
 1 

A Method to Estimate the Remaining Useful Life of a Filter Using a 

Hybrid Approach Based on Kernel Regression and Simple Statistics 

Roman Łomowski1, Szczepan Hummel2 

1,2Syncron Poland Sp. z o.o., Warsaw, 00-105, Poland 

roman.lomowski@syncron.com 
szczepan.hummel@syncron.com 

 
ABSTRACT 

This paper describes the method used by the Uptime team 

for the estimation of the remaining useful life of a filter 

during the 2020 PHM Conference Data Challenge. The 

proposed method is a hybrid of two methods: (1) based on 

median lifetime of a filter for a particular contamination 

profile and (2) kernel regression for a sensor-based 

prediction after a certain threshold of differential pressure is 

reached. The threshold value was chosen based on visual 

assessment followed by grid search for fine tuning. Median 

lifetime of a filter for unseen contamination profiles was 

estimated using interpolation. Choosing the right 

interpolation method was a challenge as training data 

contained samples with only two values of contamination 

particle size. Interpolation was chosen based on other 

publicly available information about the relationship 

between contamination profile and filter lifetime. The 

results (ranked 1st with the total penalty score of 49.67) 

showed that an observation made based on one dataset can 

be useful for solving similar problems in the case of limited 

data availability. This suggests that there is a potential for 

using transfer learning in PHM applications. 

1. PROBLEM DESCRIPTION 

Contaminant filtration is a process needed in multiple 

applications as contaminants in liquids can be devastating to 

many types of equipment. One of the common reasons why 

filtration systems require maintenance is filter clogging. 

This year’s PHM Data Challenge problem was to create a 

prognostic model that estimates a filter’s Remaining Useful 

Life (RUL) defined as the time until upstream pressure 

(before filter) is greater than downstream pressure (after 

filter) by at least 20 psi. The model could use information 

about: the size of contaminant particles, their concentration 

in the liquid (specifically water) and sensor readings. Data 

consist of run-to-failure histories gathered under controlled 

conditions where contaminant concentration and particle 

size are fixed and known for each sample.  

1.1. The Experimental Rig 

Run-to-failure data were gathered using an experimental rig 

constructed as proposed by Skaf, Eker, and Jennions (2017) 

and described on the official competition web page (PHM 

Data Challenge, 2020). The circuit is presented on Figure 1. 

 

Figure 1. The experimental rig 

 

The main components of the circuit are: 

• source suspension tank – contains prepared suspension, 

• pump – enforces flow through the filter, 

• pulse damper – reduces pulsation in the flow, 

• upstream pressure sensor, 

• filter, 

• downstream pressure sensor, 

• flow rate sensor, 

• reservoir for filtrated liquid. Roman Łomowski et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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1.2. Data 

1.2.1. Training Data 

Training data available to participants contain 32 samples. 

Each sample is a data set coming from an experiment run 

with a particular contamination profile. A contamination 

profile is described with three parameters: 

• solid ratio (%) of a contaminant within fluid, 

• min particle size (µm), 

• max particle size (µm). 

Experimental data contain sensor readings (upstream 

pressure, downstream pressure, and flow rate) gathered at 

frequency of 10 Hz.  

The samples in the training data are distributed among 

contamination profiles as shown in Table 1. 

  

1.2.2. Test Data 

Test data hidden to participants contain 16 samples 

distributed among contamination profiles as shown in Table 

2. 

  

1.3. Performance Evaluation 

Model is evaluated based on predictions generated every 10 

seconds after the experiment begins. The Mean Absolute 

Error (MAE) is used for the error function according to the 

competition rules. To be more specific: let 𝑃𝑅𝑈𝐿𝑚(𝑠, 𝑡) be 

the predicted RUL of the filter for a sample s at time t by a 

model m, let 𝑅𝑈𝐿(𝑠, 𝑡) be the real (ground truth) remaining 

useful life of the filter for a sample s at time t, let 𝑇𝑠  = 
{10𝑛 : 𝑛 ∈ 𝑁,  10𝑛 < 𝑅𝑈𝐿(𝑠, 0)} be the set of time instants 

for a sample s on which the model is evaluated. Then the 

error function E on a set S of samples is defined as: 

