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ABSTRACT 

Particle Filtering (PF) is a model-driven approach widely 
used in prognostics, which requires models of both the 
degradation process and the measurement acquisition 
system. In many practical cases, analytical models are not 
available, but a dataset containing a number of pairs 
component state - corresponding measurement may be 
available.  

In this work, a data-driven approach based on a bagged 
ensemble of Artificial Neural Networks (ANNs) is adopted 
to build an empirical measurement model of a Particle Filter 
for the prediction of the Residual Useful Life (RUL) of a 
structure whose degradation process is described by a 
stochastic fatigue crack growth model of literature. The 
work focuses on the investigation of the capability of the 
proposed approach to cope with the uncertainty affecting the 
RUL prediction. 

1. INTRODUCTION 

The prediction of the Remaining Useful Life (RUL) of a 
degrading equipment is affected by several sources of 
uncertainty such as the randomness in the future degradation 
of the equipment, the inaccuracy of the prognostic model 
used to perform the prediction and the noise in the sensor 
data used by the prognostic model to obtain the RUL 
prediction. Thus, any RUL prediction provided by a 
prognostic model should be accompanied by an estimate of 
its uncertainty (Tang et al. 2009; Liu et al. 2011) in order to 
confidently plan maintenance actions, taking into account 

the degree of mismatch between the RUL predicted by the 
prognostic model and the real RUL of the equipment (Coble 
2010; Zio 2012). In this respect, a method able to estimate a 
probability density function of the degrading equipment 
RUL is PF, which is a model-based approach successfully 
used in prognostics applications (e.g., Vachtsevanos et al. 
2006, Orchard et al. 2005, Orchard & Vachtsevanos 2009, 
Cadini et al. 2009). PF is a Bayesian tool for non-linear state 
estimation, which requires (e.g., Gustaffson & Saha 2010, 
Doucet et al. 2001, Arulampalam et al. 2002): 

1) The knowledge of the degradation model 
describing the stochastic evolution in time of the 
equipment degradation x  (in general a multi-

dimensional vector): 

( 1) = ( ( ), ( ))x t g x t tω+  (1) 

where g  is a possibly non-linear vector function 

and ( )tω  is a possibly non-Gaussian noise. 

2) A set of measures (1),..., ( )z z t  of past and present 

values of some physical quantities z  related to the 

equipment degradation x . Although z in general is 

a multi-dimensional vector, in this work it is 
considered as a mono-dimensional variable; then, 
the underline notation is omitted. 

3) A probabilistic measurement model which links the 
measure z with the equipment degradation x : 

( ) = ( ( ), ( ( )))z t h x t x tν  (2) 

where h  is a possibly non-linear vector function 
and ( )xν  is the measurement noise vector. 

_____________________ 
Baraldi et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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In practical cases, the measurement model h  may not be 
available in analytical form but a dataset 

= {( , ), = 1,..., }nn trainingT x z n N  containing a number trainingN  

of pairs of state nx  and corresponding measurement nz  

may be available. This is the case, for example, of the 
piping of deep water offshore well drilling plants, which 
degrades due to a process of scale deposition. This may 
cause a decrease, or even a plug, of the cross sections of the 
tubular. Giving the inaccessibility of the piping, it is usually 
impossible to acquire a direct, on line, measure of the scale 
deposition thickness. On the other side, research efforts are 
devoted to perform laboratory tests to investigate the 
relationships between the scale deposition thickness and 
other parameters which can be more easily measured during 
plant operation, such as pressures, temperatures and brine 
concentrations. By this way, one can populate a dataset with 
the values of the measurable parameters for different scale 
deposition thicknesses, and use the data to build data-driven 
models for predicting the scale deposition thickness (Moura 
et al. 2011). 

In this work we have developed an ensemble of ANNs (e.g., 
Baraldi et al. 2012) as model of the measurement equation 
in a PF scheme. The proposed prognostic approach is 
applied to a literature case study (Orchard & Vachtsevanos 
2009) concerning crack propagation. The obtained results 
are compared to those which would be obtained by direct 
using the measurement equation in the PF model, 
considering the accuracy of the RUL prediction and the 
capability of the method of providing an estimate of its 
uncertainty. 

