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ABSTRACT 

In order to predict in advance and with the smallest possible 

uncertainty when a component needs to be fixed or 

replaced, lifetime models are developed based on the 

information of the component deterioration trend and its 

failure threshold to estimate the stochastic distribution of the 

hitting time (the first time the deterioration exceeds the 

failure threshold) and the remaining useful life. A primary 

issue is how to effectively handle the uncertainties related to 

the component deterioration trend and failure threshold. 

This problem is here investigated considering a non-

stationary gamma process to model the component 

deterioration and a gamma-distributed failure threshold. 

Two lifetime models are proposed for comparison on an 

application concerning deterioration of choke valves used in 

offshore oil platforms. 

1. INTRODUCTION 

The capability of predicting when maintenance actions are 

required is a primary issue for every industry and bears the 

advantages of enhancing operational safety and maximizing 

plant reliability. In this respect, to estimate in advance and 

with an acceptable level of uncertainty the component 

remaining useful life, one can either define a failure time 

probability based on the failure times records of a large 

number of similar components, or exploit the information 

on the component deterioration trend during operation 

(Nystad, 2008; Gola & Nystad, 2011a). The latter approach 

is less conservative and allows tailoring maintenance 

planning to the specific case and, as a consequence, 

maximizing the usage of the component.  

In practice, lifetime estimation models (van Noortwijk, 

2009; Lu & Meeker, 1993) are devised to combine the 

knowledge of the past deterioration trend and the current 

degradation state with the failure threshold and to estimate 

the hitting time (Abdel-Hameed, 1975; Frenk & Nicolai, 

2007) and the remaining useful life (van Noortwijk, 2009; 

Rausand & Høyland, 2004).  

The uncertainty associated to the deterioration trend is here 

modelled by a non-stationary gamma process (Gola & 

Nystad, 2011a; van Noortwijk, 2009). A gamma process is a 

stochastic process with independent, non-negative gamma-

distributed increments and represents a valuable option to 

model monotonic processes, i.e. with gradual damage 

monotonically accumulating over time in a sequence of 

increments such as wear, fatigue, erosion/corrosion, crack 

growth, erosion, creep and swell. 

The specification of the failure threshold is a critical issue 

(Nystad, 2008; van Noortwijk, 2009). In fact, using a 

deterministic threshold is problematic since the same 

component can fail at different degradation levels. 

Typically, an unbiased estimate of the threshold mean value, 

or a conservative lower-bound threshold estimate are 

supplied. Nevertheless, if the threshold value is set too high, 

the risk of actual component failure will increase. On the 

contrary, a conservative low threshold value reduces the risk 

of failure, but increases the failure probability to a point in 

which the component can be prematurely put off operation. 

For some applications, e.g. cable aging due to thermal and 

mechanic damage (Fantoni & Nordlund, 2009), the designer 

may not know with certainty what explicit level of 

degradation causes a failure. If threshold failure data are 

scarce an alternative source of information are engineers 

with expertise within the relevant field. Such experts can 

provide useful information about the threshold probability 

distribution in form of best estimates of percentiles.  

This problem is here tackled by considering the threshold as 

a random variable with a gamma probability distribution. A 

likelihood function can then be established based on the 

expert judgment in terms of percentiles (Welte & Eggen, 

2008).  

_____________________ 
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A practical application concerning erosion in choke valves 

used in the oil and gas industry is considered (Gola & 

Nystad, 2011a; Bringedal, Hovda, Ujang, With & 

Kjørrefjord, 2010) and two lifetime models for estimating 

the remaining useful life are proposed and compared. 

2. THE HITTING TIME AND REMAINING USEFUL LIFE 

Since the failure threshold variability does not depend on 

the temporal uncertainty associated to the deterioration trend 

but only on the historical failure records of the component, 

it is reasonable to assume that the threshold distribution is 

independent from the deterioration distribution (Abdel-

Hameed, 1975). 

In this view, the cumulative density function of the hitting 

time is defined in Abdel-Hameed (1975) and can be written 

for each time 0t   as: 
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where ( )X tf  is the probability density function (pdf) of the 

deterioration trend ( ) 0X t  , Yf  is the pdf and YF  is the 

cumulative density function (cdf) of the failure threshold 

0Y   (satisfying (0) 0YF  ).  

The meaning of Eq. (1) is illustrated in Figure 1 using the 

choke valve case study data (see Section 3). Based on the 

erosion data for the operational time interval  0,280t  

(diamonds in Figure 1), the expected value (solid line) and 

5
th

 and 95
th

 percentiles (dashed lines) of the fitted gamma 

process with assumed power law shape are shown. Notice 

that the functional shape of the erosion process at timestamp 

280t   is convex. The failure threshold is here defined as a 

gamma distribution, i.e. the hazard zone (red contour plot in 

the Figure). The probability of failure in the operational 

time is illustrated by the hitting time pdf (blue line). 

