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ABSTRACT 

Cassidian is in the process of developing a comprehensive 

simulation framework for integrated system health 

monitoring and management research and development. 

One significant building block is to invite 1st class 

technology providers, e.g. Universities and SMIs, to provide 

innovative technologies and support their integration into 

the simulation framework. This paper is a joint presentation 

of Cassidian and Linova Software GmbH, a Cassidian 

preferred software provider. 

Prognostic Health Management (PHM) systems are 

commonly composed of disparate and distributed hard- and 

software components. Further, these components exchange 

vast amounts of data over a heterogeneous collection of 

communication channels. Any such system’s success 

depends upon an open, uniform, and performance-optimized 

solution for data management. A solution that includes: data 

definition, data communication, and data storage. The Open 

System Architecture for Condition-based Maintenance 

(OSA-CBM) and Open System Architecture for Enterprise 

Application Integration (OSA-EAI) are complementary 

reference architectures and represent an emerging standard 

for application domain-independent asset and condition data 

management. Herein, we will report on our experiences 

while implementing a data management backbone based on 

OSA-CBM and OSA-EAI for a simulation environment 

supporting PHM systems in the aerospace domain. Our 

work encompasses both airborne embedded systems and 

ground-based PC systems. While we can generally confirm 

the feasibility of OSA-CBM and OSA-EAI, we found 

several implementation recommendations unsuited to real-

time operating conditions. To address these issues, we 

propose work towards standardizing non-XML-based 

transportation formats for OSA-CBM data packets. Further, 

we discovered issues specific to implementing the OSA-EAI 

data model in the aerospace domain. These issues drove our 

proposal to extend the OSA-EAI database model, where we 

seek to optimize its usability for analytical tasks. To 

underline the feasibility of our solutions, we provide 

empirical evidence drawn from our work. The conclusion is 

a summary of our experience and the direction of future 

work in the area of PHM system design for aircraft 

maintenance. In total, our contribution to the community is 

best seen from a practitioner’s perspective. We aim to 

establish best practices for and contribute to the evolution of 

OSA-CBM and OSA-EAI. 

1. SIMULATION ENVIRONMENT 

The aerospace industry is a core application domain and 

development driver for PHM systems. The paradigm shift 

towards predictive maintenance which PHM systems 

impose to maintenance and overhaul processes promises 

higher aircraft availability coupled with lower overall 

maintenance costs. As in any other domain, challenges in 

introducing PHM systems to the aerospace domain are 

twofold. On the one hand, there are individual challenges in 

developing sensor technology, state detection, and health 

assessment methodologies/models for determining the 

future life span of a (possibly deteriorated) component. On 

the other hand, there are distinct challenges when 

integrating heterogeneous data from disparate and 

distributed sources into consolidated information and 

dependable decision support. This applies at both the 

aircraft and fleet level. It has therefore been recognized in 

the community that standardized and open data management 

solutions are crucial to the success of PHM. Such a standard 

should introduce a commonly accepted framework for data 

representation, data communication, and data storage.  

_____________________ 
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EADS Deutschland GmbH, Cassidian, is developing a 

comprehensive simulation framework for research in the 

areas of condition monitoring and prognostic health 

management. The framework includes airborne functions 

hosted on embedded systems, as well as ground-based 

functions hosted on PC-based systems. The primary 

objective is to interconnect both airborne and ground-based 

systems using a uniform data management philosophy and, 

as far as possible, uniform communication protocols. In this 

paper, we report on experience from our task to define and 

implement the data management backbone for such a 

simulation framework. The backbone is based on the Open 

System Architecture for Condition-based Maintenance 

(OSA-CBM) and the Open System Architecture for 

Enterprise Application Integration (OSA-EAI).  

1.1. OSA-CBM 

The OSA-CBM reference architecture has become the de 

facto standard for exchanging data in a condition monitoring 

system. Being an implementation of the ISO-13374 

functional specification, the architecture defines six 

functional layers.  Each layer is allocated different and 

unique functions of the data processing chain in a condition 

monitoring system.(see Figure 1). 

 

Figure 1.OSA-CBM Reference Architecture 

This architecture focuses on the definition and 

communication of data. Specifically, on the question as to 

which data entities and events can be exchanged between 

the layers during operation and the communication 

interfaces used for this purpose. The format by which the 

data is exchanged between the layers remains unspecified; 

however, the usage of XML messages, which are 

transported over HTTP, is recommended. For this purpose, 

the standard provides a thorough collection of specifications 

for XML messages. 