2. PARTICLE FILTERING 

In PF, a set of sN  weighted particles, which evolve 

independently on each other according to the probabilistic 
degradation model of Eq. 1, is considered. The basic idea is 
that such set of weighted random samples constitutes a 
discrete approximation of the true probability density 
function (pdf) of the system state x  at time t . When a new 
measurement is collected, it is used to adjust the predicted 
pdf through the modification of the weights of the particles 
in a Bayesian perspective. This requires the knowledge of 
the probabilistic law which links the state of the component 
to the gathered measure (Eq. 1). From this model, the 
probability distribution ( | )P z x  of observing the sensors 

output z given the true degradation state x  is derived 

(measurement distribution). This distribution is then used to 
update the weights of the particles upon a new measurement 
collection. Roughly speaking, the smaller the probability of 
encountering the acquired measurement value, when the 
actual component state is that of the particle, the larger the 
reduction of the particle's weight. On the contrary, a good 
match between the acquired measure and the particle state 
results in an increase of the particle importance (for further 

details, see Arulampalam et al. 2002 and Doucet et al. 
2001).  

3. BAGGED ENSEMBLE OF ANNS FOR BUILDING THE 
MEASUREMENT MODEL  

A method to estimate the pdf ( | )P z x  of the measurement 

z  in correspondence of a give equipment degradation state 
x  is proposed in this Section. It is derived from Carney et 

al. (1999) and Nix &Weigend (1994), and requires the 
availability of a dataset made of trainingN  couples ( , )n nx z .  

The underlying hypothesis of this approach is that the 
measurement model, which is unknown, can be written in 
the form: 

 ( ) ( ) ( )z x f x xν= +   (3) 

where ( )f x  is a biunivocal mathematical function and the 

measurement noise ( )xν  is a zero mean Gaussian noise. 

The method of Carney et al. (1999) is based on the use of a 
bagged ensemble of ANNs, which are employed to build an 
interpolator ( )xϕ  of the available training patterns 

{ }( , ), 1.,...,n n trainingT x z n N= = .  

The key idea of bagging (Breiman 1999) is to treat the 
available dataset T  as if it were the entire population, and 
then create alternative versions of the training set, by 
randomly sampling from it with replacement. This allows 
providing more stable estimations. In details, a number B  
of alternative versions *

=1{ } B
b bT  of T are created by randomly 

sampling from it with replacement. Using these training 
sets, the networks *

=1{ ( ; )} B
b b bx Tϕ  are built and the output 

( )avg xϕ  of the bagged ensemble in correspondence of the 

generic test state x  is obtained by averaging the single 

ANN output according to: 

*

=1

1
( ) = ( ; )

B

avg b
b

x x T
B

ϕ ϕ∑  (4) 

On the other hand, since PF requires the knowledge of the 
pdf ( | )P z x , the estimate of ( )f x  does not suffice to apply 

PF. In this respect, the procedure proposed in Carney et al. 
(1999) allows to estimate the pdf ( | ( ))P z f x  from which 

the pdf ( | )P z x can be obtained, being the function f  

invertible for hypothesis. The procedure is based on the 
subtraction of the random quantity ( )avg xϕ  to both sides of 

Eq. 3: 
 

( ) ( ) = [ ( ) ( )] ( )avg avgz x x f x x xϕ ϕ ν− − +  (5) 
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The left-hand side of Eq. 5 is a random variable which 
represents the error of the ensemble output ( )avg xϕ  with 

respect to the measurement ( )z x . 

This random error is made up of two contributions (right 
hand side of Eq. 5):  

1. The random difference ( ) ( )avgf x xϕ−  between the 

unknown deterministic quantity ( )f x  and the 

ensemble output ( )avg xϕ . This quantity is a 

random variable distributed according to 
( ( ) | ( ))avgP f x xϕ , being ( )avg xϕ  dependent on the 

random training set ,bT  b=1,…, B; i.e., different 

training sets would lead to different ensemble 
models and thus to different output ( )avg xϕ . Since 

( ) ( )avgf x xϕ− can be seen as the model ( )avg xϕ  

error, its variance will be referred to as model error 
variance and indicated by 2 ( )m xσ . 

