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ABSTRACT 

Among various approaches for implementing prognostic 

algorithms data-driven algorithms are popular in the 

industry due to their intuitive nature and relatively fast 

developmental cycle. However, no matter how easy it may 

seem, there are several pitfalls that one must watch out for 

while developing a data-driven prognostic algorithm. One 

such pitfall is the uncertainty inherent in the system. At each 

processing step uncertainties get compounded and can grow 

beyond control in predictions if not carefully managed 

during the various steps of the algorithms. This paper 

presents analysis from our preliminary development of data-

driven algorithm for predicting end of discharge of Li-ion 

batteries using constant load experiment data and challenges 

faced when applying these algorithms to randomized 

variable loading profile as is the case in realistic 

applications. Lessons learned during the development phase 

are presented.  

1. INTRODUCTION 

The field of prognostics is steadily maturing as an important 

field under health management as newer algorithms are 

constantly being developed. Among the two main categories 

are data-driven and model-based algorithms with competing 

advantages and limitations (Schwabacher, 2005). This paper 

summarizes our experience from implementing a data-

driven approach for a variable load discharge scenario for 

Lithium-ion (Li-ion) batteries using experimental data 

collected in controlled lab environment.  

 

An intuitive observation-based approach was initially 

implemented, which required considerable improvements as 

we learned about various shortcomings during the 

development process. In this paper we present our lessons 

learned from the exercise, as well as an analysis of various 

pitfalls that may be encountered in developing data-driven 

methods that may seem intuitive and relatively 

straightforward in the beginning but may not match up on 

expectations when actually implemented. The paper also 

presents a detailed description of our data-driven algorithm. 

Corresponding results are also compared with a model 

based algorithm using an empirical degradation model. 

1.1. Motivation 

The motivation for this works stems primarily from two 

sources.  First, it is of growing interest to develop 

prognostic health management solutions for Li-ion batteries 

as the use of power storage technologies is gaining 

momentum in energy intensive industries. While several 

efforts have focused on relevant topics, an accurate way of 

estimating battery capacity during realistic load profiles 

with variable and/or random operational loading still 

deserves attention. This paper describes the results of our 

efforts towards developing a generic data-driven approach 

for developing prognostic algorithms for randomized 

variable loading scenarios. It is generally assumed that data-

driven methods typically require large amounts of training 

data in the initial development phase, but wherever possible, 

allow a much rapid, easy to implement, and computationally 

inexpensive developments compared to model-based 

approaches. This however, comes at a cost of a significant 

data processing effort upfront and still does not guarantee a 

successful implementation. More often than not it calls for 
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re-evaluation of the initial hypothesis and may require 

significant changes adding to complexity as problems 

become more realistic. In this effort we exemplify a process 

where data-driven algorithms that were once perfected for 

constant loading profiles do not guarantee good 

performance when tried on variable loading case and 

requires rethinking of the strategy, which is in contrast to an 

empirical model-based approach where the original 

implementation still performs well. Contrary to our initial 

beliefs that for systems like Li-ion batteries, where the 

characteristics of charge-discharge processes show similar 

qualitative trends, data-driven methods can be adapted fairly 

quickly once a data processing methodology is in place, we 

found that there are significant challenges in developing a 

robust data-driven method. 