1.2. OSA-EAI 

The reference architecture OSA-EAI is complementary to 

OSA-CBM. It specifies a comprehensive data storage 

architecture for asset management systems. This 

architecture consists of: a physical relational data model 

(Common Relational Information Schema, CRIS), a 

corresponding logical object model (Common Conceptual 

Object Model), and CRUD interfaces (Create, Retrieve, 

Update, Delete) for all defined entities in the data model, as 

depicted in Figure 2. In the course of harmonizing OSA-

EAI with OSA-CBM, the data model defines entities that 

are capable of storing data originating from all six OSA-

CBM layers. Analogously to OSA-CBM, it is recommended 

that clients interact with an OSA-EAI database via XML 

messages transported via HTTP. For this purpose, the 

authors of the OSA-EAI standard provide a multitude of 

CRUD XML message specifications.  These specifications 

define how to manage data contained in the database and 

how to make the data available to any other stakeholder or 

application within a PHM system. 

 

Figure 2. OSA-EAI Reference Architecture 

A link to the MIMOSA organization, which maintains the 

reference architectures, can be found in the references 

section. 

2. SIMULATION ENVIRONMENT 

The simulation environment consists of an air segment and a 

ground segment, (inter-)connected by a data management 

backbone that relies on OSA-CBM and OSA-EAI. In the 

following section, we introduce the high level architecture 

of our simulation framework. 

2.1. Air Segment 

The air segment of the simulation framework models those 

systems and associated sensors for which we intend to 

develop IVHM capabilities. At the core of the framework is 

a central IVHM data processor. Sensors push their data to 

this IVHM data processor via an OSA-CBM compliant 

implementation. As a reflection of the working 

environment, the underlying message protocol is optimized 

for embedded systems (detailed in section 3). The IVHM 

data processor calculates IVHM information according to 

the OSA-CBM layer specifications, up to the health 

assessment layer (refer to Figure 3). 

 

Figure 3. Air Segment of Simulation Framework 
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2.2. Ground Segment 

The central data processor supports the downloading of 

data, which has been collected and calculated on board the 

aircraft, to the ground-based environment for further 

processing (e.g. during the aircraft’s turnaround). Once 

downloaded, the data is stored in a central data management 

component, which we call the CBM data warehouse (refer 

to Figure 4). 

 

Figure 4. CBM Data Warehouse 

The CBM data warehouse is based on the OSA-CBM/OSA-

EAI reference architectures and it serves two major 

purposes: first, it hosts all current (i.e. short timeframe) and 

historical (i.e. long timeframe) condition data. Second, it 

provides services to distributed client applications that are 

involved in the PHM process. Such services include the 

CRUD interfaces as defined by OSA-EAI (e.g. for asset 

configuration management), high layer functions as defined 

by OSA-CBM (prognostic assessment and advisory 

generation), and other services relevant for a PHM system. 

In our context, data management includes the entire data set 

life cycle: from initial instantiation of a sensor value, 

transportation to the IVHM data processor, downloading to 

the ground-based environment, on through to storage and 

further processing. In section 3 we discuss aspects of OSA-

CBM-based data management in an embedded system. 

Section 4 derives from experience gained while realizing the 

CBM data warehouse. 

3. OSA-CBM IN AN EMBEDDED SYSTEM 

Following an initial implementation of OSA-CBM using 

XML messages transported via HTTP/TCP, we decided to 

use binary messages transported via a UDP/IP stack.  This 

significant departure from the MIMOSA recommendations 

was driven by requirements that arose from our intended use 

of OSA-CBM in the context of embedded systems certified 

for in-flight usage. Our focus of interest for on-board 

implementation ranges from data acquisition layer up to 

health assessment and the following sections report about 

our experience in implementing these classes using the C 

programming language. 

3.1. Environment 

When fielding OSA-CBM compliant applications on 

embedded systems certified for in-flight usage, several 

issues are brought to the fore. Ultimately, two aspects 

defined the unique structure of our solution: resource 

limitation and non-dynamism. Computing hardware for 

avionics, due to qualification requirements, are generations 

behind present off the shelf computing hardware. 

Implementation rules for applications hosted on real-time 

operating systems (such as VxWorks) typically forbid 

dynamically allocating memory resources, as these 

operations are potentially non-deterministic and lead to 

memory leaks if not used carefully. This environment 

imposes further constraints on the solution space: due to 

qualification or certification requirements (depending on the 

risk class of the final system) all embedded code must be 

written in the C programming language. Furthermore, UDP 

must be used as the sole protocol for network 

communication.  

3.2. Use Case and Design Considerations 

We want to transmit a heavy load data event set which 

contains four heterogeneous OSA-CBM DMDataSeq 

events at individual sample rates of 160Hz, 360Hz and 1 

kHz. Additionally, we want to transmit a light load data 

event set, containing a single DMDataSeq event recorded 

at 20Hz; both data event sets will be transmitted with a 

frequency of 1Hz. 

Generating OSA-CBM compliant XML representing our 

two event sets and packaging the XML into UDP packages 

as ASCII code was a straight-forward implementation 

approach as it has been performed by others (Swearingen, 

Kajkowski, Bruggeman, Gilbertson &Dunsdon, 2007). 

