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ABSTRACT

Abstract - The estimation of Remaining Useful Life (RUL)
of industrial equipments can be realized on their most critical
components. Based on this assumption, the identified critical
component must be monitored to track its health state during
its operation. Then, the acquired data are processed to extract
relevant features, which are used for RUL estimation.

This paper presents an evaluation method for the goodness
of the features, extracted from raw monitoring signals, for
health assessment and prognostics of critical industrial com-
ponents. The evaluation method is applied to several simu-
lated datasets as well as features obtained from a particular
application on bearings.

1. INTRODUCTION

The availability, reliability and security of industrial equip-
ments can be ensured by monitoring their most critical com-
ponents to continuously assess their health condition and pre-
dict their future one leading to maintenance, life cycle and
cost optimization. Examples of critical physical components
can be bearings, gears, batteries, belts, etc. Bearings failure is
considered as the one of the foremost causes of breakdown in
rotating machinery (Li et al., 1999). Bearing faults account
for the 40% of motor faults according to the research con-
ducted by Electric Power Research Institute (EPRI) (Enzo &
Ngan, 2010). Turbine engine bearing failures are the lead-
ing cause of class-A mechanical failures (loss of aircraft)
(Richard, 2005). Even one aircraft saved with prognostics
would pay its development cost (Marble & Morton, 20006).
The identification of the most convenient time of maintenance
after failure detection without reducing the safety require-
ments is crucial, which is possible with prognostics capabil-
ity. Thus, bearing prognostics is very critical for effective
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operation and management.

Failure detection forces machinery to shut down that causes
tremendous time, productivity and capital loss. In addition,
it is not uncommon to replace a defected/used bearing with
a new one that has shorter remaining useful life than the de-
fected one. Each failure type (outer race, inner race, ball and
cage defects) causes a distinct signature in the vibration fre-
quency (Enzo & Ngan, 2010) and vibration analysis is con-
sidered as the most reliable method in bearing failure detec-
tion (Zhang, Sconyers, Patrick, & Vachtsevanos, 2010; Da-
vaney & Eren, 2004; McFadden & Smith, 1984; Tandon &
Choudhury, 1999). However, it is often difficult to extract
the failure signature due to the noise in the data especially in
early stages of the failure (Su, Wang, Zhu, Zhang, & Guo,
2010; Bozchalooi & Liang, 2008; He, Jiang, & Feng, 2009).
These features are then used to do failure detection, diagnos-
tic and prognostic.

Feature extraction is the common step in all types of prognos-
tic approaches and one of the most critical steps in diagnostics
and prognostics. The extracted features are first evaluated and
then used by appropriate methods and algorithms to detect the
faults and to predict the equipment’s remaining useful life. In
this framework, the goodness of the features affects the com-
plexity of the diagnostic and prognostic methods. Features
that represent healthy, close to failure machinery and their
progression perfectly may lead to very simple diagnostic and
prognostic methods. On the other hand, very complex diag-
nostic and prognostic methods using features that are ineffec-
tive in representation of failure and failure progression may
lead to poor results. Thus, extraction of relevant features is a
pre-requisite for effective diagnostics and prognostics.

This paper presents an evaluation method for the goodness
of the features for prognostics. An effective feature evalua-
tion method will achieve the selection of best features, which
is critical for obtaining better prognostics results. The fea-
ture evaluation method is applied to bearings that were run
until failure in a lab environment. The paper is organized
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as follows: section 2 presents a brief introduction to failure
prognostic, section 3 deals with the quantification metric for
the quality evaluation of features for prognostics, section 4
presents results and experiments and finally section 5 con-
cludes the paper.