 

Figure 1. The hitting time probability density function (blue 

line); fitted gamma process with power-law shape (black 

solid and dashed lines) and a gamma distributed hazard zone 

(red). 

The remaining useful life at time 0t s   is derived from 

Eq. (1) (Rausand & Høyland, 2004) and is here calculated 

by resorting to a state-based approach (Gola & Nystad, 

2011b) which accounts for the knowledge of the 

deterioration state 
sx  at time t s : 
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Recalling that in a time-based perspective the deterioration 

x  is a function of t , the pdf      sX t X sf x x   represents 

the probability of having at time t  a deterioration increment 

sx x  and the term        1Y Y s Y sF x F x F x   is the 

left-truncated cdf of the failure threshold providing the 

probability of having the failure threshold y  between the 

current deterioration state 
sx  and infinity.  

The meaning of Eq. (2) is illustrated in Figure 2. The fitted 

gamma process is the same with the exception that here 

there is no uncertainty in the erosion in the operational time 

interval  0,280t . The expected value (solid line) 

remains unchanged; the 5
th

 and 95
th

 percentiles (dashed 

lines) are instead calculated based on the erosion increment 

sx x . The left-truncated failure threshold (red contour plot) 

and the pdf of the RUL (blue line) are finally shown.  

Hazard zone 
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Figure 2. RUL probability density function (blue line); fitted 

gamma process with power-law shape (black solid and 

dashed lines); left-truncated gamma distributed hazard zone 

(red). 

Nevertheless, for a distribution without memory (as e.g. the 

exponential distribution) there is no advantage in left-

truncating the cdf of the threshold and therefore the 

expression of the remaining useful life becomes the same as 

the left-truncated version of the hitting time. 

Notice that since the hitting time model in Eq. (1) considers 

uncertainty in the whole deterioration trend from 0t   to 

infinite, the associated uncertainty calculated at 0t s   is 

higher than that of the pdf depending only on the prediction 

from t s  to infinity.  

2.1. The deterioration model 

The deterioration ( )X t  is here modelled as a non-stationary 

gamma process (van Noortwijk, 2009) with a time-

dependent pdf written as: 
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where   ( ) 1

0

( ) v t zv t z e dz



     is the gamma function with 

shape parameter ( ) 0v t   and scale parameter 0u  , 

(0) 0X   with probability one, the deterioration increment 

( ) ( )X t X s  gamma-distributed with shape parameter 

( ) ( )v t v s  and scale parameter u  for any 0t s   and the 

stochastic process  ( ), 0X t t   having independent 

increments. The shape function ( )v t  must be non-

decreasing, right-continuous and real-valued for 0t  , with 

(0) 0v   and ( )v    . When ( )v t  is linear the gamma 

process is stationary and it is non-stationary when ( )v t  is 

non-linear. 

2.2. The threshold model 

Indeed, the hitting time (Eq. 1) and remaining useful life 

(Eq. 2) models are well suited to handle different types of 

uncertainties of the failure threshold related for example to 

the estimate of the initial deterioration (due to imperfect 

maintenance or production defects), to the manufacturing 

variability and to the historical measurements. 

In this paper, a gamma-distributed failure threshold 

( , )Y Ga y    with shape parameter 0   and scale 

parameter 0   is considered, with pdf and cdf given for 

any 0y   as: 
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where 1

0

( , )

y

zy z e dz



       is the lower-incomplete 

gamma function. Notice that the shape parameter   is in 

this case a time-independent constant. 

2.3. Expected deteriorations 

In general, the expected deterioration ( ( ))E X t  can be 

linear, concave, convex or any combination of these. As 

discussed in van Noortwijk (2009), the power law function 

is a flexible candidate for linear, concave and convex 

deterioration. 

  
( ) bv t ct

E X t
u u

   (5) 

In this case, the gamma process is linear and stationary if 

1b  , non-stationary concave and convex if 1b   and 

1b  , respectively.  

However, the process in Eq. (5) cannot describe a 

deterioration trend both concave and convex. Given the 

restrictions on ( )v t , a candidate process, which describes 

the expected degradation that is first concave and then 

convex (i.e., z-shaped) is: 

Hazard zone 

s 

xs 
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  
     sinh sinhc ab a t b

E X t
u

 
  (6) 

where the shape parameter 0b   is the timestamp of 

inflection and 0a   is related to the size of the derivative in 

the inflection point. 

