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ABSTRACT the degree of mismatch between the RUL predictethby
prognostic model and the real RUL of the equipn{@utble
2010; Zio 2012). In this respect, a method ablestimate a
robability density function of the degrading equgnt
L is PF, which is a model-based approach suagégssf

Particle Filtering (PF) is a model-driven approagidely
used in prognostics, which requires models of bibth
degradation process and the measurement acquisiti

system. In many practical cases, gnalytlcal modegsnot . used in prognostics applications (e.g., Vachtsevagtoal.
available, but a dataset contqlnmg a number ofrspai 2006, Orchard et al. 2005, Orchard & Vachtsevar@@o?
g?,;?g%?fnt state - corresponding measurement may lQ?adini et al. 2009). PF is a Bayesian tool for finear state
' estimation, which requires (e.g., Gustaffson & Sapao,
In this work, a data-driven approach based on agddhg Doucet et al. 2001, Arulampalam et al. 2002):
ensemble of Artificial Neural Networks (ANNS) is guted

to build an empirical measurement model of a Partdter
for the prediction of the Residual Useful Life (RUbf a
structure whose degradation process is describeda by ) )
stochastic fatigue crack growth model of literatuiide dimensional vector):
work focuses on the investigation of the capabitifythe -

proposed approach to cope with the uncertaintyctiffg the X(t+1) = g(x(0),2(t)
RUL prediction.

1) The knowledge of the degradation model
describing the stochastic evolution in time of the
equipment degradatiorx (in general a multi-

(1)
where g is a possibly non-linear vector function

1. INTRODUCTION and a(t) is a possibly non-Gaussian noise.

The prediction of the Remaining Useful Life (RULj a 2) A set of measureg(l),...,z(t) of past and present
degrading equipment is affected by several soumies

uncertainty such as the randomness in the futugeadation values of some physical quantitiesrelated to the

of the equipment, the inaccuracy of the prognostidel equipment degradatior. Althoughz in general is
used to perform the prediction and the noise instesor a multi-dimensional vector, in this work it is
data used by the prognostic model to obtain the RUL considered as a mono-dimensional variable; then,
prediction. Thus, any RUL prediction provided by a the underline notation is omitted.

prognostic model should be accompanied by an etinia 3) A probabilistic measurement model which links the

its uncertainty (Tang et al. 2009; Liu et al. 20&iprder to

confidently plan maintenance actions, taking int@oant measure with the equipment degradation

Baraldi et al. This is an opeaecess article distributed under the tern Z(t) = m)(D'Z(_)( t))) (2)
the Creative Commons Attributio3.0 United States License, wh . . . .
permits unrestricted use, distrtimn, and reproduction in any medit where h is a possibly non-linear vector function

provided the original author and source are crddite andv(x) is the measurement noise vector.
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In practical cases, the measurement mddehay not be
available in analytical form but a dataset
T ={(%,2), =1,..., Nyun,} CONtaining a numbeN

training
of pairs of statex, and corresponding measurement

may be available. This is the case, for examplethef
piping of deep water offshore well drilling plantshich
degrades due to a process of scale deposition. mhig
cause a decrease, or even a plug, of the croserseof the
tubular. Giving the inaccessibility of the pipirigis usually
impossible to acquire a direct, on line, measurthefscale
deposition thickness. On the other side, resedifohnt® are
devoted to perform laboratory tests to investigdte
relationships between the scale deposition thicknesd
other parameters which can be more easily measiunéog
plant operation, such as pressures, temperatukdr@me
concentrations. By this way, one can populate asadtwith
the values of the measurable parameters for diffeseale
deposition thicknesses, and use the data to battdriven
models for predicting the scale deposition thickn@doura
et al. 2011).

In this work we have developed an ensemble of AKNg.,
Baraldi et al. 2012) as model of the measuremenatimn
in a PF scheme. The proposed prognostic approach
applied to a literature case study (Orchard & Vsetanos
2009) concerning crack propagation. The obtainedlte
are compared to those which would be obtained bsctli
using the measurement equation
considering the accuracy of the RUL prediction dhd
capability of the method of providing an estimateits
uncertainty.