Generally, it involves the following three steps: 

1. Sender: assemble the XML from an internal data 

representation in memory 

2. Sender: marshal the XML into a UDP package and 

send 

3. Receiver: Unmarshal and parse the received XML 

and populate an internal data representation in 

memory 

As we will show later on, in Table 1, using XML generates 

a structure in which 75% of the transmitted data is 

apportioned to meta-data defining the XML structure. 

Additionally, due to its absolute size, the heavy load data 

event set exceeds the maximum size of a UDP packet. 

While it would have been possible to split up its data into 

several UDP packages, we consider the ratio between meta-

data and payload to be unsuited to the constrained allocation 

of computing resources. We acknowledge that if we assume 

our heavy and light load data event sets would be the only 

loads on the communication channel (e.g., ethernet), there is 
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no risk that it will exceed transmission capacity; but this 

assumption may not hold in a real aircraft design where 

communication is channeled and, due to the availability of 

qualified or certified hardware, the transmission capacity 

might be drastically limited. We also researched XML 

parsers that are written in C, and therefore compile for 

embedded environments, (e.g., Mini-XML, Expat, RXP) but 

we found them incompatible with internal programming 

policies (static memory allocation). Additionally, the high 

risk involved in the certification or qualification of an XML 

parser for an embedded system finally drove our decision 

towards a non-XML-based binary solution for marshalling 

and unmarshalling OSA-CBM data. 

3.3. Design and Implementation 

OSA-CBM is an object-oriented specification and therefore 

makes use of polymorphism, which is the ability to create 

object attributes, object functions or even an entire object 

that has more than one form. Our implementation of OSA-

CBM is based upon the representation of OSA-CBM classes 

by a set of C structures. The C programming language is 

procedural and does not offer native polymorphism. After 

analyzing data manipulation through health assessment 

layer communication classes of the OSA-CBM object 

model, we concluded that a mapping of OSA-CBM classes 

to C structures is possible. We will next explain our 

rationale in supporting this approach. 

The C programming language decouples data from 

functionality, therefore we did not have to map 

polymorphism of functions (OSA-CBM does not define 

behavior of the classes, anyway). We also could not identify 

polymorphism of attributes for the classes of our interest. 

However, there is polymorphism of objects, i.e., specific 

derived classes inherit part of their structure from one or 

more base classes. We mapped this kind of polymorphism 

by initially modeling C structures for each root class (i.e., 

classes that do not have a base class in the OSA-CBM 

model). For all non-root classes we modeled a member in 

the derived class which is of the type of the respective super 

class. As an example, the structure for the data sequence 

event of the DM layer (DMDataSeq) is shown in Figure 

5(c). The corresponding base class structures are shown in 

parts (b) and (a), respectively.  

Within specific limits our approach is also able to emulate 

multiple inheritance by including more than one base class 

member; however, the part of the OSA-CBM data model 

that we focused on does not involve multiple inheritance. 

For transmission, multiple data event instances are bound 

together into a data event set. Regarding a single instance of 

an OSA-CBM base class, its actual subtype at runtime can 

be anything. This is critical to the C implementation as the 

DataEventSet class acts as a transportation container for 

any DataEvent instances. We solved this problem by 

introducing a constraint: an OSA-CBM data event set may 

only include data events of the same type. This allowed us 

to introduce a non-standard member on the 

DataEventSet class which is of enumerated type 

OsacbmDataType and which indicates the type of 

included events. 

 

Figure 5. Exemplary Payload OSA-CBM Structures 

The received byte stream can therefore be interpreted 

correctly on the receiver side. For the transmission itself, we 

copy a structure’s memory image into a temporary buffer. 

Additionally, as required by the event type, the buffer 

memory is appended with a data block for each reference 

from a structure’s pointer members (here: values and 

xAxisDeltas). Finally, the buffer is sent as a UDP 

packet to the receiver, where is reconstructed into a set of 

OSA-CBM compliant data. Consequently, we support both 

static data types (such as DMReal) and dynamic types (such 

as DMDataSeq). Though, as a necessary overhead, 

complex data sequences require recipient side remapping of 

pointers at run time and a maximum payload size must be 

defined for real time operation. 

3.4. Evaluation 

Quantitative evaluation will be accomplished here with a 

comparison between the data required for an ASCII XML 

data transmission versus that of our custom binary 

transmission protocol. We used Ubuntu 10.0.4 (32bit) as 

sender and VxWorks on Power PC (32bit) bit as recipient. 

Table 1 outlines the data characteristics of two 

representative communication samples.   