The second source of motivation comes from our continuing 

efforts towards facilitating a standardized platform for 

comparison of various prognostic approaches. Assessing 

algorithmic performance and drawing comparisons against 

baselines is one of the enablers towards verification and 

validation. As the field of prognostics matures as a research 

area, it is important to create an infrastructure that facilitates 

verification and validation activities towards certification of 

prognostic health management systems. This has been 

somewhat difficult because until recently there were no 

standard methods to evaluate different algorithms in a 

comparable manner due to lack of benchmark datasets or 

performance metrics useful for prognostics. An extensive 

survey of health management applications and other related 

domains revealed that conventional metrics, borrowed ad 

hoc from diagnostic domains, had been reused, which did 

not serve as well (Saxena et al., 2008). Therefore, a set of 

prognostic performance metrics were developed with the 

perspective of using prognostic information in health 

management and decision making processes (Saxena, 

Celaya, Saha, Saha, & Goebel, 2010). However, this process 

could be further streamlined with the availability of 

benchmark run-to-failure datasets that can be used for 

prognostic algorithm development. With that intent several 

accelerated aging testbeds were designed and developed at 

NASA Ames Research Center and data were made available 

to the PHM research community to take advantage of 

through prognostics data repository (NASA, 2007). These 

datasets have been downloaded more than 20,000 times 

from all over the world and used for algorithm development 

in the last four years. One of the popular datasets (over 6000 

downloads) includes Li-Ion battery aging data that contain a 

variety of operational conditions with several sensor 

measurement data collected in-situ (B. Saha & K. Goebel, 

2011). Despite a large number of downloads we were 

unable to find more than just a few references reporting 

successful prognostic implementation on battery data 

(Orchard, Silva, & Tang, 2011; Orchard, Tang, & 

Vachtsevanos, 2011). In this paper we report results from a 

preliminary data-driven approach for a randomized variable 

loading case. It is our hope that the community will take up 

the problem and find other ways that can then be compared 

with the ones reported here as initial baseline performance. 

1.2. Paper Organization 

The rest of the paper is divided into several sections. Section 

2 presents a brief background of various efforts related to 

prediction of battery life and battery discharge. Application 

domain is described in Section 3, which explains the nature 

of experiments conducted, lays out the problem of variable 

loading, and presents some observations. Section 4 starts by 

describing the overall approach taken and presents details of 

feature extraction, learning procedure, and prediction 

algorithms. Section 4 concludes with a brief discussion of 

underlying learning algorithms that are used in our 

prediction framework. Section 5 presents the results and 

discussions, followed by conclusions in Section 6. More 

details on the results are included in appendix for reader’s 

reference. 

2. BACKGROUND 

Predicting the End-of-Discharge (EoD) times for batteries 

has been investigated in the recent years to predict the time 

when (a predefined) cut-off threshold voltage is reached and 

the power source is no longer available to continue the task 

(Bhaskar Saha & Kai Goebel, 2011). Depending on the 

application type and availability of data, there are many 

other approaches that focus on state-of-charge (SOC) 

estimation, current/voltage estimation, capacity and state-of-

health (SOH) estimation. SOC estimation is by far the most 

popular approach where charge counting or current 

integration is used in different ways to estimate battery 

capacity. This approach suffers from various inaccuracies 

resulting under realistic usage environments (Meissner & 

Richter, 2003). Use of extensive lookup tables relating 

open-circuit voltage (OCV) to SOC is popular in the 

electronics industry, which requires extensive testing and 

data collection to build such mappings (Lee, Kim, & Lee, 

2007). For safety critical applications it is important to 

determine when the system will lose power, and hence use 

of voltage threshold for time to end of charge prediction is 

preferred.  This implicitly assumes a direct relationship 

between available voltage and available charge from the 

battery.  An example of one such application is described in 

(Bhaskar Saha & Kai Goebel, 2011) where EoD time is 

predicted for an e-UAV (electric unmanned air vehicle). It is 

also illustrated how variable the loading can be during 

extreme maneuvers and a time to EoD prediction must 

account for expected future loads and environmental 

conditions. An EoD time prediction application using an 

empirical model based Bayesian approach is discussed in 

(Saha, Goebel, Poll, & Christophersen, 2009). Among data-

driven approaches, in (Rufus, Lee, & Thakker, 2008) a 

virtual sensor is described based on a data-driven approach 

but primarily for SOH estimation and RUL prediction based 
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on usage patterns and environmental factors such as 

operational temperature. A statistical approach to battery 

life prediction that builds parametric models of the battery 

from collected data is described in (Jaworski, 1999). 

Another data-driven effort extracts and tracks changes in the 

internal impedances from voltage characteristics obtained 

from battery cycling data (Luo, Lv, Wang, & Liu, 2011). All 

changes are attributed to battery aging only, thereby not 

considering load and temperature as influencing factors. 