2. PARTICLE FILTERING

In PF, a set of N, weighted particles, which evolve

independently on each other according to the pritistd
degradation model of Eq. 1, is considered. Thechdsga is
that such set of weighted random samples congtitate
discrete approximation of the true probability dens
function (pdf) of the system state at timet . When a new

measurement is collected, it is used to adjustptieelicted
pdf through the modification of the weights of tharticles
in a Bayesian perspective. This requires the kndgéeof
the probabilistic law which links the state of ttmmponent
to the gathered measure (Eq. 1). From this modw, t
probability distribution P(z| ) of observing the sensors

output z given the true degradation state is derived

(measurement distribution). This distribution igrhused to
update the weights of the particles upon a new oreasent
collection. Roughly speaking, the smaller the pbilits of
encountering the acquired measurement value, when t
actual component state is that of the particle,ldnger the
reduction of the particle's weight. On the contrarygood
match between the acquired measure and the pastizie
results in an increase of the particle importarfoe further

details, see Arulampalam et al. 2002 and Doucetlet
2001).

3. BAGGED ENSEMBLE OF ANNSFOR BUILDING THE
MEASUREMENT M ODEL

A method to estimate the pdH(z| X of the measurement
z in correspondence of a give equipment degradatiate
X is proposed in this Section. It is derived fronriey et

al. (1999) and Nix &Weigend (1994), and requireg th
availability of a dataset made of couples(x,, z,) .

training

The underlying hypothesis of this approach is ttiet
measurement model, which is unknown, can be written
the form:

29 = f(9+v( ®)

where f (X) is a biunivocal mathematical function and the
measurement noise(X) is a zero mean Gaussian noise.

The method of Carney et al. (1999) is based orusiegeof a
bagged ensemble of ANNs, which are employed tadbaiil
iirslterpolator #(x) of the available training patterns

T ={(%,.2). N=1.,., Nutring} -
The key idea of bagging (Breiman 1999) is to tréwt

in the PF modefvailable datasel as if it were the entire population, and

then create alternative versions of the training, $§
randomly sampling from it with replacement. Thisoais
providing more stable estimations. In details, anbar B

of alternative version§T,} o, of T are created by randomly
sampling from it with replacement. Using these riraj
sets, the networkég,(x T,)} o, are built and the output
P.,(X) Of the bagged ensemble in correspondence of the
generic test state is obtained by averaging the single
ANN output according to:

Fun =2 3P(6T) @

On the other hand, since PF requires the knowleddbe
pdf P(z| X, the estimate off (x) does not suffice to apply

PF. In this respect, the procedure proposed in&yaeh al.
(1999) allows to estimate the p#f(z| f(X) from which
the pdf P(z| X) can be obtained, being the functidn
invertible for hypothesis. The procedure is basedtle

subtraction of the random quanti#,,(x) to both sides of
Eqg. 3:

Z(X) = Parg (R =[ (I =@ +V( X ®)
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The left-hand side of Eqg. 5 is a random variabldactvh
represents the error of the ensemble outpyf(x) with
respect to the measuremer{ty) .

This random error is made up of two contributioright
hand side of Eq. 5):
1. The random difference (x) - ¢

unknown deterministic quantityf (x) and the
ensemble outputg,  (x) . This quantity is a

random variable distributed
P(f(X)14.,(X), beingg, . (x) dependent on the

random training sef,, b=1,..., B; i.e., different

(X) between the

avg

training sets would lead to different ensemble

models and thus to different outpgf, (x) . Since
f(x)-¢,,(X) can be seen as the modg|,(x)

error, its variance will be referred to as modeber
variance and indicated hy?(x) .

2. The intrinsic noisev(x) of the measurement
process, whose variance is indicateddsy(x) .

according to

The set { ={gl (R}, constitutes a sampling oM
values from the distributionP(@,,,(X) |#,,.(X) and its
sample variancei?(x) could be used to approximate the
unknown variancez, *(xX) of the ensemble output.