 

 
𝐸(m, S) =

1

|S|
∑ ∑

|𝑃𝑅𝑈𝐿𝑚(s, t) − 𝑅𝑈𝐿(s, t)|

|Ts|
t∈Tss∈S

 (1) 

 

Let Train be the set of all samples from training data. Let 

Test be the set of all samples from test data. The penalty 

score P of the model m is defined as: 

 

 𝑃(𝑚) =  𝐸(𝑚, 𝑇𝑟𝑎𝑖𝑛) +
3

2
𝐸(𝑚, 𝑇𝑒𝑠𝑡) (2) 

 

Participants were supposed to provide 4 models: 

• 𝑚100  – using all the available samples to train the 

model, 

• 𝑚75 – using 75% of the available samples to train the 

model, 

• 𝑚50 – using 50% of the available samples to train the 

model, 

• 𝑚25 – using 25% of the available samples to train the 

model. 

Solutions are being scored based on Total Penalty Score 

calculated as: 

 
𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
= 𝑃(𝑚100) + 𝑃(𝑚75) + 𝑃(𝑚50) + 𝑃(𝑚25) 

(3) 

2. THE SOLUTION 

Subsection 2.1 describes our model. Section 2.2 describes 

the data analysis that gave us the intuition needed to 

construct the model. Section 2.3 describes how we choose 

subsets of training data for training of models 𝑚75, 𝑚50 and 

𝑚25 . Section 2.4.1 describes analysis that led us to the 

conclusion that obtaining and using any additional 

information would probably have greater impact on Total 

Penalty Score than further experimentation with better 

models. Section 2.4.2 describes what we tried to do in order 

to obtain additional information and what we managed to 

find. Section 2.5 presents how the findings were used to 

come up with the appropriate weights used by the model. 

Table 2. Distribution of test samples. 

Particle size (μm) Solid ratio (%) 
Number of 

samples 

53-63 0.4 4 

medium 0.425 4 

  0.45 4 

  0.475 4 

 

Table 1. Distribution of training samples. 

Particle size (μm) Solid ratio (%) 
Number of 

samples 

45-53 0.4 4 

small 0.425 4 

  0.45 4 

  0.475 4 

63-75 0.4 4 

large 0.425 4 

  0.45 4 

  0.475 4 
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2.1. The Model  

For a sample s, we define 𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡(s) as the first time 

instant when flow rate was at least 100 ml/min for this 

sample. 

Let useful life of a sample s be defined as 𝑈𝐿(𝑠) =
𝑅𝑈𝐿(𝑠, 0). Let useful life since flow start for a sample s be 

defined as 

 𝑈�̂�(𝑠) = 𝑈𝐿(𝑠)  −  𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡(𝑠)  

Let 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑡(𝑠) be a difference between 

upstream pressure and downstream pressure for a sample s 

and a time instant t. 

Let 𝑆𝑅(𝑠) be the solid ratio of a sample s. Let 𝑇𝑟𝑎𝑖𝑛𝑆𝑅 =
{0.4%, 0.425%, 0.45%, 0.475%}  be the set of all solid 

ratios occurring in the training data set. 

Let middle particle size 𝑀𝑃𝑆(𝑠) be the arithmetic average 

of maximum and minimum particle size of a sample s. Let 

𝑇𝑟𝑎𝑖𝑛𝑀𝑃𝑆 =  {49, 69}  be the set of all middle particle 

sizes occurring in training data set. 

For 𝑟 ∈ 𝑇𝑟𝑎𝑖𝑛𝑆𝑅 and 𝑝 ∈ 𝑇𝑟𝑎𝑖𝑛𝑀𝑃𝑆, let: 

𝑈𝐿𝑟,𝑝 = 𝑚𝑒𝑑𝑖𝑎𝑛 ({𝑈𝐿(𝑠): 

𝑠 ∈ 𝑇𝑟𝑎𝑖𝑛,
𝑆𝑅(𝑠) = 𝑟,

𝑀𝑃𝑆(𝑠) = 𝑝
}), 

𝑈�̂�𝑟,𝑝 = 𝑚𝑒𝑑𝑖𝑎𝑛 ({𝑈�̂�(𝑠): 

𝑠 ∈ 𝑇𝑟𝑎𝑖𝑛,
𝑆𝑅(𝑠) = 𝑟,

 𝑀𝑃𝑆(𝑠) = 𝑝
}). 