Recent years have seen a growing interest in the use of and 

machine learning techniques, e.g., Hamming network (Lee, 

Kim, Lee, & Cho, 2011), and stochastic filtering techniques 

e.g., unscented filter (Santhanagopalan & White, 2010)  and 

extended Kalman filter (Hu, Youn, & Chung, 2012) to 

estimate the state of charge and/or degradation parameter 

(e.g., state of capacity) of a Li-ion battery cell under a 

randomly varying loading condition. Most of these data-

driven approaches are shown to work on similar data to 

what they were trained on. This requires availability of 

operational data from real environment, which is not always 

the case. In this work we take an alternative approach by 

using data-driven models that are developed from a set of 

controlled experiments. We investigate whether it is 

possible to extract relevant features from current and 

voltage measurements collected during battery usage 

(discharge cycles) under controlled experiments in various 

fixed loading conditions to learn data-driven models that 

would then allow us to predict EoD for a variable loading 

scenario. Furthermore, estimated capacity values are not 

used in making the predictions, since it is generally very 

difficult and inaccurate to obtain battery capacities during 

operation. 

3. APPLICATION DOMAIN  

The methods developed in this work are based on aging data 

for 18650 Li-ion batteries available from prognostics data 

repository hosted by NASA Ames (B. Saha & K. Goebel, 

2011). The data used for algorithm development and testing 

is generated in a battery testbed described in (Saha & 

Goebel, 2009). This testbed allows charging and discharging 

of batteries and collecting relevant information to estimate 

the state of the battery. In-situ measurement of battery 

current, voltage and temperature are available and these are 

used for development (training) of data-driven algorithms. 

Several charge/discharge cycles are typically applied to a set 

of batteries. These batteries were charged to 4.2 volts using 

an initial constant current (CC) profile of 1.5A until 4.2V is 

reached, followed by a constant voltage (CV) mode until 

current drops to 10mA. Since the main objective of these 

algorithms is to estimate EoD, a subset of batteries is 

discharged at constant current during discharge cycles; with 

current levels of 1A, 2A and 4A between different batteries. 

Figure 1 shows representative discharge profiles for the 

training cases discharged at three different constant current 

values.  

 

Figure 1. Constant load discharge profiles at 1, 2 and 4 A currents. 

Batteries are considered fully discharged (100% depth of 

discharge) when they have reached 2.7V. The higher the 

discharge current, the less time it takes for the battery to 

discharge. The increased voltage drop off rate towards the 

end of the discharge cycle is typical for this type of 

batteries. This is very relevant to the algorithm development 

since it presents a challenge in implementing typical 

regression-based data-driven methods when dealing with the 

steep non-linearity towards the end of the discharge cycle. 

While discharge profiles under fixed load conditions were 

used for algorithm training, variable loading cases (to 

represent realistic profiles) were generated for algorithm 

validation. In the variable load discharge profile, the current 

is varied randomly between 1A and 4A levels. The variable 

load case provides additional challenges to the EoD time 

estimation algorithm. It can be observed from Figure 2 that 

each time the load changes from one discrete value to 

another, there is a transient in the battery voltage value. In 

addition, the time of steep drop in the voltage towards the 

end of discharge is uncertain as it changes every time the 

load current changes and not just with the state of voltage of 

the battery. 

 

Figure 2. Variable load discharge profile between load current 

levels of 1A and 4A. 
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Battery performance degradation due to operational usage 

also affects EoD time estimation for a particular usage 

cycle. For instance, Figure 3 shows several discharge 

profiles for a battery used under constant discharge loading. 

It can be observed that the amount of time it takes for the 

battery to discharge to the 2.7V threshold is reduced 

considerably for latter cycles during the battery life. In 

addition, the rate of voltage decay in the pseudo-linear 

region also changes with battery age. Finally, the knee 

point, signaling the beginning of the exponential voltage 

decay region towards the end of discharge cycle, also 

changes in location and it becomes more difficult to identify 

due to reduced curvature as battery ages. These changes in 

voltage profile characteristics form the basis of feature 

extraction as described in the next section. 

 

Figure 3. Constant load discharge profiles from different stages of 

battery life from a single battery. 

4. PROGNOSTIC APPROACH 

In this section, we present our approach to predict the end of 

discharge (EoD) time of the battery, denoted as     . This is 

the time at which the battery voltage reduces to 2.7V. The 

aim here is to predict the      for different discharge runs of 

the battery, given (i) an incomplete discharge cycle data 

until current time, and (ii) the complete (randomly 

changing) future operating loading. It should be noted that 

for this phase of algorithm development we assume a 

perfect knowledge of future load profile for the current 

discharge event. Furthermore, no partial charge and 

discharge events are included in these scenarios, therefore a 

charge cycle initiates only after the battery is fully 

discharged. These assumptions will be relaxed in the next 

phase of development as we learn more about these batteries 

first in these simplistic scenarios. 