Notice that the idea behind this procedure is thgat
estimating f(x) with ¢,.(X) , one can approximate
P(Pag(X | (X)) by P(Pn(X)[8a4(¥). In order to
improve the reliability and stability ofi>(X), bagging is
also performed on the values §f. Thus, P bagging re-
sampled sets of are gathered:

M={{} 5 @)

where Z; is the p -th subset containingM values of
?..m(X), sampled with replacement frogh. For any subset
{,» p=1,..,P, the corresponding variance: (x) is
computed; then, the estimafg (x) of the variances’(x)

These two contributions are estimated by meanshef t js calculated as their average value:

procedures described in the two following Sections.

3.1. Distribution of the model error variance

G0 (X) = %Zaff ) ®)
p=1

The procedure here used to estimate the distributiopinally, the estimate of the regression distributio

P(4..,(X) | f(x) of the ensemble outpyt,  (x) given the
true value off (x) (i.e., the ‘inverse’ ofP(f(X) |, (X)),

is based on the assumption that the random variable

P(#..(X | (X)) proposed by the method is:

P | F(¥)= N@.4(3.6 s (3) 9)

f(X) - 9.,(X) is Gaussian with zero mean and standard

deviation ,,(x) , which entails thatP(¢,,.(X) | f(X) is
Gaussian with meari (x), and that all we need to know is

0,.(X) . Notice that residual errors in the output of &N
are usually not caused by variance alone; ratheretmay
be biases in the output of the ANN, which invaleldhe
assumption that the mean of the distribution isozer
However, it is generally accepted that the contriduof the
variance in the residual error of the ANN dominatest of
the bias (see Stuart et al 1992 for further detailsthis).
Furthermore, the bias in the output of an ensemblNs is
expected to be smaller than that of the single ANN.

In order to estimate the model error variarggx) , the
technique in Carney et al. (1999) requires to divike B
networks of the ensemblg, (x) into M smaller sub-
ensembles, each one containing networks, and to
consider the outputgy (x), m=1,., M of each sub-
ensemble as:

#o) = 34,09 ©)

3.2. Distribution of the measurement noise

In this Section, the technique proposed in Nix &iyéad,
(1994) is applied to estimate the varian@®(x) of the
Gaussian zero mean noigéx) affecting the measurement
equation (Eqg. 3).

From Eg. 5, one can derive:

Var{z-¢,,,(3] =
var[ f(X) = @a(X] + Vaf( N +2 | X-9,6 X )k =
g, 2(X)+a*(¥)

(10)

The last equality is due to the independence ofetrer
[F(X) =@.,(X] from the measurement noisgx) . To

explain this, notice thaff(x) -¢,,(X] depends on the
noise valuesy, affecting the measureg, = f(x)+v,,

N=1,...;Nysining - the B
T :{(gn, z),n=1,.., Nrammg} , which are used to build the

in training data
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ensemble modep™ (x), whereas/(x) is the value of the in a component subject to fatigue load. The sysitate is

com

noise affecting the measure of the test dataot used for ~described by the vectok(t) = (X (1), % (1) , whose first
training the model. Thusy. n=1.,...N and the €lementx (), indicates the crack depth whereas the second

=17 Ytraining !

element, x, (t), represents a time-varying model parameter

that directly affects the crack growth rate. Theletion of
this degradation process is described by the fatigvtwo
Notice also thatv®(x) obeys a Chi-squarey?®(x) equations, which form a Markovian system of ordee:o

distribution with 1 degree of freedom. % (t+1) = x ()+ 3010° (0.05 0.0¢ ( N+, (  (14)
The term o ?(x) can be estimated according to the
w & ; X, (t+1) = (0 + @, (D) (15)

procedure illustrated in the previous Section 3Henrgas,
being z(¥ -¢,,(X¥ a zero mean random variable, its where w(t) is a Gaussian noise with mean 0.045 and

values sampled fronv(x) in the test data are different,
independent realizations of the same random variabl

variance is given by: standard deviation 0.116, andy(t) is a zero mean
Va2 3 -4,,(3]= K (Z_)(_¢av4_»2] (11) Gaussian noise with standard deviation 0.010.