Let 𝑤𝑎𝑣𝑔(�⃗�, �⃗⃗⃗�) be the weighted average of elements of a 

vector �⃗� with weights �⃗⃗⃗�. If the order is clear, we will use 

sets instead of vectors in this notation. 

By MAh(xt) we denote the moving average of a time series 

x with the sliding window of size h. 

Window size h and threshold 𝜃  are hyper-parameters 

optimized through experimentation. Calculation of weights 

w⃗⃗⃗⃗ is described in Section 2.5. Vector w⃗⃗⃗⃗ contains 2 weights: 

one for MPS of 49 and one for MPS of 69. 

For a time instant t and a sample s the model provides 

prediction 𝑃𝑅𝑈𝐿𝑚(𝑠, 𝑡) as follows. 

1. If 𝑡 <  𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡(𝑠) and 𝑀𝑃𝑆(𝑠) ∈ 𝑇𝑟𝑎𝑖𝑛𝑀𝑃𝑆: 

 𝑃𝑅𝑈𝐿𝑚(𝑠, 𝑡) = 𝑈𝐿𝑆𝑅(𝑠),𝑀𝑃𝑆(𝑠) –  𝑡  

2. If 𝑡 < 𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡(𝑠) and 𝑀𝑃𝑆(𝑠) ∉ 𝑇𝑟𝑎𝑖𝑛𝑀𝑃𝑆: 

𝑃𝑅𝑈𝐿𝑚(𝑠, 𝑡) = 𝑤𝑎𝑣𝑔({𝑈𝐿𝑆𝑅(𝑠),𝑝: 𝑝 ∈ 𝑇𝑟𝑎𝑖𝑛M𝑃𝑆}, �⃗⃗⃗�)  −  𝑡 

3. If 𝑡 ≥ 𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡(𝑠),  𝑀𝑃𝑆(𝑠) ∈ 𝑇𝑟𝑎𝑖𝑛𝑀𝑃𝑆  and 

𝑀𝐴ℎ(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑡(𝑠)) ≤ 𝜃: 

 𝑃𝑅𝑈𝐿𝑚(𝑠, 𝑡) = 𝑈�̂�𝑆𝑅(𝑠),𝑀𝑃𝑆(𝑠)  −  �̂�,  

where �̂� = 𝑡 − 𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡(𝑠). 

4. If 𝑡 ≥ 𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡(𝑠),  𝑀𝑃𝑆(𝑠) ∉ 𝑇𝑟𝑎𝑖𝑛𝑀𝑃𝑆  and 

𝑀𝐴ℎ(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑡(𝑠)) ≤ 𝜃: 

𝑃𝑅𝑈𝐿𝑚(𝑠, 𝑡) = wavg({UL̂SR(s),p: p ∈ 𝑇𝑟𝑎𝑖𝑛M𝑃𝑆}, w⃗⃗⃗⃗)  −  t̂, 

where �̂� = 𝑡 − 𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑟𝑡(𝑠) 

5. If 𝑀𝐴ℎ(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑡(𝑠)) > θ  the model 

uses kernel regression with 3d Gaussian kernel based 

on features: 𝑀𝐴ℎ(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑡(𝑠)), 𝑆𝑅(𝑠) 

and 𝑀𝑃𝑆(𝑠) to estimate RUL. 

Kernel Regression bandwidth parameters for the 3 input 

variables are optimized through cross-validation on training 

data using statsmodels Python package. The optimization is 

done independently for models 𝑚100, 𝑚75, 𝑚50 and 𝑚25 on 

the respective data sets, as specified in Section 1.3. 

Hyper-parameters were optimized globally through multiple 

experiments and the result of the optimization follows: 

• h = 20 

• 𝜃 = 3.5 

2.2. Analysis 

The purpose of this section is to show what sequence of 

observations led to the creation of the model described in 

Section 2.1. 

Figure 2 shows how differential pressure evolves in time for 

different experiments. Recall that RUL is calculated as 

number of seconds until differential pressure of 20 psi is 

first reached. 