2. The intrinsic noise ( )xν  of the measurement 

process, whose variance is indicated by 2 ( )xα . 

These two contributions are estimated by means of the 
procedures described in the two following Sections. 

3.1. Distribution of the model error variance 

The procedure here used to estimate the distribution 
( ( ) | ( ))avgP x f xϕ  of the ensemble output ( )avg xϕ  given the 

true value of ( )f x  (i.e., the ‘inverse’ of ( ( ) | ( ))avgP f x xϕ ), 

is based on the assumption that the random variable 
( ) ( )avgf x xϕ−  is Gaussian with zero mean and standard 

deviation ( )m xσ , which entails that ( ( ) | ( ))avgP x f xϕ  is 

Gaussian with mean ( )f x , and that all we need to know is 

( )m xσ . Notice that residual errors in the output of the ANN 

are usually not caused by variance alone; rather, there may 
be biases in the output of the ANN, which invalidate the 
assumption that the mean of the distribution is zero. 
However, it is generally accepted that the contribution of the 
variance in the residual error of the ANN dominates that of 
the bias (see Stuart et al 1992 for further details on this). 
Furthermore, the bias in the output of an ensemble of NNs is 
expected to be smaller than that of the single ANN. 

In order to estimate the model error variance 2 ( )m xσ , the 

technique in Carney et al. (1999) requires to divide the B  
networks of the ensemble ( )avg xϕ  into M  smaller sub-

ensembles, each one containing K  networks, and to 
consider the output ( ),m

com xϕ  m=1,.., M of each sub-

ensemble as:  

=1

1
( ) = ( )

K
m
com k

k

x x
K

ϕ ϕ∑  (6) 

The set =1= { ( )}m M
com mxζ ϕ  constitutes a sampling of M  

values from the distribution ( ( ) | ( ))com avgP x xϕ ϕ and its 

sample variance 2ˆ ( )m xσ  could be used to approximate the 

unknown variance 2( )m xσ  of the ensemble output.  

Notice that the idea behind this procedure is that by 
estimating ( )f x  with ( )avg xϕ , one can approximate 

( ( ) | ( ))avgP x f xϕ  by ( ( ) | ( )).com avgP x xϕ ϕ  In order to 

improve the reliability and stability of 2ˆ ( )m xσ , bagging is 

also performed on the values of ζ . Thus, P  bagging re-

sampled sets of ζ  are gathered:  

*
=1= { } P

p pζΓ  (7) 

where *
pζ  is the p -th subset containing M  values of 

( )com xϕ , sampled with replacement from ζ . For any subset 
*
pζ , = 1,...,p P , the corresponding variance 2* ( )p xσ  is 

computed; then, the estimate 2ˆ ( )m xσ  of the variance 2 ( )m xσ  

is calculated as their average value:  

2 2*

=1

1
ˆ ( ) = ( )

P

m p
p

x x
P

σ σ∑  (8) 

Finally, the estimate of the regression distribution 
( ( ) | ( ))avgP x f xϕ  proposed by the method is:  

2ˆ( ( ) | ( )) ( ( ), ( ))avg avg mP x f x N x xϕ ϕ σ≈  (9) 

3.2.  Distribution of the measurement noise 

In this Section, the technique proposed in Nix & Weigend, 

(1994) is applied to estimate the variance 2( )xα  of the 

Gaussian zero mean noise ( )xν  affecting the measurement 

equation (Eq. 3). 

From Eq. 5, one can derive:  

2 2

[ ( )]

[ ( ) ( )] [ ( )] 2 {[ ( ) ( )] ( )}

( ) ( )

avg

avg avg

m

Var z x

Var f x x Var x E f x x x

x x

ϕ
ϕ ν ϕ ν

σ α

− =

− + + − =

+
(10) 

The last equality is due to the independence of the error 
[ ( ) ( )]avgf x xϕ−  from the measurement noise ( )xν . To 

explain this, notice that [ ( ) ( )]avgf x xϕ− depends on the 

noise values nν  affecting the measures ( ) ,n n nz f x ν= +  

1.,..., ,trainingn N=  in the training data 

{ }( , ), 1.,...,n n trainingT x z n N= = , which are used to build the 
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ensemble model ( )m
com xϕ , whereas ( )xν  is the value of the 

noise affecting the measure of the test data x , not used for 

training the model. Thus, nν  1.,..., ,trainingn N=  and the 

values sampled from ( )xν  in the test data are different, 

independent realizations of the same random variable.  

