICTS FOR STRUCTURAL MODEL
DECOMPOSITION

3.1. Possible Conflicts

The computation of the set of Possible Conflicts
(PCs) (Pulido et al., 2001; Pulido & Alonso-González,
2004) is a system model decomposition method from the DX
community, which searches for the whole set of submodels
of a given model with minimal redundancy (the number
of equations in the submodel equals the set of unknown
variables plus one). PCs provide the minimal analytical
redundancy neccesary to perform fault diagnosis. PCs are
computed off line and they can be used on line to perform
consistency based diagnosis of dynamic systems. PCs also
provide the computational structure of the constraints that
generate redundancy. This structure can be used to build a
simulation model, or –as we will show later– to obtain the
structure of a state space neural network.

Off-line PCs computation requires three steps:

1. To generate an abstract representation of the system as
a hypergraph. The nodes of the hypergraph are sys-
tem variables and the hyperarcs represent constraints be-
tween these variables. These constraints are abstracted
from the equations that relate system variables.

2. To derive Minimal Evaluation Chains (MECs), which are
minimal connected over constrained subsystems. The
existence of a MEC is a necessary condition for analyt-
ical redundancy to exist. MECs have the potential to be
solved using local propagation (solving one equation in
one unknown) from the measurements.

3. To generate Minimal Evaluation Models (MEMs) as-

signing causality2 to the constraints of the MEC. MEMs
are directed hypergraphs that specify the order in which
equations should be locally solved starting from mea-
surements to generate the subsystem output.

In Consistency-based diagnosis (Reiter, 1987; Kleer &
Williams, 1987) a conflict arises given a discrepancy between
observed and predicted values for a variable. Hence, conflicts
are the result of the fault detection stage. But they also con-
tain the necessary structural information for fault isolation.
Possible Conflicts were designed to compute off-line those
subsystems capable to become minimal conflicts online. Un-
der fault conditions, conflicts are observed when the model
described by a MEM is evaluated with available observations,
because the model constraints and the input/measured values
are inconsistent (Reiter, 1987; Kleer & Williams, 1987). This
notion leads to the definition of a Possible Conflict:

Definition 1 (Possible Conflict) The set of constraints in a
MEC that give rise to at least one MEM.

Recent works have demonstrated the equivalence between
MECs, Analytical Redundancy Relations (ARRs), and other
structural model decomposition methods (Armengol et al.,
2009).

3.2. Inclusion of temporal information in the models

There are two kinds of contraints in the model: Differential
constraints, those used to model dynamic behaviour, and in-
stantaneous constraints, those used to model static or instan-
taneous relations between system variables.

Differential constraints represent a relation between a state
variable and its first derivative (x, dx

dt ). These constraints
can be used in the MEMs in two ways, depending on the se-
lected causality assignment. In integral causality, constraint is
solved as x(t) = x(t−1)+

∫ t

t−1
ẋ(t)dt. In derivative causal-

ity, ẋ(t) = dx
dt assumes that the derivative can be computed

based on present and past samples for x. Integral causal-
ity usually implies using simulation, and it is the preferred
approach in the DX field. Derivative causality is the pre-
ferred approach in the FDI approach. Both have been demon-
strated to be equivalent for numerical models, assuming ad-
equate sampling rates and precise approximations for deriva-
tive computation are available, and assuming initial condi-
tions for simulation are known (Chantler, Daus, Vikatos, &
Coghill, 1996). PCs can easily handle both types of causality,
since they only represent a different causal assignment while
building MEMs (Pulido et al., 2010).

Special attention must be paid to loops in the MEM (set of
equations that must be solved simultaneously). Loops con-
taining differential constraints in integral causality are al-

2In this context, by causality assignment we mean every possible way one
variable in one equation can be solved assuming the remaining variables
are known.
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lowed, because under integral causality the time indices are
different to both sides of the differential constraint (Dressler,
1994, 1996). It is generally accepted that loops contain-
ing differential constraints in derivative causality can not be
solved (Blanke et al., 2006).

Summarizing, each MEM for a PC represents how to build
an executable model to monitor the behaviour of the subsys-
tem defined by the PC. Such executable model can be imple-
mented as a simulation model or as a state-observer (Pulido
et al., 2010). However, building such model for complex non-
linear systems it is not a trivial task. In Section 5 we will show
the set of PCs obtained for our case study, and we will derive
a simulation model for one of the PCs. In subsection 5.3 we
will show how a grey-box model using neural networks can
be obtained for the same PC. Next section shows the fun-
damentals for the type of neural network model used in this
work.