 

Figure 2. Differential pressure evolution per profile. 

Observation 1. For a given contamination profile the 

difference in useful life in between samples is not that big, 

see Table 3. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

4 

 

Let us now see what additional information about RUL we 

can get from sensor readings. Figure 3 shows RUL – the 

target variable – versus downstream pressure and flow rate. 

 

Figure 3. RUL vs flow rate and downstream pressure. 

Observation 2. There is almost no functional dependency 

of RUL from downstream pressure or flow rate. 

Downstream pressure looks like a noise when drawn versus 

RUL. Flow rate is almost constant, with very wide range of 

RUL values. This is probably because the pump has enough 

power to maintain constant flow. Near clogging some flow 

drop patterns occur, but it might not be easy to understand at 

which stage of the pattern we actually are, given that the 

patterns are significantly shifted in between particle sizes, 

and the test data are going to contain an unknown particle 

size.  

Moreover, the drop in the flow rate can be caused by 

increasing pressure, as the pulse dampener contains gas. 

When liquid pressure starts to rise quickly, the gas will give 

way to liquid and therefore some part of the flow through 

the filter will be reduced. In the context of this note, flow 

rate may be a measure derived from pressure measures, 

which makes it even less useful for a model. 

Let us now look at upstream pressure and differential 

pressure and how they relate to RUL. Figure 4 shows only 

subset of data, otherwise it would be unreadable. 

 

Figure 4. RUL vs upstream and differential pressure shown 

for subset of data for two profiles. 

Observation 3. Differential pressure seems to bring very 

similar information as upstream pressure but is less noisy. 

In the model, we use a smoothed version of differential 

pressure – namely its moving average – to reduce noise 

even further. 

Observation 4. For a given contamination profile, if 

differential pressure is above 4 psi it allows for accurate 

prediction of RUL. The relation is not linear – at least for 

some contamination profiles. 

Figure 5 shows the flow rate near the beginning of each of 

the experiments. 

 
Figure 5. Different flow start times for different samples. 

Observation 5. In majority of the experiments (samples), 

the liquid did not flow through the filter from the very 

beginning (see Figure 5). The delay of flow start varies from 

3.5 s to even 11 s.  

This is probably because of the different levels of liquid in 

the test rig at the start of each experiment. To mitigate the 

effect of delayed flow start, we have introduced useful life 

since flow start apart from simple useful life into the model. 

2.3. Data Set Split 

We have split the training data into 4 sets of samples. Each 

set contained exactly one sample with a given 

Table 3. Variation of Useful Life (UL) per profile. 

Solid 

Ratio 

Middle 

Particle 

Size 

Shortest 

UL 

Longest 

UL 

0.4 
49 273.1 277.5 

69 203.5 213.4 

0.425 
49 256.1 266.2 

69 192.8 198.8 

0.45 
49 234.2 238.1 

69 175.2 182.1 

0.475 
49 210.8 212.5 

69 172.6 176 
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contamination profile. For example, among samples with 

particle size of 45-53 µm and solid ratio of 0.4%, the sample 

with the lowest number (Sample 1) is taken to Set 1, the 

next one (Sample 2) to Set 2, etc. 

Model 𝑚25 uses Set 1 during training; model 𝑚50 uses Set 1 

and Set 2, etc. 

2.4. Choosing Next Steps 

2.4.1. Pseudo Profiling 

A popular technic for software developers when they need 

to improve performance of an application is to perform 

profiling - measure how much each part of the application 

contributes to the overall execution time - and then focus on 

improving the most significant parts. Therefore, we decided 

to perform analysis of similar purpose to identify which 

actions would be most beneficial for further improvements 

of models’ Total Penalty Score. 

We performed this analysis after constructing a solution 

with the average penalty score on training data set for 

models 𝑚25 , 𝑚50 , 𝑚75  and 𝑚100  of about 1.9 s so 

improving it further could not bring more than 1.9 s of 

improvement.  