 

Figure 6. Data Event Set as C Structure 
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The first sample is a heavy load data event set. It contains 

four heterogeneous OSA-CBM DMDataSeq events at 

individual sample rates of 160Hz, 360Hz and 1 kHz. The 

overall data event set has a frequency of 1Hz. The resulting 

data push represents 2,520 individual measurements being 

sent across the system every second. The second sample is a 

light load data event set, containing a single DMDataSeq 

event recorded at 20Hz; the corresponding overall data 

event set has a frequency of 1Hz. 

 XML Binary Ratio 

Heavy Load 165 345 bytes 40 792 bytes 4.1 

Light Load 1 827 bytes 576 bytes 3.2 

Table 1. Data Transmission Size Comparison 

As seen in Table 1, there is a significant reduction in the 

volume of data transmissions achieved by our approach, 

ranging up to a factor of four. An additional effect of our 

approach, as compared to sending XML messages via UDP 

instead of via HTPP/TCP (Swearingen, Kajkowski, 

Bruggeman, Gilbertson & Dunsdon, 2007) is a significant 

reduction in the processing overhead required by XML 

structural parsing; this reduction is beyond the scope of our 

present analysis. 

However, there are drawbacks of our approach. As UDP is a 

stateless protocol, there is a cap on the amount of data that 

can be transmitted per event set. It is limited to the 

maximum allowed size of a UDP Data package (UDP 

specifies a maximum allowed size). Depending on platform 

specific settings the maximum available size can be 

significantly less.  

We believe that this size limitation is best addressed by 

splitting the data set into a series of discrete packets, as 

opposed to introducing additional limitations and overheads 

on the binary transmission format. Data management within 

a closed on-board real-time environment a priori requires 

that the overall data communication is well designed 

regarding timing and loads. In such a closed and well 

controlled environment the likelihood of UDP packet loss is 

minimized, however, it may happen. Therefore, we propose 

the usage of UDP-based transmission only for functions 

which can cope with temporary gaps in their data input, 

such as our diagnostics algorithm.  For functions which are 

not robust to data losses, a confirmation and resend protocol 

could be invented, but that would negate the usage of UDP 

and TCP would be the transmission protocol of choice.  

Our current implementation is highly platform dependent as 

it is patched to meet the characteristics of our environment 

(sender 32bit Ubuntu, recipient 32bit VxWorks). To 

overcome platform differences we introduced artificial 

padding bytes (see C structure members in Figure 5) so that 

the internal in-memory arrangement is equal on both 

platforms and performed byte-swapping on the receiving 

platform. This allowed us to easily case the UDP package 

payload into the required structures (including pointer 

remapping). 

Finally, XML messages can be read by humans more easily 

than binary messages. This may impose complications to 

the debugging cycles during software development; 

however, from our experience, software developers tend to 

develop the ability to “read” binary content over time, in 

particular if sophisticated Hex editor tools are being used. A 

steeper learning curve certainly is worth the performance 

gains. As for the generation of test data for certification or 

qualification, binary protocols do not impose significant 

overhead, as also with XML a generative approach will 

have to be used to deal with the large amount of test cases. 

3.5. Outlook 

Our initial implementation, transmitting the memory image 

of structures, is not optimal when communication must take 

place between heterogeneous platforms and only allows for 

a homogenous data event set payload. Yet, it yields 

significant performance gains, reduces the consumption of 

memory, and simplifies certification or qualification. As 

shown above, issues related to padding and regarding the 

arrangement of data in RAM may arise. While these issues 

can be mitigated if the characteristics of the platforms are 

known, the scalability in general remains limited. To 

address these issues, we started the development of a 

custom binary OSA-CBM protocol. The vision was to 

evolve this protocol as a generic and platform-independent 

means for transporting OSA-CBM events over the network 

in a binary fashion. In Figure 7 we provide an excerpt from 

our initial work to illustrate the proposed design approach. 

Based on preliminary low level definitions (such as big or 

little endian, widths of primitive data types) all OSA-CBM 

classes are modeled as a sequence of 16 Bit words. In our 

example, an ID consists of two words, i.e. it represents a 

32bit integer value.  

Analogously, the OsacbmTime class is represented as a 

sequence of five words (our customized implementation 

only required the time_type and time_binary 

attribute). With every class having such a specific 

representation, data events and entire heterogeneous data 

event sets can be assembled. For dynamic structures, upper 

bounds for the allowed amount of dynamic data must be 

defined (possibly implementation specific) in order to meet 

the requirements of real-time operating systems. To avoid 

sending spare data, the binary representation of such 

dynamic portions requires that one includes a member that 

defines the actually allocated amount of data (up to a 

maximum dictated by the data size allowed in a UDP 

packet). An example is the member 

DMDataSeq.dataSize, which is not part of the OSA-

CBM specification but which is required for correctly 

interpreting the words. Checksums to detect transmission 

failures were foreseen as well. By standardizing the binary 



European Conference of Prognostics and Health Management Society 2012 

 

6 

representation for the network format, senders as well as 

recipients have to translate between their platform specific 

representation and the network format. Although there is 

marshalling and un-marshalling to be done, we hypothesize 

that the CPU load for this process can be neglected 

compared to XML parsing. 