4. STATE SPACE NEURAL NETWORKS FOR BEHAVIOUR
ESTIMATION

State Space Neural Networks (ssNN) (Zamarreño & Vega,
1998) is a great tool for modelling non-linear processes as
shown in several cases (González Lanza & Zamarreño, 2002;
Zamarreño, Vega, Garcı́a, & Francisco, 2000); even in the
sugar industry (Zamarreño & Vega, 1997). Main advan-
tages of such modelling approach are its ability for represent-
ing any non-linear dynamics, and what is called a parallel
model. This model represents the cause-effect process dy-
namics without considering past inputs and/or past outputs.
The dynamic relation is modelled by the state layer, which
calculates the internal state of the network using just current
inputs of the model and internal state values from the previ-
ous time step.

The architecture of the ssNN (see figure 3) consists of five
blocks, and each block represents a neural network layer.
From left to right, the number of neurons at each layer is n,
h, s, h2 and m. The third layer represents the state of the
system (the dynamics). As can be seen in the figure, there is
a feedback from the state layer to the previous layer, which
means that the current state depends (in a non-linear way) on
the state at the previous time step. The second and fourth
layers model the non-linear behaviour: from the inputs to the
states and from the states to the outputs, respectively. The
first and the fifth layers provide linear transformations from
inputs and to outputs, respectively. The ssNN is implemented
by the following mathematical representation:

~̂x(t + 1) = Wh · f1(W r · ~̂x(t) + W i · ~u(t) + Bh)

~̂y(t) = W o · f2(Wh2 · ~̂x(t) + Bh2)

where the parameters are weight matrices, W , and bias vec-
tors, B:

• W i, Wh, W r, Wh2, W o are matrices with dimension

LIN
u

LIN
x

LIN
yNL NL

Bh
Bh2

W i Wh

W r

W o dWh2 d

LIN: Linear Processing Elements (Neurons)
NL: Non-Linear Processing Elements

Figure 3. Generic state space Neural Network architecture

h x n, s x h, h x s, h2 x s and m x h2, respectively.

• Bh and Bh2 are bias vectors with h and h2 elements re-
spectively.

• f1 and f2 are two functions (non-linear, in general)
which are applied elementwise to a vector or matrix.
They are usually of sigmoid type.

For some processes, where some a priori knowledge about
the first principle equations can be obtained, a black box
model could be too generic to obtain good results. But this
knowledge can be used to restrict the architecture of the
model, so we end up with a grey box model that can be better
adjusted to mimic the process. Next section will illustrate the
training process to obtain a specific grey box model for a PC
related to an evaporation unit.

5. RESULTS ON THE CASE STUDY

5.1. PCs for the evaporation unit

As mentioned in Section 2.1 the evaporation section of the
sugar factory is made up of five effects working sequentially
to increase the sugar concentration in the syrup. All the evap-
oration units in the same effect share the same steam output
conduit, and provide the steam for the next effect, thus par-
tially coupling the behaviour of all the units. For our tests we
have focused on the first evaporation unit in the first effect.

There are several assumptions that must be made in order to
simplify the original model used in the training simulator,
and to use those first principles equations for diagnosis. In
our case, we simplified the dynamic processes actually hap-
pening inside the evaporation chamber, and we assumed the
system was in only one operation mode. The dynamic pro-
cesses considered in the evaporation unit were: conservation
law for the amount of sugar and no-sugar products, global
balance of matter in the evaporation chamber, sugar balance,
level in the chamber, energy balances, steam volume balance,
interchanged heat, and pressures in the chamber. As a result
of this simplification process, our model was made up of 40
equations based on first principles of physics, 44 unknown
variables , and 12 measured variables. Only 5 of these equa-
tions were used to model the evolution of 5 state variables:
C, T , M , juice out.T , Mvh.
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The algorithms used to compute the set of PCs provided 1058
MECs, and 775 MEMs. The total number of PCs in this sys-
tem were 237, but most of them shared the same fault iso-
lation capabilities since only 8 of the original 40 equations
model relevant faulty behavior.