We tried to estimate how big of an impact the correct choice 

of interpolation method for unknown particle size would 

have on the average penalty score of our models. We were 

considering interpolations based on assumption that useful 

life is linearly dependent on Middle Particle Size (MPS), 

𝑀𝑃𝑆2, 𝑀𝑃𝑆3 , 𝑀𝑃𝑆−1, 𝑀𝑃𝑆−2 or 𝑀𝑃𝑆−3 . For most of the 

cases we found some argument supporting it. We also 

checked what would be predicted useful life for the samples 

with unknown MPS if we assume each of those possibilities. 

Table 4 summarizes those values.  

Table 4. Interpolated useful life for MPS=58 depending on 

different interpolation assumption for different solid ratios. 

 

 
Solid ratio 

Average 
0.475 0.45 0.425 0.4 

𝑀𝑃𝑆3 197.7 214.3 237.5 249.6 224.8 

𝑀𝑃𝑆2 196.2 212.0 234.7 246.8 222.4 

𝑀𝑃𝑆 194.6 209.5 231.9 244.0 220.0 

𝑀𝑃𝑆−1 191.3 204.6 226.1 238.3 215.1 

𝑀𝑃𝑆−2 189.7 202.2 223.3 235.4 212.7 

𝑀𝑃𝑆−3 188.2 199.8 220.5 232.6 210.3 

 

As one can see if one of the approaches is correct then using 

a different one would cause predictions based on the 

interpolated value miss by about 2.4 s. We use the 

interpolated values as long as 

𝑀𝐴ℎ(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑡) ≤ 𝜃 ; which was the case 

for about 80% of all cases. Since error on the test set is 

multiplied by 1.5, using wrong interpolation would increase 

our average penalty score by 2.4 s * 80% * 1.5 = 2.88 s. 

Therefore, choosing the right interpolation variant has 

greater effect on the final model performance than trying to 

reduce the error we can measure on the available data even 

to 0. We were considering models that would check whether 

differential pressure buildup speed for unknown middle 

particle size is more similar to speed observed for smaller or 

bigger particles and make prediction based on assumption 

that useful life will be similar to the same type of particles. 

However, we did not have data to validate such a hypothesis 

and therefore we resigned from this approach.  

2.4.2. The Need for Information 

This analysis led us to the decision that we should focus all 

our efforts on obtaining more information about how 

contaminant particle size affects the clogging process. That 

would help us choose the right variant or build a model that 

would not implicitly guess the relationship between useful 

life and middle particle size. 

We identified following possible sources of such 

information: 

• physics,  

• building our own test rig and running experiments for 

another filter, 

• other publicly available data showing clogging process 

of liquid filter. 

Physics 

The clogging process seems to be complex and have 

multiple stages. We decided that it would be risky to assume 

we can calculate what will be happening for the unseen 

middle particle size without any option to validate our 

results against data. 

Building Our Own Rig 

We did not have enough time to do so. 

Other Datasets 

We started to search for publicly available datasets. Such a 

dataset could be used: (i) for inspiration, (ii) to validate 

physics-deduced thesis, (iii) for transfer learning – popular 

approach in image processing and (iv) for choosing an 

interpolation method. 

Unfortunately, we did not find such a dataset. Instead we 

found a paper (Skaf, Eker, & Jennions, 2017) describing 

similar experiments with a figure showing differential 

pressure buildup that contained different particle sizes, 

including the range that we needed (see Figure 6). While we 

found that the data from these experiments did not match 

exactly with our use case, they were gathered using 
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experiments of a similar nature. We have used information 

contained in the figure to choose the best interpolation 

method. 

 

Figure 6. Differential pressure evolution in time for different 

particle sizes (Skaf, Eker, & Jennions, 2017). 

2.5. Weights 

In this section we describe how the weights �⃗⃗⃗� used to 

average useful life in between different particle sizes to 

obtain the estimate for an unknown particle size, as 

described in Section 2.1, were selected. 

Cyan and red lines on Figure 6 correspond to particle sizes 

63-75 μm and 45-53 μm, respectively. These are the sizes 

that were included in the training data set. Green lines 

correspond to particle size of 53-63 μm. Note that the figure 

presents differential pressure only up to 15 psi. For each 

interpolation method mentioned in Section 2.4.1, we 

compared the time to reach a differential pressure value of 

15 psi estimated by this method for particle size of 53-63 

μm with the time interval in which green lines hit the top of 

the chart. It turned out that the method that assumes that 

useful life is proportional to 𝑀𝑃𝑆−3 best fits the chart. 