Notice also that 2 ( )xν  obeys a Chi-square 2 ( )xχ  

distribution with 1 degree of freedom.  

The term 2 ( )m xσ  can be estimated according to the 

procedure illustrated in the previous Section 3.1 whereas, 
being ( ) ( )avgz x xϕ−  a zero mean random variable, its 

variance is given by:  

2[ ( ) ( )] = [( ( ) ( )) ]avg avgVar z x x E z x xϕ ϕ− −  (11) 

Thus, in correspondence of the training couples ( , ),n nx z  

1,..., ,trainingn N=  one can approximate ( )2
( ) ( )avgE z x xϕ −  

 

by ( )2
( ) ( )avgz x xϕ−  and obtain, according to Eq. 10, a 

dataset formed by the pairs 2ˆ( , )n nx α , 1,..., trainingn N= , 

where:  

2 2 2ˆ ˆ= {( ( )) ( ),0}n n avg n nmax z x xα ϕ σ− −  (12) 

Finally, in order to estimate 2 ( )xα  for a generic x , a single 

ANN is trained using the dataset 2ˆ( , )n nx α , 1,..., .trainingn N=  

3.3. Estimate of the measurement distribution P(z|x) 

Being ( )avg xϕ  an estimate of ( )f x , the measurement 

distribution ( | ( ))P z f x  can be approximated by the 

distribution ( | ( ))avgP z xϕ  which can be derived from the 

distribution ( ( ) | ( ))avgP x f xϕ  and the distribution of the 

measurement noise ( )xν , according to Eq. 5. Since these 

two distributions are both Gaussian, with means and 
variances estimated as shown in Sections 3.1 and 3.2, 

( | ( ))P z f x  is approximated by a Gaussian distribution with 

mean ( )avg xϕ  and variance 2 2ˆˆ ( ) ( )m x xσ α+ . Finally, being 

( )f x  invertible, the distribution of the measurement z  in 

correspondence of a given state x , ( | )P z x  is given by:  

2 2ˆˆ( | ) ( | ( )) ( ( ), ( ) ( ))avg mP z x P z f x N x x xϕ σ α≈ ≈ +  (13) 

4. CASE STUDY 

In this Section, the technique previously described for 
estimating the measurement distribution ( | )P z x  is applied 

to a case study derived from Orchard & Vatchsevanos 
(2009), which deals with the crack propagation phenomenon 

in a component subject to fatigue load. The system state is 
described by the vector 1 2( ) = ( ( ), ( ))x t x t x t , whose first 

element, 1( ),x t  indicates the crack depth whereas the second 

element, 2( ),x t  represents a time-varying model parameter 

that directly affects the crack growth rate. The evolution of 
this degradation process is described by the following two 
equations, which form a Markovian system of order one:  

4 3
1 1 2 1( 1) = ( ) 3 10 (0.05 0.1 ( )) ( )x t x t x t tω−+ + ⋅ + ⋅ +  (14) 

2 2 2( 1) = ( ) ( )x t x t tω+ +  (15) 

where 1( )tω  is a Gaussian noise with mean 0.045 and 

standard deviation 0.116, and 2( )tω  is a zero mean 

Gaussian noise with standard deviation 0.010. 

In the present case study, the measurement equation is 
assumed to be unknown whereas a dataset formed by the 

trainingN  pairs 1,( , )n nx z  1,..., trainingn N= , is available, where 

the subscript 1 refers to the first component of vector x(t).  