 

Figure 7. Exemplary binary representation of 
DataEventSet 

Based upon results shown in the previous section, the size 

of data structures in this new network format will be in the 

area of 25% of a corresponding XML representation. 

3.6. Binary Message Format in OSA-CBM 3.3.1 

The most recent version of OSA-CBM, Version 3.3.1, 

includes a specification for a binary transmission format for 

OSA-CBM messages. We see our work confirmed by this 

addition to the OSA-CBM standard. Following an initial 

design and trade study, we decided to adopt MIMOSA’s 

specification as the network layer format amongst our 

subsystems. Though this choice rendered our custom 

protocol design work moot, it is implementation that has 

been and remains the focus of our work. Furthermore, the 

compatibility of our systems with the rest of the community 

will be ensured by following a standard which is now part 

of that community. That is to say, our optimizations in the 

marshalling/un-marshalling of data within and amongst real 

time embedded systems and in the creation of an API/library 

for OSA-CBM transmission is just as critical while using 

the MIMOSA standard as with our custom message format. 

Our aim is to create a fully C coded, statically allocated 

implementation of the OSA-CBM Binary message 

specification for embedded systems. 

4. CBM DATA WAREHOUSE 

The ground segment of our simulation framework includes a 

central repository for data and information, called the CBM 

data warehouse. 

4.1. High Level Requirements 

Design of the CBM data warehouse was driven by the 

following high-level requirements.  

1. The CBM data warehouse shall act as a central 

information system for all applications involved in 

the PHM process. 

2. The CBM data warehouse shall provide a uniform 

and standardized interface for managing and 

querying its data. 

3. The CBM data warehouse shall maintain full 

traceability for any in-service data item regarding 

origin, allocation (to assets, aircraft and flights) and 

changes.  

Given the need to meet these requirements across a large 

fleet of aircraft, the design of the CBM data warehouse 

faces two core challenges. First, it must process a large 

number of transactions originating from daily maintenance 

tasks, such as asset installation/removal and storing newly 

available IVHM-data from performed flights. Second, it 

must process and store a large amount of historical data for 

performing diagnostics and prognostics, as well as their 

continual improvement as more in-service data becomes 

available.  

4.2. Realization 

The OSA-EAI and OSA-CBM reference architectures 

define a uniform data management philosophy that allows 

for full traceability of virtually any sensor value and its 

derived information. Earlier work (Gorinevsky, Smotrich, 

Mah, Srivastava, Keller & Felke, 2010, and others) 

demonstrated the feasibility of using these architectures as a 

reference to build a comprehensive information system and 

associated service interface across multiple domains, 

including aerospace. We consequently considered the 

selection of OSA-EAI and OSA-CBM as guidelines for the 

design of our CBM data warehouse as a promising approach 

to satisfy our high level requirements. 

4.2.1. Scope 

We have implemented a subset of the OSA-EAI standard for 

our initial version of the CBM data warehouse. The subset 

was derived with the aim of providing data management for 

diagnostics and prognostics on our candidate systems. 

Confirming reports from other researchers, we found the 

documentation of OSA-EAI to be rather sparse, especially 

when mapping its generic universe of entities to a specific 

application domain. We concentrated on the ability to 
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express system breakdowns (Assets, Segments, and 

Parent/Child relations) and the ability to associate data from 

the data acquisition, data manipulation, and state detection 

layers. Additionally, each asset was to have an active history 

of health assessments and remaining useful life estimates. 

We expected that this would lead to an implementation of 

tables exclusively from the REG, DIAG, DYN and TREND 

groups of entities; however, with the exception of the 

TRACK group, we had to implement at least one table from 

all other entity groups in order to satisfy mandatory 

connections between tables. We consider this a symptom of 

the complexity of the OSA-EAI standard, and strongly 

encourage the maintainers of the standard to establish a 

sample or reference application for OSA-EAI (and OSA-

CBM), similar to the SCOTT database example of Oracle. 

4.2.2. Customization 

We customized the remaining OSA-EAI tables in a way that 

would simplify the generation of test and reference data, but 

still allow for the drawing of general conclusions (congruent 

customization) from our experience. We made further 

customizations to map specific features of the aerospace 

domain (domain customizations). Many tables of OSA-EAI 

have a composite primary key (i.e. 2 or more columns) due 

to the fact that the database model is designed for data 

exchange or integration amongst different database 

instances. For this purpose OSA-EAI introduces the Site 

concept, which uniquely identifies the stakeholder of a 

specific dataset. In combination with the dataset ID, any 

dataset can thus be uniquely identified. Since our simulation 

framework is currently a closed system, the maintainer 

remains constant. Therefore, we stripped the composite 

primary keys of each entity down to a single dataset id, 

allowing us to strip down foreign keys as well. This 

approach was shown to be feasible by Mathew, Zhang, 

Zhang and Ma Lin (2006). 