An example of an expected deterioration as in Eq. (6) is the 

impact of external stress on materials/devices (Mc Pehrson, 

2010). The net reaction rate for material/device degradation 

becomes concave (linear) with low stress and convex with 

high stress. 

2.4. Inference of the model parameters 

In practice, the application of the gamma process requires 

using statistical methods for estimating the parameters from 

the available measurements. For the gamma process a 

typical data set consists of inspection times it , 1, ,i n , 

where 0 1 20 nt t t t     , and the corresponding 

observations of cumulative  amounts of deterioration ix ,

1, ,i n , where 0 1 20 nx x x x     . The 

estimators for the scale parameters u  and c  for the power 

law (Eq. 5) and z-shaped (Eq. 6) degradations can be 

derived by the method of moments or the method of 

maximum likelihood (van Noortwijk, 2009). The method of 

moments leads to attractive and simple formulae for the 

parameters, but it requires knowledge of the shape 

parameters values of the power law  b  and z-shaped 

 ,a b  degradations which are either given based on 

experts’ opinion (Welte & Eggen, 2008) or can be inferred 

numerically by least square optimization. On the other hand, 

the method of maximum likelihood, explained in van 

Noortwijk (2009), allows estimating directly the shape and 

scale parameters, at the expenses of larger computational 

costs. In the application that follows, first least square 

optimization is used to determine the shape parameters and 

then the method of moments is applied to calculate the scale 

parameters  ,u c . 

Concerning the failure threshold, historical values for a 

number of similar components can be used to calculate the 

mean and standard deviation of the failure threshold 

distribution (Nystad, 2008). For highly reliable components 

for which failures are rare, one can use few deterioration 

samples with their associated parameters and Monte Carlo 

simulations to generate a large number of deterioration 

paths. Different threshold values randomly selected from a 

threshold distribution can then be used to estimate the 

hitting time (Lu & Meeker, 1993). Finally, a source of 

information is constituted by field experts (Welte & Eggen, 

2008). Since the meaning of many probability distribution 

parameters is rather abstract, experts have usually problems 

estimating them directly. In fact, experts can provide useful 

information about the threshold distribution in terms of best 

estimates (mean, median, mode) or percentiles (e.g. a 10
th

 

percentile corresponding to early failures) which can be 

used to estimate the parameters of two-parametric 

probability distributions like the gamma distribution. 

3. DETERIORATION OF CHOKE VALVES 

The application proposed in this paper concerns 

deterioration of choke valves undergoing erosion (Bringedal 

et al., 2010; Andrews, Kjørholt & Jøranson, 2005). In 

offshore oil platforms, choke valves are used on the surface 

to control the flow of hydrocarbons and protect the 

equipment from unusual pressure fluctuations. Production 

experience has shown that choke valves are prone to sand 

erosion in the disks and in the outlet sleeve (Andrews et al., 

2005). The main parameters determining erosion are the 

impact velocity and the impact angle of the sand grains 

through the choke discs. 

 

Figure 3. Damage caused by sand erosion. In the picture the 

original circular holes in the disks have a major wear on the 

upper side on the left hole and lower side on the right hole. 

From the mathematical point of view, the flow characteristic 

VC  is defined so that the pressure differential p  across the 

choke valve is constant and total mass flow rate w  through 

the valve is proportional to the valve flow coefficient 
VC  

which is related to the effective flow cross-section of the 

valve and therefore depends on the valve opening.  

V

p
w C




      (7) 

where   is the average mixture density. The 
VC  curve is 

specific to the valve type and size and for a given valve 

opening 
VC  is expected to be constant (Kirmanen, Niemelä, 

Pyötsiä, Simula, Hauhia & Riihilahti, 2005). The 
VC  

characteristic curve is the baseline for a good as new valve 

and is often provided by the valve constructors. When 

erosion occurs, a gradual increase of the effective flow 

cross-section is observed even at constant pressure drop. 

Such phenomenon is therefore related to an abnormal 

increase of the valve flow coefficient with respect to its 

expected baseline value, hereby denoted as b

VC . For this 

reason, for a given valve opening the difference 
VC  
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between the actual flow coefficient and its baseline is 

retained as an indicator of the valve erosion. The difference 

V

b

C V VC C   is expected to be monotonically increasing 

throughout the life of the valve, thus reflecting the physical 

behavior of the erosion process. When 
VC  eventually 

reaches an established erosion threshold, the valve must be 

replaced (Gola & Nystad, 2011a) 

The valve flow coefficient 
VC in a multiphase environment 

cannot be directly measured, but it can be calculated from 

the following analytical expression which accounts for the 

physical parameters involved in the process: 

2

6

o w g go w
V

o w gp

w w w ff f
C

JN F p   

 
  