In practice, given the purpose of the present work of 
showing the feasibility of the proposed approach, the dataset 

{ }1,( , ), 1,...,n n trainingT x z n N= =  has actually been artificially 

obtained by simulating the behavior of the degradation 
process ( ),x t  and sampling from the probabilistic 

measurement model (Orchard & Vachtsevanos 2009): 

1 1 1 1( ) = ( ) ( ) ( ) 0.25 ( )z t f x x x t xν ν+ = + +  (16) 

where 1( )xν  is a zero mean Gaussian noise, whose standard 

deviation depends on 1x :  

2
1 1 1

1 1 1
[ ( )] =

120 10 2
Std x x xν − + +  (17) 

According to Eq. 16, the function 1( ) ( )f x f x=  is given by 

x1+0.25, which is, as required by the method, an invertible 
function.  

To conclude this Section, notice that the probabilistic 
measurement model in Eq.(9) has been intentionally taken 
simple, being the main interest of this work the 
quantification of the uncertainty in the RUL prediction and 
not the ensemble ability in reproducing the measurement 
equation. In this respect, the knowledge of the variance of 
the measurement noise is fundamental, as it determines the 
amplitude of the prediction intervals of the RUL estimates. 
Thus, the capability of correctly reconstructing the variance 
behavior plays a key role in the assessment of the potential 
of the proposed technique. 

4.1. Estimate of the measurement distribution 

According to the technique illustrated in Section 3, an 
ensemble of = 200B  ANNs has been built using the 
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available dataset { }1,( , ), 1,..., ,n n trainingT x z n N= =  where 

1000trainingN = . Every ANN has 5 tan-sigmoidal hidden 

neurons and one linear output neuron. To estimate 
2 2

1( ) ( )m mx xσ σ= , the ensemble has been divided into 

= 20M  sub-ensembles and =1000P  bagging resamples 
of the sub-ensemble outputs 1( ) ( ),m m

com comx xϕ ϕ=  

1,..., ,m M=  have been considered. 

The results are evaluated in terms of the following 
performance indicators, which are computed by considering 
a set of = 1000testN  pairs 1,( , )i ix z , 1,..., testi N=  which 

have been obtained from Eq. 16 and 17:  

1. The square bias 2b ; i.e., the average quadratic 
difference between the true value of 1( )f x  and the 

ensemble estimate of this quantity 1( )avg xϕ :  

2 2
1, 1,

=1

1
= ( ( ) ( ))

Ntest

i avg i
itest

b f x x
N

ϕ−∑  (18) 

This value gives information on the accuracy of the 
estimate of 1( ) ( )f x f x=  provided by the 

ensemble. Notice that the computation of this 
indicator requires the knowledge of the function 

1( )f x , which is not available if the measurement 

equation (Eq. 16) is not known. Thus, in general 
one can only compute: 

2
1,

1

1
( ( ) )

testN

i i
itest

MSE x z
N

ϕ
=

= −∑  (19) 

Small values of MSE indicate satisfactory 
performance of the ensemble. 

2. The coverage of the Prediction Interval (PI) with 
confidence 0.68. This indicator is used to verify the 
accuracy of the estimate of the distribution 

1( | ) ( | ).P z x P z x=  A PI with a confidence level 

pγ  is defined as a random interval in which the 

observation 1( ) ( )z x z x=  will fall with probability 

pγ (Carney et al. 1999, Heskes 1997): 

1 1( ( ) ( ))
p pP z x PI xγ γ∈ =  (20) 

Being the estimate of 1( | )P z x  a Gaussian distribution with 

mean 1( )avg xϕ  and variance 2 2
1 1

ˆˆ ( ) ( )m x xσ α+ , the PI with 

0.68pγ =  is given by:  

2 2
1 1 1 1

2 2
1 1 1 1

ˆˆ( ) ( ) ( ) ( )

ˆˆ( ) ( ) ( ) ( )

avg m

avg m

x x x z x

z x x x x

ϕ σ α

ϕ σ α

− + ≤

≤ + +
 (21) 

In order to verify whether the estimate of 1( | )P z x  provides 

a satisfactory approximation of the true pdf, we will 
consider how many times the measurement iz  falls within 

the 0.68 1,( )
p iPI xγ = . The closer to pγ  the portion of points 

hitting the pγ -confidence interval, the more accurate the 

estimation of the parameters of the Gaussian pdf. 