We further recognized that OSA-EAI does not have the 

specific notion of a flight, or a mission. This was not 

unexpected, as OSA-EAI is generic; however, analyses in 

the aerospace domain are often flight/mission centered. Per 

definition, OSA-EAI measurements can only be related to 

assets/agents and time. Additions were necessary to relate 

measurements with a specific flight/mission entity under 

which they occurred. These updates allow the system to 

couple flight/mission characteristics and degradation. While 

OSA-EAI foresees enough meta-data to perform a 

chronological mapping to an external flight/mission 

database, our experience from other projects shows that a 

direct mapping of information to a flight (or at least a power 

cycle) is inevitable. 

In the aerospace domain, segments represent virtual 

“placeholders” for assets and these placeholders have 

unique logistic control numbers. Such features can be 

represented by OSA-EAI using the attributive tables for 

each segment (Segment Numeric Data or Segment 

Character Data). However, being modeled as an explicit 

attribute of a segment, the evaluation of logistic control 

numbers is more efficient. We recognize that one could 

come up with many such contra arguments, as OSA-EAI is 

a domain independent and generic standard. 

4.2.3. Performance Considerations 

Coping with a large number of transactions and handling 

large volumes of data at the same time, the CBM data 

warehouse has both the role of an Online Transaction 

Processing (OLTP) system and that of an Online Analytical 

Processing (OLAP) system. These two requirements seem 

to contradict each other at first glance.  

The database model of an OLTP system is normalized, that 

is, it consists of many interconnected tables and each table 

describes a fine granular bit of the application domain. The 

number of tables that contain redundant information 

(possibly in different representations) is minimized so that 

the risk of a transaction leaving the database in an 

inconsistent state is low. Due to its appearance from a bird’s 

eye view, a normalized schema is referred to as a snowflake 

schema. For an OLTP system, normalization is a 

prerequisite, as it supports CRUD operations with optimal 

performance and data integrity. The downside of a 

snowflake schema is that information retrieval and analysis 

result in complex queries involving many tables, which 

results in bad performance. 

The database model of an OLAP system is de-normalized, 

which means that it consists of few tables, which contain 

redundant information for the sake of reduced query 

complexity and minimal join operations. Due to its 

appearance from a bird’s eye view, a de-normalized OLAP 

schema is referred to as a star schema. Snowflake and star 

schema are depicted in Figure 8. The information of interest 

is marked as grey boxes. The OSA-EAI database model in 

its current state is heavily normalized and therefore clearly 

OLTP-centered. Others have confirmed this statement using 

formal methods (Mathew and Ma, 2007). Although we 

could confirm specific issues regarding modeling and 

documentation (Mathew et al., 2006), we still consider 

OSA-EAI as well defined for transactional tasks. In contrast 

to criticism that has been raised by industry, we consider the 

normalization of OSA-EAI as essential, whereas Mathew 

and Ma (2007) argue that the normalized character of OSA-

EAI is one of its weaknesses. 

Applying standard modeling techniques to selected subsets 

of interconnected OSA-EAI tables, they propose OLAP-

centered alterations for OSA-EAI according to star schema 

design. These show that, at least for selected subsets of 

coherent CRIS tables (so called data marts), the OLAP-

centered model holds equivalent information. Not 

surprisingly, Mathew and Ma (2007) acknowledged that 

their redesign optimizes analytics, but has significant 
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drawbacks for transactional use. They conclude with a 

discussion of their motivation for further work towards a 

compromise. 

 

 

Figure 8. Snowflake (OLTP) vs. Star Schema (OLAP) 

We argue that such a compromise cannot manifest as a 

single data model that features characteristics from both 

OLTP and OLAP-centered models. Such an approach would 

fit neither side. Instead, motivated from our findings during 

the realization of the CBM data warehouse and the 

experience from our other projects that deal with large data 

volumes (which go beyond the scope of this document), we 

propose an extension to OSA-EAI to specifically support 

analytical tasks on large volumes of historical data.  

4.3. “Common Relational Analytics Schema” 

The characteristics of OLTP and OLAP are too distinct to 

be merged into a single database model. The database model 

that is defined by OSA-EAI is called Common Relational 

Information Schema (CRIS). Instead of redesigning CRIS to 

include OLAP-specific features, we propose a new 

standardized database model named Common Relational 

Analytics Schema (CRAS). Our proposed database model 

lives under the umbrella of OSA-EAI and coexists with 

CRIS. Since an OLAP-centered database is primarily 

designed for reading (not writing), the CRAS portion of 

OSA-EAI will be populated on a regular basis from the 

content stored in the CRIS portion. Both portions hold an 

equivalent informational content – however, CRIS is 

optimized for transactional purposes while CRAS is 

optimized for analytical purposes.  