4.1. Feature Extraction and Training 

Recall that even though our eventual goal was to predict the 

     for battery discharge cycles under random loading 

conditions, we train our prognostic approach using battery 

discharge cycle data collected under constant loading 

conditions of 1A, 2A, and 4A. As a first step, training data 

were prepared by carrying out denoising of the constant 

loading cycle data. Some incomplete and corrupted runs 

were also removed from the training data. Once the 

denoised battery discharge cycles are obtained, we observe 

that the voltage versus time plots (see Figure 4) for different 

discharge cycles have the same trend, and each voltage 

discharge plot consists of three different and distinct 

regions. The first two regions can be approximated by linear 

trends followed by a third region with a sharp drop-off 

curve. The first pseudo-linear region is due to instant drop in 

voltage due to internal battery impedance on application of 

load current. For simplicity, this impedance is approximated 

by an aggregated internal resistance, which is estimated as 

the ratio of the observed voltage drop and the applied load 

current. It is understood that as battery degrades the internal 

resistance of the battery increases, and hence an estimate of 

this internal resistance can be used as a proxy for battery 

SOH. This estimate of internal resistance is used in creating 

the maps of how the load and SOH affect voltage profiles. 

 

Figure 4. Illustration of features extracted from training data. 
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this work, we simplified       to be the time at which the 

discharge curve has a predetermined slope value,         It 
was observed that, generally, at      , the battery has 
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used in determining the slope of the second pseudo-linear 

region. 

Given the trend of the voltage discharge plots, over the set 

of all denoised battery discharge cycles under different 

constant loading conditions, the following features are 

extracted in order to compute the     : 

1. The battery SOH, which is approximated by internal 

resistance,      and is estimated by computing the 

ratio of voltage drop and the change in load current, 

       
  

  
, as observed in the first pseudo-linear 

region of the voltage discharge plot (see Figure 4).    is 

the change in current when the battery is loaded and  

   is the corresponding voltage drop in battery 

terminal voltage.       is also used in proportionally 

adjusting the voltage level whenever load is switched 

from one value to another. 

2. The slope,  , of the second pseudo-linear region of the 

voltage discharge plot. 

3. The knee point time,      , beyond which a battery is 

observed to retain only about 10% of its total capacity 

for a given SOH. This feature is based on empirical 

observation and is found to be consistent across all 

cycles at all SOH. For computational purposes this 

point is identified by the time at which a corresponding 

threshold voltage    is reached. 

4.     , the additional time taken corresponding to 

remaining 10% capacity discharge, which needs to be 

added to       in predicting      ; therefore,      
           . This allows us not to model the non-

linear behavior explicitly and just adjusting the 

estimates by additive offsets computed from the 

mapping   . 

It is observed that each of the above features depends on the 

state of health of the battery and the load level.       

characterizes the internal impedance of the battery and 

represents battery age.  Hence, we use       as an 

approximation for SOH. It is assumed that SOH does not 

change within a given discharge cycle. Hence, given the 

load,      , and             , we learn the following 

three multidimensional mappings: 

                     

                   

                      

These mappings can be implemented using several different 

techniques. In this work, we focus learning these mappings 

using the least-squared polynomial regression, and artificial 

neural network. Once these mappings are learned, the 

     can be predicted by using the future load profile 

information. 

4.2. Architecture 

The data-driven prognostic approach adopted in this paper is 

presented in Figure 5. The first step to this approach is the 

estimation of the SOH of the battery. In our approach, we 

estimate        by estimating the       of the battery 

using voltage and current measurements,      and      , 

respectively, at the start of the discharge cycle.        and 

the future operating loading profile of the battery are then 

fed into three mappings, which estimate    ,  , and     , 

which are then used for predicting the        

 

 

Figure 5. Data-driven prognostics architecture. 