] o In the present case study, the measurement equigion
Thus, in correspondence of the training coudl®s z,),  assumed to be unknown whereas a dataset formetieby t
N=1,...,N, ., » ONE CanN approximatE[(z(_x)—¢avg(_>9)1 Nyaining PAIFS (X Z,) N=1,...,Nzinq » IS available, where

the subscript 1 refers to the first component ateex(t).
2 . .
by (z(_x)—¢avg(_x)) and obtain, according to Eq. 10, &y practice, given the purpose of the present wofk
dataset formed by the pair,,d?) , N=1,....Nypng - showing the feasibility of the proposed approabh,dataset
where: T :{(xm, z),n=1,.., N,ammg} has actually been artificially
N N obtained by simulating the behavior of the degiiadat
&7 = may( 7~ fof X)) -5 _%.0} (12) d ; :

process x(t), and sampling from the probabilistic
Fina”y, in order to estimaterz()_() for a genericz(, a Sing|e measurement model (Orchard & Vachtsevanos 2009)

ANN is trained using the datasgt,,42), n=1,...,N zZ(t) = f(x)+v(x)= %()+0.25+v (x) (16)

" “training *

wherev(x,) is a zero mean Gaussian noise, whose standard

) deviation depends oR, :
(x) an estimate off(x) , the measurement

3.3. Estimate of the measur ement distribution P(zx)

Being ¢

avg
distribution P(z| f(X)) can be approximated by the Stdv( x)] = 1 )§+i >1<+—1 (17)
distribution P(z|¢,,,(¥)) which can be derived from the 120 10 2

distribution P(#,,,(X)| f(x)) and the distribution of the According to Eq. 16, the functiofi(x) = f(X) is given by

measurement noise(x), according to Eq. 5. Since these X1+0.25, which is, as required by the method, anrithle

two distributions are both Gaussian, with means anéuncnon.
variances estimated as shown in Sections 3.1 afid 3.To conclude this Section, notice that the probsiidi
P(z| f(X) is approximated by a Gaussian distribution withmeasurement model in Eq.(9) has been intentiortakgn
simple, being the main interest of this work the
gquantification of the uncertainty in the RUL preibo and
f(l() invertible, the distribution of the measuremenin not the ensemble ability in reproducing the measerd
correspondence of a given state P(z| X is given by: equation. In this respect, the knowledge of theavere of
the measurement noise is fundamental, as it datesrthe
P(z| = A2 f(3)= N@.,,(XF5(¥+a*(¥ (13) amplitude of the prediction intervals of the RULtiemtes.
Thus, the capability of correctly reconstructing trariance
behavior plays a key role in the assessment optitential
4, CASE STUDY of the proposed technique.

In this Section, the technique previously descritfed
estimating the measurement distributiB(z| X is applied

to a case study derived from Orchard & Vatchsevanoéccording to the technique illustrated in Section &
(2009), which deals with the crack propagation mimeenon ensemble of B=200 ANNs has been built using the

mean g, (x) and varianced?(x)+a*(x) . Finally, being

avg

4.1. Estimate of the measurement distribution
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available datasetT ={(le z),n=1,.., Nrammg} , where In order to verify whether the estimate Bfz| x) provides

N =1000. Every ANN has 5 tan-sigmoidal hidden a satisfactory approximation of the true pdf, well wi

. . consider how many times the measuremerfalls within
neurons and one linear output neuron. To estimate

0%(x)=0?(x) . the ensemble has been divided intothe Pl _oee(Xy;) - The closer toy, the portion of points

M =20 sub-ensembles an® =1000 bagging resamples hitting the y, -confidence interval, the more accurate the
of the sub-ensemble outputs g7 (x)=¢" (X), estimation of the parameters of the Gaussian pdf.

com

training

m=1,..,M, have been considered. In practice, for every, i =1,...N,, a counterC, is set

test?
The results are evaluated in terms of the followingto 1 or O depending on whether tadelongs or not to the
performance indicators, yvhlch are cqmputed by cctmglg estimated P, () . The closer the average @,

a set of N, =1000 pairs (x;,z), i =1,...N,, which P

have been obtained from Eq. 16 and 17: i=1,...N.. to 0.68, the better the approximation.