4.3.1. Motivation 

For a PHM system, it is necessary that prognosis be 

performed in a short timeframe, e.g. during the turnaround 

phase of an aircraft. However, this is different from actually 

performing analytics. At least the prognostics algorithms 

that we were utilizing require neither the entirety of all 

recorded historical data, nor any preprocessed results 

requiring filtering or aggregation (which are typical tasks of 

OLAP systems). A limited set of data, say from the last N 

flights, was sufficient. We found that with the standard 

CRIS queries these limited historical datasets could be 

retrieved reasonably fast. We draw this conclusion from our 

direct experience with the tools we created. Our sample 

database did not contain fleet condition data from several 

aircraft over several years. And with such huge amounts of 

data the performance will degrade. We hypothesize, 

however, that using table partitioning techniques, which 

have become available with today’s relational database 

management system (such as Oracle’s Enterprise Edition), it 

is possible to set an upper limit for the amount of data that 

has to be searched by a query to identify the prognostics raw 

data from the last N flights. An apparent partition key is 

time, but Site is also a promising candidate.  

We further suggest that analysis tasks that would require an 

OLAP-centered database model be conducted on a regular 

basis, but decoupled from the daily operational (i.e. 

transactional) business. We claim that it is therefore suitable 

to populate the CRAS on demand (e.g. once a month) in 

order to perform retrospective analyses (e.g. for the 

continuous improvement of diagnosis and prognosis).  

4.3.2. Architecture 

A high level overview of our proposed architectural 

extensions of OSA-EAI is given in Figure 9. The elements 

drawn in grey represent the current state of the art of OSA-

EAI. The OLTP-centered database model, CRIS, stores the 

operational data in a relational database (the corresponding 

object model has been omitted). Furthermore, the OSA-EAI 

standard defines a comprehensive service interface for 

accessing and modifying the operational data. We propose 

to extend OSA-EAI according to the following three aspects 

(corresponding to the black-marked items in Figure 9): 

1. Database model that is optimized for analytical 

purposes (OLAP), which is able to store a 

congruent informational content as CRIS. We call 

this database model the Common Relational 

Analytics Schema (CRAS). It is organized 

according to the star schema approach. 

2. A standardized interface for issuing 

multidimensional queries against CRAS. 

3. Standardized Extraction, Transformation and 

Loading (ETL) process populating tables in the 

CRAS schema with operational data from CRIS.  

4.3.3. Performance and Operational Considerations 

Our work regarding CRAS suggests an a priori hybrid 

approach for database modeling. We are currently refining 

the concept and have just begun prototype implementations. 

Therefore, we cannot yet provide empirical results; in 

particular, when it comes to handling data volumes in the 

magnitude of terrabytes.  For these volumes, the concept has 

yet to be proven. While the idea of CRAS as a complement 

to CRIS is clearly new, the methodology that it is based on, 

i.e., the star schema, has been available for years and is well 

understood. The star schema yields excellent performance 

results even with large data volumes. We have gained 
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empirical knowledge from another work area which requires 

queries that involve both filters and aggregation. Results 

indicate a boost, due to the star schema approach, in the 

magnitude of 10 to 100 with respect to response time when 

handling millions of data sets. 

 

Figure 9. CRAS Extension of OSA-EAI (shown in black) 

with an optional data model which is optimized for analytics 

 

To ensure scalability for the joint operation of CRIS and 

CRAS, we propose the following methodology. It is known 

that the performance of both the CRIS and CRAS schemas 

degrade with a growing amount of data. However, we 

believe the CRIS schema will degrade faster than the CRAS 

schema. Once a fresh system has been set up, the CRIS 

portion will be constantly populated with new data, and, in 

reasonably short intervals, the CRAS schema will be 

constantly recreated from the current data in CRIS by the 

ETL process. The CRAS schema is stateless at this phase, as 

it can always be recreated from CRIS. Operational tasks will 

be carried out in the CRIS, while analytical tasks run on the 

CRAS. Provided that suitable hardware segmentation is 

available (e.g., dedicated CPUs, dedicated RAID volumes) 

operations on both schemas should not influence each other. 

Once specific hot spots of the CRIS schema have degraded 

to a stage where performance is no longer acceptable, old 

data must be archived in the CRAS schema. We assume that 

one can define data as being old simply by its date of 

creation or other criteria. We further assume that such old 

data will not be altered due to operational processes; which 

certainly applies to sensor data. Therefore the ETL can 

move (instead of just transform) old data to CRAS where it 

will then permanently reside – just not in the CRIS form. 