4.3. Prediction 

Recall that although mappings are created using constant 

load profile data to learn various relationships, the algorithm 

performance is evaluated using data from random loading 

profiles. Given discharge cycle data until current time, i.e., 

the time stamped current and voltage measurements 

recorded from the battery, and the knowledge of expected 

(randomly changing) loading profile in future, our goal is to 

make correct prediction for     . Since, the training data do 

not contain the information about transients that arise during 

load switching, an adaptation parameter    is incorporated 

into the prediction scheme, which gets adapted based on 

observed data and is used to adjust the values obtained from 

the mappings. This allows us not having to update the entire 

mappings that were built offline in training phase but still 

incorporate the differences that are seen in run-time data due 

to various factors not considered in the learning step. 

Algorithm 1 describes our steps for predicting the      for a 

discharge cycle.  

The algorithm takes as inputs the vector of   prediction 

time-points,   , the vector of   time-intervals,         , and 

a vector of   future current loading values,        , each 

element of which corresponds to the current loading time-

intervals in         . First, we initialize  , our slope 

adjustment multiplier. Then, we compute       as 

explained above. Next, for each discharge cycle, we assess 

  for the given       and        from the mapping    and 

extrapolate from the battery voltage measured at prediction 

time,     to the end of the current load level segment, i.e., 

until the next load level is switched. The threshold voltage 

    is also computed. If at the end of the loading cycle, 
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      , determine the time  at which      , compute 

     based on       and       , and determine        
     , and stop. Otherwise, from the last segment, determine 

the real slope,       and adapt the slope adjustment 

multiplier   to be used for the next load segment, and the 

loop is repeated until either all future load segments are 

included in the prediction or a knee point is reached and a 

final EoD prediction is made. 

Algorithm 1: Prediction  

Input:  

1.                    

2.                      

3.          

                                                          
4.        

 

initialize   

for         

                

                                      

                                

              

                                          

                                 

if       

   time at which         

                            

             

 break  

else 

 compute       
                           

             
  

          
     

 
  

end 

end 

4.4. Learning Algorithms 

In order to assess the contribution of data-driven learning 

step in our prognostic framework we selected two 

regression algorithms continuing from previous 

benchmarking efforts (Goebel, Saha, & Saxena, 2008; Saha, 

Goebel, & Christophersen, 2008). One of them is of very 

low complexity based on linear polynomial regression and 

the other represents a more sophisticated approach, i.e. an 

artificial neural network (ANN). Finally, to compare the 

performance a particle filter based algorithm is used, which 

uses empirical models and measurement data to predict 

battery EoD. These algorithms are briefly described next. 

4.4.1. Polynomial Regression  

For the purpose of generating the three mappings a simple 

linear polynomial mapping based on least-squared 

regression was employed to compare with other regression 

approaches such as ANNs. As can be seen from the three 

learned mappings in Figure 6, there is significant of noise in 

data, which makes it difficult to learn clear relationships, 

especially in cases where one-to-many relationship exists 

between the input combinations and the output.  

 

Figure 6. The three mappings based on polynomial regression. 

Gray cross markers show quality of fit (computed data) using test 

(measured) data. 

Since no obvious reason was available for such behavior, 

first order polynomials (linear models) were fit to data based 

on empirical observations. The quality of fit, also shown in 

Figure 6, supports this choice. Once these mappings were 

built they were used to compute features for input 

combinations present in test data. It must be noted that for 

learning phase the input space has only three discrete values 

available for      . Since the load in the test scenario is a 
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continuous variable, a linear interpolation was used to arrive 

at feature value for test loads spanning between the training 

loads of 1A, 2A, and 4A. 

4.4.2. Artificial Neural Network Based Regression 

An alternative approach to constructing the mappings        

and    was implemented based on artificial neural networks. 

The fitting of these functions provides several complications 

for the training on the neural network due to the nature of 

the training data. The neural network structure was therefore 

selected to obtain the simplest mapping, as close as possible 

to a plane. This is done to avoid over fitting which is a 

challenge imposed by the data. The data was normalized for 

the training of all the mappings in order to improve the 

performance of the neural network training. This 

normalization consisted of subtracting the sample mean and 

dividing the data by the sample standard deviation. The 

standard Levenberg-Marquardt algorithm was used for the 

optimization during the training process. Simple network 

structures with single hidden layer with two neurons for 

mapping   , and a single hidden layer with one neuron was 

used for    and   . 