"t Ttest

o . Cross-validation of the results has been done pgating
1. The square biab”; ie., the average quadratic g computations with N, =25 different, randomly

dlfferer;je bet.ween tt;eht_rue valu_e blx) and the generated training and test sets. This avoids owdefr
ensemble estimate of this quantty,, () : estimations of the performance indicattwsand coverage.

— 1 st Table 1 reports means and standard deviations @étthe
2 = —_ —_— 2 . . . .
b* = le (FO6) = g (%)) (18) performance indicators over the 25 cross-validation
test 1=
mode Ensembl 1 ANN

This value gives information on the accuracy of the
estimate of f(x)= f(x) provided by the

ensemble. Notice that the computation of this
indicator requires the knowledge of the function
f(x), which is not available if the measurement
equation (Eq. 16) is not known. Thus, in generaINOtice that the ensemble outpgf, () is very accurate in

b? 0.0040 + 0.0015 0.0097 + 0.0060
Pl coverage 0.6758 + 0.0366 -
Table 1: Performance indicators over 25 cross-a#bias;
the meant std is reported

one can only compute: the prediction of the functiorf (x) , the bias being very
1 Neg small. Furthermore, notice that the ensemble ofdpes a
MSE:—Z(¢( X))~ 2)° (19)  single ANN trained with all the 1000 training patte. With
test 1= respect to the estimate of the distributi®fz| %), the
Small values of MSE indicate satisfactory Pproposed method provides a satisfactory approxamati
performance of the ensemble. being the coverage very close to 0.68.

2. The coverage of the Prediction Interval (Pl) with Table 2 reports the estimates of the two contm'mx'ﬁrf]
confidence 0.68. This indicator is used to verifg t
accuracy of the estimate of the distribution™ ~ © = _ - .
P(z| Y= (7 X). A Pl with a confidence level distribution P(z| %). Notice that in this case study;, is

y, is defined as a random interval in which thenegligible with respect to the variance® of the
measurement noise; this entails that the accurdcthe

estimate of the Pl is more sensible to the estimfaE? .

and a? of the variance of the estimated measurement

observationz(X) = Z x) will fall with probability

¥, (Carney et al. 1999, Heskes 1997):
In this respect, Figure 1 shows the estimatertfx ) and

P((x)U Pl'p( X)) =V (20) compares it to the trug* value provided by Eq. 17. Notice
that this comparison, which is done in this workaksess
_ ; A _ the performance of the methodology, is not possiblesal
mean ¢,,,(x) and varianced; (x)+a*(x) , the Pl with industrial applications if the measurement modejs(E16
y, =0.68 is given by: and 17) is not available.

Being the estimate oP(z| %) a Gaussian distribution with

¢avg(xl) - ‘ﬁ(xl) + ﬁz( x) < 4 %) (21) Estimation Real

Z(X) S Py (X) +/To( %) +A°( %) value
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Op @' | 04489201359 1 - E[x(t+1)] - B %()] =3 07(0.05+ O.TE[x ()] + Ey (9]
—ri 0.0243+0.0317 - E[x(t+1)] - H %( ] =constant
a2 0.4886+0.0276 0.4900 10

Table 2: Contributions to thP(z| %) variance

- computed uf 8l
51 ==~true
. ——approximated

1000 training
* traditional
true

crack depth [inch]
~

I I I I
80 85 90 95 100 105 110 115 120
time

Figure 1: True and approximated measurement noise . ) . )
variancea?(x,) Figure 2: Comparison of the predictions with theetistate

evolution

4.2. Crack depth prediction To evaluate the impact of replacing the measurement
The objective of this Section is to evaluate thefiggenance  equation with the ensemble of ANNK, =100 different

of the overall scheme in the prediction of the krdepth  degradation trajectories have been simulated ar@ th
evolution when the ensemble of ANNs is used tonest®  predictions of the crack depth have been performed.