2. FAILURE PROGNOSTIC PARADIGM

According to the International Standard Organization (ISO),
failure prognostics corresponds to the estimation of the op-
erating time before failure and the risk of future existence or
appearance of one or several failure modes (AFNOR, 2005).
In the scientific literature, the operating time before failure
is called remaining useful life (RUL) for which a confidence
value is often associated.
Several methods and tools for performing failure prognostics
are proposed in the literature. This material can be grouped
into three main approaches (Tobon-Mejia, Medjaher, & Zer-
houni, 2012; Heng, Zhang, Tan, & Mathew, 2009; Jardine,
Lin, & Banjevic, 2006; Vachtsevanos, Lewis, Roemer, Hess,
& Wu, 2006), namely: model-based approach, data-driven
approach and hybrid approach.

Model-based (also called physics of failure) methods deal

Prognostic

Model-based approach
[ (physics of failure) } [ Data-driven approach } [ Hybrid approach }

Figure 1. Main prognostic approaches.

with the exploitation of a mathematical model representing
the behavior of the physical component including its degrada-
tion. The derived model is then used to predict the future evo-
lution of the degradation. In this case, the prognostic consists
in evolving the degradation model until a determined future
instant from the actual deterioration state and by considering
the future use conditions of the corresponding component.
The main advantage of this approach is its precision, since
the predictions are achieved based on a mathematical model
of the degradation. However, the derived degradation model
is specific to a particular kind of component or material, and
thus, can not be generalized to all the system components. In
addition to that, getting a mathematical model of degradation
is not an easy task and needs well instrumented test-benches
which can be expensive.

Data driven methods are concerned with the transformation
of the monitoring and/or the exploitation data into relevant
models, which can be used to assess the health state of the
industrial system and predict its future one leading to the esti-
mation of its RUL. Generally, the raw data are first processed
to extract features which are then used to build the diagnostic
and prognostic models. The features can be temporal, fre-

quency or both. In same applications, individual features are
not sufficient and one needs to combine them in order to build
what can be called health indicators. Note that data-driven
prognostics methods can use data provided by sensors or ob-
tained through experience feedback (operation, maintenance,
number of breakdowns, etc.).

The advantage of data-driven approach is its applicability,
cost and implementation. Indeed, by these methods, it is
possible to predict the future evolution of degradation with-
out any need of prior mathematical model of the degradation.
However, the results obtained by this approach are less pre-
cise than those obtained by using model-based methods.
Hybrid methods use both data-driven and model-based (or
physics of failure) approaches. The application of each ap-
proach depends on the application and on the type of knowl-
edge and data available.

3. FEATURE EXTRACTION AND EVALUATION

Fault detection, diagnostic and prognostic activities all use
the notion of features, which are extracted from the raw mon-
itoring signals provided by the sensors (temperature, vibra-
tion, force, etc.) installed on the system. Feature extraction is
primordial in the process of health monitoring, health assess-
ment and failure prognostic. Indeed, the relevant information
which is related to the behavior of the component during its
degradation is often hidden in the raw signals and needs to
be extracted by means of appropriate methods. The figure 2
shows the steps involved in the process failure prognostic in-
cluding feature extraction.

Diagnostics is a classification problem, whereas the prog-

Critical Data Health
Parameters Adequate Feature processing assessment | RUL
component "
to measure Sensors evaluation and feature and
to monitor
extraction prognostics

Figure 2. Steps for RUL estimation.

nostics is the process of forecasting the future health states.
The goodness of the features for diagnostics is basically a
measure of separability between data from healthy and faulty
equipment. Good separability indicates that samples from
different classes (i.e., healthy and faulty) are far apart from
each other and samples from the same class are close to each
other. The key point in prognostics is the continuity of the
separation between time segments, whereas diagnostics fo-
cus on one separability measure between two static classes
(i.e., failed and healthy). However, prognostics searches for
separation between time segments for the whole the compo-
nent where prognostics is aimed. Within class separability
(parameters a and b in Fig 3 (Camci, Medjaher, Zerhouni, &
Nectoux, 2012)) and between class separability (parameter c
in Fig 3 (Camci et al., 2012)) are used to quantify the sepa-
rability. Many class separation metrics have been reported in
the literature (Calinski & Harabasz, 1974; Eker et al., 2011).
These metrics focus on static classes; do not consider pro-
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Figure 3. Feature quality for diagnostics and prognostics.