In practice, for every 1,ix , 1,..., testi N= , a counter iC  is set 

to 1 or 0 depending on whether the iz belongs or not to the 

estimated 0.68 1,( )
p iPI xγ = . The closer the average of ,iC  

1,..., testi N=  to 0.68, the better the approximation. 

Cross-validation of the results has been done by repeating 
the computations with 25setN =  different, randomly 

generated training and test sets. This avoids over/under 

estimations of the performance indicators 2b and coverage. 

Table 1 reports means and standard deviations (std) of the 
performance indicators over the 25 cross-validations. 

model Ensemble 1 ANN 
2b   0.0040 ± 0.0015 0.0097 ± 0.0060 

PI coverage  0.6758 ± 0.0366 - 
Table 1: Performance indicators over 25 cross-validations; 
the mean ± std is reported 

Notice that the ensemble output 1( )avg xϕ  is very accurate in 

the prediction of the function 1( )f x , the bias being very 

small. Furthermore, notice that the ensemble outperforms a 
single ANN trained with all the 1000 training patterns. With 
respect to the estimate of the distribution 1( | )P z x , the 

proposed method provides a satisfactory approximation, 
being the coverage very close to 0.68. 

Table 2 reports the estimates of the two contributions 2
mσ  

and 2α of the variance of the estimated measurement 

distribution 1
ˆ ( | )P z x . Notice that in this case study, 2mσ  is 

negligible with respect to the variance 2α  of the 
measurement noise; this entails that the accuracy of the 
estimate of the PI is more sensible to the estimate of 2α . 

In this respect, Figure 1 shows the estimate of 2
1( )xα  and 

compares it to the true 2α  value provided by Eq. 17. Notice 
that this comparison, which is done in this work to assess 
the performance of the methodology, is not possible in real 
industrial applications if the measurement model (Eqs. 16 
and 17) is not available. 

 

 
Estimation Real 

value 
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2
mσ +

2α  0.4489±0.1359 - 

2
mσ  0.0243±0.0317 - 

2α  0.4886±0.0276 0.4900 

Table  2: Contributions to the 1( | )P z x  variance 

 

Figure 1: True and approximated measurement noise 
variance 2

1( )xα  

4.2. Crack depth prediction 

The objective of this Section is to evaluate the performance 
of the overall scheme in the prediction of the crack depth 
evolution when the ensemble of ANNs is used to estimate 
the measurement distribution( | )P z x . To this purpose, the 

problem tackled consists in predicting at 80t =  (in arbitrary 
units) the future crack propagation, on the basis of eight 
measurements of the crack depth taken at time 10mt m= ⋅ , 

m=1,…, 8. This prediction phase is performed by 
considering the evolution of the particles according to the 
model in Eqs. 14 and 15 (e.g., see Orchard & Vachtsevanos 
2009). In particular, we focus on the time instant t=80, when 
the PF updates via ( | )P z x  the particles' weights after the 

last measurement (z=4.6087 in arbitrary units) has been 
acquired.  

Figure 2 shows the prediction of the crack depth evolution 
performed at t=80, after the acquisition of the last 
measurement, by using the ensemble model to estimate 

( | )P z x . This prediction has been compared to that which 

would be obtained by directly using the measurement 
equation in the PF.  

Notice that the linearity of the prediction of the expected 
value of x1 can be explained by averaging Eqs. 14 and 15: 

2 2 2 2[ ( 1)} = [ ( )] [ ( )] [ ( )] constantE x t E x t E t E x tω+ + = =  

4 3
1 1 2 1

1 1

[ ( 1)] [ ( )] 3 10 (0.05 0.1 [ ( )]) [ ( )]

[ ( 1)] [ ( )] constant

E x t E x t E x t E t

E x t E x t

ω−+ − = ⋅ + ⋅ +
+ − =

 

Figure 2: Comparison of the predictions with the true state 
evolution 

To evaluate the impact of replacing the measurement 
equation with the ensemble of ANNs, 100runN =  different 

degradation trajectories have been simulated and the 
predictions of the crack depth have been performed.  