Recall that when we calculate UL for 𝑀𝑃𝑆 = 58, vector �⃗⃗⃗� 

contains two values: for 𝑀𝑃𝑆 = 49 and for 𝑀𝑃𝑆 = 69. The 

weights are: 

�⃗⃗⃗� = (
69−3 − 58−3

69−3 − 49−3
,
58−3 − 49−3

69−3 − 49−3
) ≈ (0.381,0.619) 

Such that e.g.: 

𝑈𝐿𝑟,58 ≈ 0.381 ∙ 𝑈𝐿𝑟,49 + 0.619 ∙ 𝑈𝐿𝑟,69 

3. MODEL EVALUATION 

During training and evaluation of the model we used some 

portion of data for training and all the available data for 

evaluation, as final score would be calculated on all the 

data. During such an evaluation models 𝑚100, 𝑚75, 𝑚50 and 

𝑚25 achieved scores shown in Table 5. 

 

We know that our Final Total Score was 49.67, so, based on 

Eq. 2., we can calculate that the sum of errors of our four 

models on Test set was 29.149, which is about five times 

worse than the results on the published data. It is not a 

surprise. Our approach was heavily dependent on low 

variation in useful life among samples of the same 

contamination profile. It was very helpful in obtaining low 

score on samples that have contamination profile that was 

represented in training set of a particular model but rendered 

the model vulnerable to inaccuracy of useful life 

interpolation.  

4. FURTHER WORK AND DISCUSSION 

In practical applications we usually require more accuracy 

from a model when a failure is closer than when it is far 

away. This is reflected by relative measures, like e.g. 

Relative Accuracy proposed by Saxena, Celaya, Saha, Saha, 

and Goebel (2010). It would be interesting to evaluate our 

model versus such measures. The importance of appropriate 

weights in statistical approach used by our model at early 

stage of an experiment (before threshold differential 

pressure is reached) would be smaller, but we would get a 

more restrictive evaluation of the kernel regression part that 

is used in crucial period when the clogging is going to occur 

soon. Unfortunately, such an evaluation cannot be done if 

the test data set is not published. 

NOMENCLATURE 

𝑃𝑅𝑈𝐿𝑚(s, t)  Predicted Remaining Useful Life of a 

sample s at a time instant t by a model m 

𝑅𝑈𝐿(s, t)  Remaining Useful Life (ground truth) of a 

sample s at a time instant t 

𝐸(m, S) Error function of a model m measured on 

a set of samples S 

Train  Set of all samples from training data 

Test  Set of all samples from test data 

𝑚𝑝  Model built using p% of the available 

samples for training 

UL(s) Useful Life of a sample s since 

experiment start until clogging 

𝑈𝐿𝑟,𝑝 Median Useful Life since experiment start 

among samples from Train with solid 

ratio of r and middle particle size of p 

Table 5. Scores of the models. 

Solid 

Ratio 
MAE 

𝑚100 1.303 

𝑚75 1.305 

𝑚50 1.493 

𝑚25 1.846 

Total 5.947 
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𝑈�̂�(s) Useful Life since flow start until clogging 

for a sample s 

𝑈�̂�𝑟,𝑝 Median Useful Life since flow start 

among samples from Train with solid 

ratio of r and middle particle size of p 

MAh(xt)  Moving average of a time series x with 

sliding window of size h 

FlowStart(s) The first time instant when the flow rate 

was at least 100 ml/min for a sample s 

SR(s) Solid Ratio of a sample s 

TrainSR Set of all Solid Ratios occurring in the 

Train dataset 

MPS(s) Middle Particle Size of a sample s. It is 

average of min and max particle size 

TrainMPS Set of all Middle Particle Sizes occurring 

in the Train dataset 

𝑤𝑎𝑣𝑔(�⃗�, �⃗⃗⃗�) Weighted average of elements of a vector 

�⃗� with weights �⃗⃗⃗� 

h  Window size of a moving average 

𝜃 Differential pressure threshold above 

which we are using kernel regression for 

predictions 
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