 (8) 

where ow , ww and gw are the flow rates of oil, water and 

gas, 
of , 

wf and 
gf the corresponding fractions with respect 

to the total flow rate and 
o ,

w   and 
g the corresponding 

densities. J is the gas expansion factor, 
pF is the piping 

geometry factor and 
6N is a constant equal to 27.3 

(Kirmanen, Niemelä, Pyötsiä, Simula, Hauhia & Riihilahti, 

2005). The quality of the available data of the physical 

parameters in Eq. (8) differs because p is directly 

measured, whereas oil, water and gas flow rates are 

calculated based on daily production rates of other wells of 

the same field. Improvement of the valve erosion indicator   

VC based on additional information from well tests carried 

out throughout the valve life is discussed in Gola and 

Nystad (2011a). Therefore, in this paper, a single choke 

valve undergoing erosion is considered and hitting time 

models and new RUL models based on Eq. (2) are applied 

to the 
VC  trend obtained in Gola and Nystad (2011a) as a 

function of the operational days. The valve was opened and 

checked to be found in a failed state at operational time 

307nt   days. 

Expert judgment is here used to define the failure threshold 

probability distribution (Welte & Eggen, 2008). For a 

gamma-distributed threshold, the experts provide the best 

central estimate which, in this case study, is equal to the 

mean value of the threshold set by the experts ( 16y  ) and 

they are also asked to assess the boundaries of the interval in 

which the true value of the threshold falls. A measure of the 

uncertainty of the expert opinion is the standard deviation of 

Y . By having the expert claiming that e.g. the true threshold 

lays between the values 14 and 18 being most likely equal to 

16, one can calculate the shape parameter   and the scale 

parameter  of Eq. (4) from ( ) 16E Y     and 

2( ) 2Y Y     which yields 64   and 4  . 

This hazard zone distribution is shown as a red contour plot 

in Figure 1. The skewness of a gamma distribution is 

2 0.25  , a value which implies a good fit to the 

expert’s claim. 

Figures 4 and 5 show the 
VC  trend and its estimation 

provided by the power-law (Eq. 5) and z-shaped (Eq. 6) 

models obtained at different operational days, namely 
nt 

100, 200, 250 and 307. Because cumulative amounts of 

deterioration are measured, the last inspection contains the 

most information. For the gamma process the expected 

deterioration at the last inspection time (at time 
nt ) equals

nx ; that is,
   n nE X t x  (van Noortwijk, 2009). Figures 

6 and 7 illustrate the remaining useful life and the associated 

uncertainty (5
th

 and 95
th

 percentiles) obtained for each 

239nt   when using the power-law and z-shaped models, 

respectively. 

Notice that the power-law shape becomes convex only after 

250 operational days (Fig. 4), thus leading to an 

overestimation of the component remaining useful life (Fig. 

6) with respect to its theoretical value (red dashed line). On 

the other hand, using the z-shaped model at 240 operational 

days one can already identify the final z-shape of the 

degradation (Fig. 5), with the consequence of obtaining 

better estimations of the remaining useful life, i.e. closer to 

its theoretical value and with a reduced uncertainty (Fig. 7). 

 

Figure 4. 
VC  trend (thick line) and corresponding 

estimations provided by the power-law model. 
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Figure 5. 
VC  trend (thick line) and corresponding 

estimations provided by the z-shaped model. 

 

Figure 6. Remaining useful life estimation with the power-

law model (95% confident interval) and theoretical value 

(red dashed line). 

 

Figure 7. Remaining useful life estimation with the z-shaped 

model (95% confident interval) and theoretical value (red 

dashed line). 

4. CONCLUSION 

This paper has investigated the problem of estimating the 

remaining useful life of components using stochastic 

lifetime models and considering randomly-distributed 

failure thresholds. In particular, gamma processes with 

power-law and z-shaped shape functions (i.e. first concave, 

then convex) have been proposed to predict the 

deterioration; a gamma distribution has been considered to 

model the failure threshold for it is frequently used as a 

probability model in life testing and it is a flexible 

distribution for modeling the uncertainty in experts’ 

opinions. The failure threshold distribution is also known to 

contain only positive real values, i.e.
  0,x  . 

A case study of erosion of choke valves used in offshore oil 

platforms has been considered and the results of the 

expected deterioration calculation and the remaining useful 

life estimation given by the power-law and z-shaped models 

have been compared. An a priori knowledge of the overall 

shape of the deterioration is valuable. In this respect, with 

some efforts the shape of the expected erosion can be 

assumed beforehand by some engineering expertise. 

However, the model is general and can be applied also to 

other cases where the distribution of the parameters for a 

maintenance model must be estimated.  
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