the measurement distributi®fz| ). To this purpose, the

problem tackled consists in predictingtat 80 (in arbitrary ~ Also in this case, the prediction provided by theemble of
units) the future crack propagation, on the bagigight ~ANNs trained with N ~=1000 patterns has been
measurements of the crack depth taken at tjpelO0n, compared to that based on the analytical measutemen
m=1,..., 8. This prediction phase is performed byequationP(z|X) . Each run is characterized by the same
considering the evolution of the particles accogdio the true trajectory, the same acquired measures andaime

model in Egs. 14 and 15 (e.g., see Orchard & Vaolaisos  state noise vector. The following performance iathes
2009). In particular, we focus on the time inst®0, when  have been computed:

the PF updates vi&(z| X) the particles’ weights after the 1. The coverage of the PI, with confidence 0.68. In

last _measurememz:(4.6087 in arbitrary units) has been particular, the prediction of the crack depth at
acquired. t =120 has been considered. At each run, the
Figure 2 shows the prediction of the crack depthiugion boundaries of the Pl are computed by considering
performed att=80, after the acquisition of the last the 16" and 84 percentiles of the estimate of the
measurement, by using the ensemble model to estimat pdf of the crack depth. A counter is setto 1 @ O
P(z| ¥. This prediction has been compared to that which the true trajectory belongs or not to the

corresponding interval, in analogy with the

would be obtained by directly using the measurement A . . .
y y 9 coverage verification explained in Section 4.2.

equation in the PF.

Notice that the linearity of the prediction of tleepected 2. The average width over thd,, =100 runs of the
value ofx; can be explained by averaging Egs. 14 and 15: Platt=120.
E[%(t+1)}= B x(}] + Ewf )] = E %)} =<onstant 3. The Mean Square Error (MSE) over the

N,,, =100 runs between the prediction of the

crack depth provided by using the PF and its true
value att =120. That is:

MSE, = 3 (%, - 9, ) (22)

run Myn =1
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where X, is the true crack depth in the test 5. CONCLUSIONS

trajectory att =120 and o, is the expected value
of the crack depth pdf estimated by the PF.

The obtained values are reported in Table 4. It ban
noticed that the coverage of the ensemble is veryecto
0.68; furthermore, even the other performance atdirs are
very close to those which would be obtained by meréng
the measurement equation. This result confirms that
approximation of the distributioP(z| X) is accurate and

therefore it does not remarkably alter the outcoftbe PF.

Traditional | Data-driven
coverage | 0.6500 0.7000
Pl width 1.3058 1.3226
MSE 0.3421 0.3464

Table 4: Performance indicatorstal 20

Finally, the performance evaluateproposed by Saxena et
al. 2008 has been computed to evaluate the predicti
performance:

o it
de®-1 ifd<0
s=4"

Zn: e_(ai] -1 otherwise

where ;= 10, a,=13, n=100 is the number of simulated

PF is often proposed as prognostic technique fiimatng
the evolution of the degradation staie of a system;

generally, it resorts to analytical models of bd#dgradation
state evolution and measurement. In practice, the
measurement model may not be available in an acallyt
form; rather, there may be available a set of detéch
allows, through data-mining techniques, buildinge th
measurement model. In this work, a technique basedn
ensemble of ANNs has been investigated to this aih
applied to a case study derived from the literatdree
verification conducted on the results shows thagoad
approximation of the model may be obtained and its
substitution in the PF does not significantly affdats
performance. Furthermore, the proposed method kaa b
shown capable of estimating the uncertainty on R
prediction.

Additional effort will be dedicated in future worki
improve the accuracy of the estimate when only allsm
training set is available and to extend the appllitg of the
technique also in those cases in which the measnem
equation f(x) is not biunivocal or has a more complex

form. Furthermore, another future objective is the
substitution also of the model of the evolutiorttod system
state with a data-driven model, e.g., an ensembteaimed
ANNSs, in order to allow the usage of PF in thossesa
where also an analytical model of the evolution tioé
system is unavailable.
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