Also in this case, the prediction provided by the ensemble of 
ANNs trained with 1000trainingN =  patterns has been 

compared to that based on the analytical measurement 
equation ( | )P z x . Each run is characterized by the same 

true trajectory, the same acquired measures and the same 
state noise vector. The following performance indicators 
have been computed: 

1. The coverage of the PI, with confidence 0.68. In 
particular, the prediction of the crack depth at 

120t =  has been considered. At each run, the 
boundaries of the PI are computed by considering 
the 16th and 84th percentiles of the estimate of the 
pdf of the crack depth. A counter is set to 1 or 0 if 
the true trajectory belongs or not to the 
corresponding interval, in analogy with the 
coverage verification explained in Section 4.2. 

2. The average width over the 100runN =  runs of the 

PI at 120t = .  

3. The Mean Square Error (MSE) over the 
100runN =  runs between the prediction of the 

crack depth provided by using the PF and its true 
value at 120t = . That is: 

 ( )2

120
1

1 run

run run

run

N

n n
nrun

MSE X o
N =

= −∑   (22) 

80 85 90 95 100 105 110 115 120
4

5

6

7

8

9

10

time

cr
ac

k 
de

pt
h 

[in
ch

]

 

 

1000 training
traditional
true
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where 
runnX is the true crack depth in the test 

trajectory at 120t =  and 
runno is the expected value 

of the crack depth pdf estimated by the PF. 

The obtained values are reported in Table 4. It can be 
noticed that the coverage of the ensemble is very close to 
0.68; furthermore, even the other performance indicators are 
very close to those which would be obtained by considering 
the measurement equation. This result confirms that the 
approximation of the distribution ( | )P z x  is accurate and 
therefore it does not remarkably alter the outcome of the PF. 

 

Traditional Data-driven 

coverage 0.6500 0.7000 

PI width 1.3058 1.3226 

MSE 0.3421 0.3464 
Table 4: Performance indicators at t=120 

Finally, the performance evaluator s proposed by Saxena et 
al. 2008 has been computed to evaluate the prediction 
performance: 
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where a1= 10, a2=13, n=100 is the number of simulated 
histories and d is the difference between the estimated RUL 
and its true value. To compute the value of this performance 
metric, the following procedure has been adopted: 

1. Set the failure threshold to ST=7. 
2. Simulate the evolution of the degradation process; 

this allows calculating the true value of the true 
RUL tRUL at t=80 as the difference between the 
time instant at which the component achieves ST 
and 80. Moreover, the set of measures sampled 
according to the measurement model are collected. 

3. Use the PF to estimate the component degradation 

state at t=80 and predict the RUL R̂ULt . 

4. Calculate the difference R̂UL RULd t t= − . 

5. Perform n-1 times the steps 2-4 and compute s. 

The values of the metric s obtained in the case in which the 
RUL is predicted by using the ‘traditional’ PF approach 
(s=10.30) and the ‘data–driven’ approach (s=10.65) are very 
close to each other.  

5. CONCLUSIONS 

PF is often proposed as prognostic technique for estimating 
the evolution of the degradation state x  of a system; 

generally, it resorts to analytical models of both degradation 
state evolution and measurement. In practice, the 
measurement model may not be available in an analytical 
form; rather, there may be available a set of data which 
allows, through data-mining techniques, building the 
measurement model. In this work, a technique based on an 
ensemble of ANNs has been investigated to this aim and 
applied to a case study derived from the literature. The 
verification conducted on the results shows that a good 
approximation of the model may be obtained and its 
substitution in the PF does not significantly affect its 
performance. Furthermore, the proposed method has been 
shown capable of estimating the uncertainty on the RUL 
prediction. 

Additional effort will be dedicated in future works to 
improve the accuracy of the estimate when only a small 
training set is available and to extend the applicability of the 
technique also in those cases in which the measurement 
equation ( )f x  is not biunivocal or has a more complex 

form. Furthermore, another future objective is the 
substitution also of the model of the evolution of the system 
state with a data-driven model, e.g., an ensemble of trained 
ANNs, in order to allow the usage of PF in those cases 
where also an analytical model of the evolution of the 
system is unavailable. 
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