In the original model there are several equations containing
partial derivatives, and several non-linear functions. As a con-
sequence, most of the generated MEMs can be hardly imple-
mented, although it is analytically possible. The problem we
faced at that point was to implement the relevant MEMs, be-
cause it would be necessary to write by hand each simulation
model. The process needs to be supervised by the modelling
expert, thus producing a bottleneck in the development of the
diagnosis system. As a consequence, to test the approach, we
have modelled only one of the PCs, PC195, whose MEM is
graphically described in Figure 4. The MEM is a directed hy-
pergraph which represents how the equations must be used to
compute the output, steam out.P , using just measurements
as inputs, and how the inputs are used to compute the inter-
mediate unknown variables. Each solid arc represent an in-
stantaneous constraint. Each dashed arc represent a differen-
tial constraint. In this system we use integral causality, hence
each dashed arc means that we must perform integration to
obtain the value of the state variable.

We selected the subsystem because it contains 16 equations,
several input measurements –juice in.W , juice in.Brix,
juice out.T , and level juice.signal–, and several state-
variables –M , C, and Mvh–. The observed output variable is
steam out.P . Hence, it has enough complexity to be a good
test for the state space neural model.

5.2. The experimental data-set

PC195 was implemented in EcosimPro (EcosimPro, 2012).
We run a set of five experiments using real data from the fac-
tory for an intermediate month in the five month campaign.
Experiment 1 consisted of 900 data points taken from 9 mea-
surements in the system every 30 seconds. Experiments 2, 3,
4 and 5 consisted of 2800 data points taken from the same 9
measurements every 30 seconds3. Data sets 1, 2, and 4 rep-
resent nominal behaviour. Data set 3 represent a fault in the
output sensor.

In order to monitor the nominal behavior and perform fault
detection, we empirically determined a threshold. Figure 7
shows the performance of the model on the four scenarios. It
can be seen that the simulation model is able to monitor the
nominal behaviour and also to detect the fault, but as shown
in experiments 2 and 3 the estimations obtained are not very
accurate. This is due mainly to the assumptions made regard-
ing unknown parameters and boundary conditions.

3Since the first experiment is shorter than the other four, we do not show its
results.

5.3. State space neural network models for PCs

PC195 graphically specifies in Figure 4 the relations between
the inputs (juice level.signal, juice in.W , juice out.T ,
and juice in.Brix) and the states (M , C, Mvh and
steam out.P ). Moreover, the last input (juice in.Brix) can
be considered constant along time, so it can be removed from
the model. The output of the model is steam out.P , so there
is a direct relation between the output and one of the states.
Taking this into account, the ssNN architecture can be cus-
tomized to represent the process characteristics in a better
way, as described in Figure 5. The non-linear (hidden) layer
is split into four parts, and each part (represented by NL in-
side a square) has a number of neurons (h1, h2, h3, h4) that
must be adjusted by trial and error to represent the nonlinear
dynamics of each state.

This simplified ssNN architecture can be viewed as removing
some of the weights between layers, or setting zeros in some
specific elements of the weight matrices (the matrices can be
seen in figure 6). Dimension of matrices W i, W r, Wh, and
W o is (h1 + h2 + h3 + h4)× 3, (h1 + h2 + h3 + h4)× 4,
4× (h1 + h2 + h3 + h4), and 1× 4, respectively.

5.3.1. Training

Training is the process of modifying the parameters (weights
and bias) of the neural network to adjust its output to the pro-
cess output. Error between the neural network output and
process output has to be minimized, so the training procedure
is an optimization task where some index, Sum Squared Error
(SSE) in our case, has to be minimized.

A feedforward network is quite easy to train, using the back-
propagation method or some of its variants. But a recurrent
neural network (such as ssNN) is more difficult to train due to
the recurrent connections. Stochastic methods are an alterna-
tive for this kind of neural network, which results in easier to
implement training algorithms. The Modified Random Opti-
mization Method (Solis & Wets, 1981) has been selected in
this work, but with some modifications to improve conver-
gence as shown in (González-Lanza & Zamarreño, 2002).

For training this ssNN architecture, we used the experiments
explained in Section 5.2. Experiments 1, 3 and 5 were the
training set, and experiments 2 and 4 were used for validation.
The only parameter to tune in this ad hoc ssNN is the number
of hidden neurons at the second layer. With 5 neurons at each
part is enough to represent the data, thus a total of 20 sigmoid
neurons.