4.4.3. Benchmark Algorithm – Particle Filters 

As part of our previous work, we have developed particle 

filter-based prognostic approaches for battery health 

management (Orchard, Tang, Saha, Goebel, & 

Vachtsevanos, 2010; Saha & Goebel, 2009; Bhaskar Saha & 

Kai Goebel, 2011) on the same data sets as used in this 

work.  We use the results obtained from this approach as our 

comparison standard, with the hope that our data-driven 

methods can perform as well as a Particle Filter-based 

approach. A particle filter (PF) (Arulampalam, Maskell, 

Gordon, & Clapp, 2002; Gordon, Salmond, & Smith, 1993) 

is a sequential Monte Carlo method that approximates the 

state probability density function (PDF) using a weighted 

set of samples, called particles. The value of each particle 

describes a possible system state, and its weight denotes the 

likelihood of the observed measurements given this 

particle’s value. As more observations are obtained, the 

value of each particle in the next time step is predicted by 

stochastically moving each particle to a new state using a 

non-linear process model describing the evolution in time of 

the system under analysis, a measurement model, a set of 

available measurements, and an a priori estimate of the state 

PDF. Then, the weight of each particle is updated to reflect 

the likelihood of that observation given the particle’s new 

state.  For prognostics, the PF is used to only predict the 

future values of particles based on future operating loading 

profiles, and not update them for future operating loading 

profiles, since future measurements are not available. In this 

work, a detailed discharge model of the cells, as described 

in (Bhaskar Saha & Kai Goebel, 2011), is used as the 

process model for the PF. The model parameters include 

double layer capacitance, the charge transfer resistance, the 

Warburg impedance, and the electrolyte resistance. The 

model was developed by analyzing the way the impedance 

parameters change with charge depletion during the 

discharge cycle.  

5. RESULTS AND DISCUSSIONS 

Algorithms described above were tested on data collected 

from two batteries that were discharged under randomized 

sequence of loads between 1A and 4A levels. For this paper 

we present results from two discharge cycles from each of 

the batteries chosen from an early stage of life (second and 

fourth discharge cycles). The results obtained from all four 

cases were similar in characteristics, and only one set is 

presented below for conciseness. The rest of the three sets 

are included in the appendix for reference. Results are 

evaluated based on alpha-lambda prognostic metric as 

described in (Saxena et al., 2010).  

 

Figure 7. Alpha-Lambda metric plot for comparing algorithmic 

performance. 

Table 1. Prediction results comparing data-driven prediction 

approach based on two different learning algorithms and an 

empirical model based prediction. 

tP RUL* 

Particle 

Filter 

ANN 

Regression 

Polynomial 

Regression 

RUL Error RUL Error RUL Error 

20 2673 2750 77 2126 -547 2606 -67 

247 2446 2511 65 1899 -547 2330 -116 

475 2218 2287 69 2344 126 2253 35 

703 1990 2067 77 2116 126 2972 982 

930 1763 1853 90 2568 805 3026 1263 

1157 1536 1589 53 1063 -473 897 -639 

1385 1308 1365 57 1147 -161 1204 -104 

1612 1081 1151 70 1207 126 1116 35 

1840 853 993 80 979 126 888 35 

2068 625 735 110 464 -161 369 -256 

2296 397 505 108 523 126 432 35 
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It can be observed from Figure 7 (and numerical data 

provided in Table 1) that the data-driven method based on 

two different mappings performs in similar fashion, but the 

performance is not as good as the model based approach. 

Furthermore, given the nature of the data (see Figure 6) the 

method based on ANN mapping performs poorer. It can be 

explained based on the fact that it has a harder time learning 

simple relationship compared to polynomial regression. On 

further analysis several potential issues were identified that 

may have contributed to the poor performance of this data-

driven approach: 

- As evident from Figure 6, feature data from the 

measurements are noisy and in the absence of 

suitable denoising scheme learning meaningful 

relationships may be difficult. Especially in the 

case of randomized loading profiles the effect of 

noise may be non-linear that may not be captured 

by interpolating observations from three constant 

loading scenarios 

- Constant loading scenarios lack the information 

about the effects of transients that are bound to be 

present in variable loading case during the times 

when load is switched from one level to another. 