gression from one class to another. One feature may be good
at separation of the classes, but not at representation of pro-
gression from one class to another. For example, separability
measure (S2) of feature 2 (F2) is higher than in separability
measure (S1) of feature 1 (F1) in Fig 3 (Camci et al., 2012).
However, this does not mean that F2 is better in representing
the failure progression. As seen from the figure, failure pro-
gression in F2 involves higher variation. Thus, a new quality
measure should be employed for prognostics, which is a rel-
atively new problem.

Monotonically non-increasing or non-decreasing: Math-
ematically, a function f is called monotonically increasing
(monotonically non-decreasing), if for all x and y such that
v <yonehas f(x) < f(y) (f(¥) < f(x).

It may be trivial to check the monotonicity for a single fail-
ure progression sample by analyzing the difference between
consecutive points. When all the difference values are greater
(less) than or equal to 0, then the function is defined as non-
decreasing (non-increasing). However, monotonicity over all
samples representing failure progression should be consid-
ered rather than individual analysis of samples. Example of
several samples representing failure progression is displayed
in Fig. 4 (Camci et al., 2012). As seen from the figure, the
time is segmented for effective analysis of the failure progres-
sion. The effectiveness of a feature to represent the failure
progression is calculated as the average separability of seg-
ments as represented in (1). The higher the total separability
value (.5) is, the better representation of the failure progres-
sion. Thus, the goal is to find the feature that has the highest
S value. S basically is the average separation between time
segments. High S value indicates that the difference between
time segments are high. s; value is the separability measure
for consecutive time segments.

M=

St

1
T (1)

where S is the average separability value, s; is the separabil-
ity at time ¢ and 7' is the total number of time segments.

The distribution of the data points from different samples in
each time segment should be used to measure the separabil-

g ="

Figure 4. Failure progression for multiple samples.

ity at a given time segment. The separability calculation is
formulated in (2).

_a_ X
St—L N, (2
with
0if 241
_ L
X‘{aifgzl ®

where « is the number of samples overlapping with the dis-
tribution in consecutive time frame, [V, is the number of sam-
ples in time segment ¢ and L represents the distance between
25th and 75th percentiles. The 25th and 75th percentiles were
selected as a common sense to select the range to be able
to capture the 50% of the data. The selection of the range
may depend on signal to noise ratio and possible bias in the
dataset.

The ratio of the length of the non-overlapped portion (called
a) to L is a measure of the separability (a/L). The L and a
parameters represent the distance between points in the given
percentile. For example, if the overlapping occurs between
30th and 50th percentile, parameter a is the distance between
samples in 30th and 50th percentile. When the separation
is low, a/L ratio will be close to 0. When the separation is
high, a/L becomes closer to 1. When there is no overlap be-
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tween 25-75 percentiles of the distributions (a/L=1), there
exist two different possibilities. In the first one, there is some
overlap within data greater than 75th percentile or less than
25th percentile. The second one represents complete separa-
tion. When a/L becomes 1, then the ratio of number of data
points causing overlap to the total number of data points in
the distribution is subtracted in separability calculation.

4. EXPERIMENTS AND RESULTS
4.1. Simulated Dataset

The presented evaluation method is applied to eight simulated
datasets. These datasets have been developed to simulate var-
ious levels goodness for prognostics. The features with clear
trend are considered to be good feature, whereas bad features
do not include a trend with time. The datasets numbered from
one to eight include increasing trend as shown in Figure 5.
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Figure 5. Simulated Features.