Figure 8 shows the evolution of the estimated and measured
variable for PC195 for the selected 4 experiments. To use the
ssNN model for fault detection, a new threshold was empiri-
cally calculated. Again, the ssNN model is able to track the
nominal behaviour (experiments 1, 2, and 4 in Figure 8), and
to correctly detect the fault in experiment 3 when the residual

6
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steam_out.P* 

Pvh 

Mvh  steam_out.T 

juice_out.T*  level_juice.signal* 

Vj 

Mvh’ 

E  steam_out.W 

juice_out.T* juice_out.Brix  Pvh  juice_out.T 

C 
PSV  steam_out.p 

C’ 

juice_in.W*  Ci  M 

juice_in.Brix 

E C 

M’ 

juice_in.W*  juice_out.W  E 

juice_out.P  PSJ 

juice_in.P 

juice_out.Brix  juice_out.P  h 

Vj 

Figure 4. Minimal Evaluable Model schematics for Possible Conflict PC195. The estimated variable is Pvh. The corresponding
measured variable is Steam out.P .

Figure 5. Simplified ssNN to better represent the model for the PC.
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W i =



 i1,1 i1,2 i1,3

...
...

...
ih1,1 ih1,2 ih1,3

0 ih1+1,2 0
...

...
...

0 ih2,2 0

0 0 ih2+1,3

...
...

...
0 i0 ih3,3

ih3+1,1 0 ih3+1,3

...
...

...
ih4,1 0 ih4,3





W r =



 r1,1 r1,2 r1,3 0
...

...
...

...
rh1,1 rh1,2 rh1,3 0

rh1+1,1 rh1+1,2 0 0
...

...
...

...
rh2,1 rh2,2 0 0

0 rh2+1,2 rh2+1,3 rh2+1,4

...
...

...
...

0 rh3,2 rh3,3 rh3,4

0 0 rh3+1,3 0
...

...
...

...
0 0 rh4,3 0





Wh =




d1,1 · · · d1,h1

0 · · · 0
0 · · · 0
0 · · · 0




0 · · · 0
d2,h1+1 · · · d2,h2

0 · · · 0
0 · · · 0




0 · · · 0
0 · · · 0

d3,h2+1 · · · d3,h3

0 · · · 0




0 · · · 0
0 · · · 0
0 · · · 0

d4,h3+1 · · · d4,h4




W o =
[
0 0 0 1

]
Figure 6. Simplified weight matrices W i, W r, Wh, and W o for the ssNN implementing PC195.

exceeds the threshold.

Looking at results in Figures 7 and 8 we can see that both
models can be used to monitor the evolution of variable
Steam out.P . Main difference comes from the bias intro-
duced by the parameters in the first principles models in Fig. 7
leading to a higher threshold for fault detection. Nevertheless,
the model can still be used for monitoring and fault detection.

The ssNN model used only 3 experiments for training, and
was able to track the nominal behaviour more accurately, and
it was capable to detect the fault in the sensor. However, more
training is necessary considering data from different months.

6. CONCLUSIONS

In this work we have proposed to use Possible Conflicts to
decompose a large system model into smaller models with
minimal redundancy for fault detection and isolation. Pos-
sible Conflicts provide the structural models (equations, in-
puts, outputs, and state variables) required for model-based
fault detection and isolation, and these models can be imple-
mented as simulation or state-observer. Since deriving such
models for complex non-linear models it is not straightfor-
ward and requires the participation of modelling experts, we
have proposed to use the structural information in the model
to design a neural network grey box model using a state space
architecture.
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Figure 7. Results for the PC tracking the system using the first principles model. The figure represent 4 experiments with real
data. On the left we represent the estimated and the real value of the magnitude. On the right we represent the evolution of the
residual, and the threshold.
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Figure 8. Results for the PC tracking the system using the ssNN model. The figure represent 4 experiments with real data. On
the left we represent the estimated and the real value of the magnitude. On the right we represent the evolution of the residual,
and the threshold.
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The main conclusion is that the structure of the Minimal
Evaluable Model for a Possible Conflict can guide the design
of the state space model of the neural network, reducing its
complexity and avoiding the process of multiple unknown pa-
rameter estimation in the first principles models. Comparing
results of this approach in an evaporation unit of a beet sugar
factory we have observed that the ssNN is able to obtain sim-
ilar of even better results than a simulation model manually
derived by an expert. Both types of models were used to suc-
cessfully monitor the process and to detect faults.

As further work, we plan to derive additional ssNNs and to
test on a larger experiment data-set. Additionally, we need
to test the approach at different times of the season, because
this is a very slow evolving process whose parameters vary
over time. Moreover, we can test more abstract models that
will produce fewer PCs, but still containing same structural
information. Finally, once we introduce larger data sets, we
will use statistical tests to perform fault detection, and to de-
termine the threshold to guarantee a maximum percentage of
false positives and false negatives.
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