Since there is no need to alter the old data, it can be 

removed from CRIS completely, mitigating the performance 

degradation. However, the old data is still available for 

analysis in CRAS. From this point on, the CRAS schema 

becomes stateful, as it cannot be entirely recreated from 

CRIS. 

From a high level point of view, the CRIS schema’s data 

volume will grow up to a specific limit and then shrink 

again, so there is a worst case performance for operational 

tasks. In contrast, the CRAS schema will constantly grow 

with each new archival process. However, the growth will 

take place in a database schema that is designed for 

performance and large volumes; nevertheless, without 

suitable measures the CRAS cannot grow indefinitely. 

There are scaling measures to ensure performance of 

database schemas in general that can be applied to our 

situation. For data archived in CRAS which still needs to be 

considered during online analyses, so called partitions 

should be maintained. A partition influences the way a 

database physically stores a database table on the storage 

device but keeps this storage strategy transparent to the 

application (programmer). Partitions can be created during 

maintenance phases of the PHM system. Depending on 

specific criteria of the data set, such as the date of creation 

(the so called partition key) it will be assigned to one 

partition or the other. Partitions can be assigned a separate 

storage device, i.e., one disk for each partition. Therefore, 

even specific tables can be scaled independently from 

others. While the further discussion goes beyond the scope 

of this writing, the effect is that the search space for queries 

can be significantly reduced. Operational data that the ETL 

transforms from CRIS will have its own partition(s), 

whereas all archived data will have separate partitions. We 

believe therefore that the effects of a growing CRAS on the 

continuous ETL transformation of operational data can be 

mitigated. However, if the amount of data in CRAS 

significantly degrades the online analysis performance, one 

has to consider moving the oldest data from CRAS into 

offline storage. Here, we assume that this data no longer 

contributes to an operational PHM (e.g., data from assets 

that have been moved out of service) and can be analyzed 

offline (or e.g., in a separate database). 

4.3.4. Challenges and Future Work 

There are two core challenges involved in our work. First, 

the concept of joint operations between CRIS and CRAS 

needs to be proven. We have to derive enough sample data 

and set a representative database configuration and 

environment to prove our claim. In its current stage, this 

approach is merely a concept. While the methodologies and 

technology it is built upon have proven to be feasible in 

other domains, the risk of not being able to implement it as 

proposed is non-negligible. In the previous section we 

mention the introduction of offline storage for the oldest 

data in the system. We want to point out here a new aspect 

of performance research for OSA-EAI by combining it with 

Hadoop, an emerging technology for distributed storage and 

query of huge volumes of data. Second will be the 

derivation of a generic CRAS schema that fits the needs of 

analytical tasks for PHM in a domain-independent manner. 

This must be accomplished while maintaining the same 
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level of quality as CRIS does in fitting the needs of 

transactional usage in a generic way. Mathew et al. (2007) 

have applied a formal process for attempting to derive an 

initial OLAP-centered database model from CRIS. They 

identified so called data marts (fact tables and 

corresponding dimensional tables) for the areas of 

configuration data, measurements, health and alarms, events 

and work management. However, they give no reason as to 

why no data mart for remaining useful life was identified. 

As such, the actual details of the generic ETL process are 

left open for future work.  

5. CONCLUSION 

We presented our experience from the realization of a data 

management backbone for a simulation framework for PHM 

systems in the aerospace domain. For the airborne segment 

OSA-CBM-based communication was chosen. We 

encountered issues relating to the recommended 

transportation protocol for OSA-CBM when implementing 

the standard under the conditions of a real-time operating 

system. From our findings, we are motivated to use a binary 

transportation format for OSA-CBM data events that 

address embedded systems. This standard is to be both 

binary and lean. In the process, we hope to avoid the 

inherent overhead in processing power and memory 

consumption of an XML-based transportation over HTTP. 

Our preliminary results are promising. They amount of raw 

data to represent specific OSA-CBM messages could be 

reduced to 25% of the XML-based size (overhead for HTTP 

and TCP not included). As our approach lacks platform 

independence we outline a path for future work towards a 

platform-independent binary representation for OSA-CBM 

messages. The ground-based part of our data management 

backbone is centered on an information system, which we 

call the CBM data warehouse. It is designed according to 

the OSA-EAI reference architecture. Confirming the 

feasibility of OSA-EAI in conjunction with OSA-CBM, we 

encountered minor issues in mapping aerospace domain 

concepts to the generic entities and could confirm issues 

reported by others. To answer the necessity of a PHM 

system to perform both transactional and analytical 

interaction with the CBM data warehouse, we recommend 

extensions to OSA-EAI. We propose an optional and 

complementary database model called CRAS (in analogy to 

CRIS) that is optimized for analytical queries and follows 

OLAP principles. It coexists with CRIS and is populated, on 

demand, by CRIS transactional data. We close by pressing 

for future work in this area in the form of field studies. 
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