The trend in these datasets are formulated as logarithmically
increasing mean with constant noise and shown in the
formulation below. In these equations i;; is the mean of
feature ¢ in time ¢ and 7' is the final time point.

o(t) = pis +o “4)
i, = log(10) )]
HiT = log(z X 10) (6)

As seen from the Figure 5, the goodness of the features in-
creases from feature 1 to feature 8. The trend in the later
features can be seen better in later datasets. Figure 6 displays
the goodness of features obtained with the presented evalua-
tion metric. As seen from the figure, the goodness increases
in the later features, which supports the increasing trend in
Figure 5.

Figure 6. Goodness of features.

4.2. Bearing Example

The accelerated bearing life test bed is called PRONOSTIA,
which it is an experimentation platform dedicated to test and
to validate bearing health assessment, diagnostic and prog-
nostic. In the present experimental setup a natural degra-
dation process of bearings is performed. During the exper-
iments any failure types (inner race, outer race, ball, or cage)
or their combinations could occur. This is allowed in the sys-
tem to better represent a real industrial situation.

The experimental platform PRONOSTIA is composed of two
main parts: a first part related to the speed variation and a
second part dedicated to load profiles generation. The speed
variation part is composed of a synchronous motor, a shaft,
a set of bearings and a speed controller. The synchronous
motor develops a power equal to 1.2 kW and its operational
speed varies between 0 and 6000 rpm. The second part is
composed of a hydraulic jack connected to a lever arm allow-
ing to create different loads on the bearing mounted on the
platform for degradation.

A pair of ball bearings is mounted on one end of the shaft
to serve as the guide bearings and a NSK6307DU roller ball
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bearing is mounted on the other end to serve as the test bear-
ings. The transmission of the movement between the motor
and the shaft drive is coupled by a rub belt.

Two high frequency accelerometers (DYTRAN 3035B) are
mounted horizontally and vertically on the housing of the test
roller bearing to pick up the horizontal and the vertical ac-
celerations. In addition, the monitoring system includes one
temperature probe (of type PT100) to record the temperature
of the tested bearing. A speed sensor and a torque sensor are
also available on the PRONOSTIA platform. The sampling
frequency of the NI DAQCard-9174 data acquisition card is
set to 25600 Hz and the vibration data provided by the two
accelerometers are collected every 1 second.

The bearing operating conditions are determined by instan-
taneous measures of the radial force applied on the bearing,
the rotation speed of the shaft handling the bearing and of the
torque inflicted to the bearing.

Several features are extracted to be used for failure progres-
sion such as maximum, mean, standard deviation, skewness,
kurtosis, root mean square error (RMS), crest factor and high-
est frequency.
Fig 7 displays two good (RMS and standard deviation); two
bad features (Skewness and crest factor) for prognostics (in
these plots, the x axis stands for time). As you can see from
the figures, failure progression can be seen in the features
with high separability measure.

Fig 8 displays the separability values of several features. In
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Figure 7. Examples of good/bad features for prognostics.

this figure three sensory signals were used each is represented
by a line in the graph. The fluctuations show that the good-
ness may vary based on the sensory signal used. As seen from
this figure, the goodness of skewness and crest factor (CF) are
low, whereas the goodness of standard deviation and RMS are
high. Thus, the evaluation method is able to differentiate the

goodness of the features.
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Figure 8. Separability values for the second type of degrada-
tion.

5. CONCLUSION

The quality of the features is critical for health assessment, di-
agnostics and prognostics. Feature extraction, selection and
evaluation of the quality of features in diagnostics has been
studied extensively. The nature of the prognostics problem
is different from diagnostics. This paper presents quantifica-
tion metric for evaluation of the quality of features for prog-
nostics, which is relatively new problem compared to diag-
nostics. The presented metric is applied to features extracted
from bearing vibration data collected in a lab environment.
The features are plotted for visual evaluation to judge the
quality of the evaluation metric. The results show that the
metric is able to effectively quantify the quality of features
for the purpose of prognostics.
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