Such information is crucial for accurate predictions 

- Features extraction involves linearization of several 

non-linear regions and hence the performance is 

sensitive to choices made such as definition of the 

knee point, definition of slope m, etc. These 

choices are purely observation based and require a 

more thorough sensitivity analysis, which requires 

considerable effort as part of data-driven solution. 

- Quality of mapping learned from data lies at the 

heart of data-driven prediction approach; however 

there is no direct provision of updating the 

mapping as new data comes in. This translates into 

a problem especially for a situation where training 

data are significantly different than test data and 

are missing some important knowledge. 

6. CONCLUSIONS 

This paper presented the results and lessons learned from 

implementing a data-driven prediction approach for variable 

loading scenario based on data acquired from controlled lab 

environment for constant loading scenarios. It was observed 

that such methods may not always lead to good performance 

when applied to realistic datasets. While the performance 

obtained in this effort is not generalized to all data-driven 

methods by any means, the lessons learned are presented for 

the research community to avoid potential pitfalls that one 

may run into. This effort also establishes a preliminary 

baseline for performance on the battery aging datasets 

available from NASA’s prognostic dataset repository, which 

will help other approaches in comparative evaluation and 

successive improvements in performance. 
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NOMENCLATURE 

  slope of second linear segment of discharge profile 

       estimated state of health  

      measured battery load current 

      measured internal resistance of battery 

    threshold voltage at which end of life is reached 

     time till end of discharge 

     till till end of discharge from knee point 

      real slope of second linear segment of discharge 

profile 

  slope adjustment multiplier 

   vector of   prediction time-points 

         vector of   time-intervals 

        vector of   future current loading values 
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APPENDIX 

Table 2. Results for validation battery 61, cycle 4. 

tP RUL* 

Particle 

Filters 

ANN 

Regression 

Polynomial 

Regression 

RUL Error RUL Error RUL Error 

20 2793 2763 -30 2297 -496 2615 -178 

247 2566 2510 -56 2698 132 2714 148 

475 2338 2286 -52 1946 -392 2736 398 

703 2110 2008 -102 990 -1120 861 -1249 

930 1883 1796 -87 944 -939 372 -1511 

1157 1656 1553 -103 481 -1175 572 -1084 

1385 1428 1325 -103 855 -573 871 -557 

1612 1201 1114 -87 857 -344 813 -388 

1840 973 887 -86 641 -332 531 -442 

2068 745 660 -85 877 132 893 148 

2296 517 432 -85 649 132 665 148 

 

Table 3. Results for validation battery 62, cycle 2. 

tP RUL* 

Particle 

Filters 

ANN 

Regression 

Polynomial 

Regression 

RUL Error RUL Error RUL Error 

20 2597 1897 -700 2876 279 2870 273 

247 2370 2313 -57 1463 -907 1663 -707 

475 2142 2188 46 938 -1204 1465 -677 

703 1914 1981 67 777 -1137 1058 -856 

930 1687 1708 21 812 -875 845 -842 

1157 1460 1468 8 1066 -394 1060 -400 

1385 1232 1321 89 838 -394 1505 273 

1612 1005 1094 89 1003 -2 1278 273 

1840 777 909 132 1046 269 1050 273 

2068 549 732 183 686 137 817 268 

2296 321 494 173 600 279 594 273 

 

Table 4. Results for validation battery 62, cycle 4. 

tP RUL* 

Particle 

Filters 

ANN 

Regression 

Polynomial 

Regression 

RUL Error RUL Error RUL Error 

20 2519 2386 -133 1897 -622 2546 27 

247 2292 2358 66 1405 -887 1740 -552 

475 2064 2168 104 1560 -504 1697 -367 

703 1836 1582 -254 1843 7 1863 27 

930 1609 1580 -29 1616 7 1636 27 

1157 1382 1473 91 1115 -267 1165 -217 

1385 1154 1269 115 881 -273 676 -478 

1612 927 1030 103 934 7 954 27 

1840 699 616 -83 706 7 726 27 

2068 471 598 127 478 7 498 27 

2296 243 357 114 0 -243 0 -243 

 

 

 

 


