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ABSTRACT

Hydrogen fuel cells, particularly proton exchange membrane
fuel cells (PEMFC), are promising, robust, clean energy
sources. However, their high cost and short lifespan under
dynamic loads impedes their widespread usage. Accurate
and real-time prognostics, especially remaining useful time
(RUL) estimation, can help ameliorate the commercial viabil-
ity of PEMFCs. Data-driven methods are increasingly con-
sidered for RUL estimation. This paper looks at two such
methods – Gaussian Process Regression (GPR) and Long-
Short Term Memory (LSTM) Networks and assesses them
in terms of accuracy and suitability for real-time applica-
tions when tested against the IEEE PHM Challenge 2014 data
set. Gaussian Process Regression is a non-parametric ker-
nel method. LSTM, on the other hand, is a recurrent neu-
ral network based architecture that is effective at detecting
both long term and short term trends in time series predic-
tions. For the cases investigated here, the results derived us-
ing LSTM are more accurate, especially since they effectively
capture long term trends. However, GPR assigns a probabil-
ity to its prediction - a desirable aspect in a real-time setting
so that corrective action can be applied appropriately. The
paper then proposes the use of a variant of these methods -
Gaussian Process-Long Short Term Memory Network (GP-
LSTM) as an alternative that combines the higher accuracies
of the LSTM method and the probabilistic output from GPR.
The results attained using GP-LSTM are close in accuracy
to the LSTM results and have a probability associated with
them, making them suitable for real-time applications. The
effectiveness of GP-LSTM is further proven using a dynamic
data set and strategies are suggested to appropriately apply
GP-LSTM to real-world scenarios.
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1. INTRODUCTION

Fuel cells have seen a lot of growth over the recent years. This
development results as the need to address the consequences
of electricity production and vehicle propulsion using fossil
fuels becomes more prominent. Proton exchange membrane
fuel cells (PEMFCs), in particular, are found to be of con-
siderable interest due to their low operating temperature, ro-
bustness, and high energy density (Larminie & Dicks, 2001).
Owing to such advantages, they have found uses in many au-
tomotive and aerospace applications (Sharaf & Orhan, 2014;
Gong & Verstraete, 2017; Gong, Palmer, Brian, Harvey, &
Verstraete, 2016; Verstraete, Gong, Lu, & Palmer, 2015; Ver-
straete et al., 2014). However, their short lifespans do not jus-
tify their high cost, warranting the need for effective prognos-
tics (Sutharssan et al., 2017; Sharaf & Orhan, 2014; H. Liu,
Chen, et al., 2020). Many studies relating to the prognostics
of PEMFCs, and in particular remaining useful life (RUL) es-
timation, have been carried out. The bulk of this research can
be divided into three main categories - (i) model-driven meth-
ods, (ii) data-driven methods and (iii) fusion methods which
combine elements of model-driven and data-driven methods
(Sutharssan et al., 2017; H. Liu, Chen, et al., 2020).

Model-driven approaches involve tracking the underlying
degradation mechanisms by using empirically derived mod-
els, the physics associated with the failure mode, or a com-
bination of both (Sutharssan et al., 2017; H. Liu, Chen, et
al., 2020). Filter based methods are often combined with
PEMFC models for state estimation and prediction. For ex-
ample, (Bressel, Hilairet, Hissel, & Ould Bouamama, 2016)
use a polarisation voltage loss model where certain parameter
trends over time are established empirically and an extended
Kalman filter is applied for state estimation and prediction.
(Jouin, Gouriveau, Hissel, Péra, & Zerhouni, 2014) apply a
particle filter in conjunction with an empirical state transition
model to determine voltage degradation as well as to esti-
mate RUL. Similarly, Kimotho et al. (Kimotho, Meyer, &
Sextro, 2015) also examine voltage degradation using parti-
cle filters, but additionally include the use of a self-healing
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factor to account for boosts in voltage after characterisation
tests. Jha et al. (Jha, Bressel, Ould-Bouamama, & Dauphin-
Tanguy, 2016) derive a bond graph model of a PEMFC and
use a particle filter for diagnostics and prognostics. While
model-driven methods are prevalent, they can be quite com-
plex (in terms of design and computation) and may require a
strong understanding of underlying degradation mechanisms
(H. Liu, Chen, et al., 2020). This has led to data-driven meth-
ods becoming increasingly popular for prognostics.

Data-driven methods are often preferred due to their ease of
implementation as well as their ability to compute the re-
quired output rapidly - a desirable feature for online diag-
nosis and prognostics. (L. Zhu & Chen, 2018) propose the
use of Gaussian Process State Space Model where Gaussian
Processes are used for modelling state transitions for a state
space framework and to track and predict voltage degrada-
tion. The model provides a probabilistic output that has the
added advantage of providing a confidence interval for the
associated predictions. (Wu, Breaz, Gao, Paire, & Miraoui,
2016) use an adaptive relevance vector machine for prognos-
tics. Research in neural-network-based architectures has also
resulted in their advent in PEMFC prognostics (H. Liu, Chen,
et al., 2020; H. Liu, Chen, Hissel, & Su, 2019). Javed et
al. (Javed, Gouriveau, Zerhouni, & Hissel, 2016b, 2016a)
use summation wavelet - extreme learning machines in addi-
tion to an incremental learning approach for accurate predic-
tions involving variable loads. (Chen, Laghrouche, & Djerdir,
2019) use wavelet analysis for decomposing the signal as
an input for their extreme learning machine- genetic algo-
rithm based degradation model. (H. Liu, Chen, Hou, Shao, &
Su, 2017) also used wavelet analysis for breaking the signal
down to its different frequency components and apply group
method of data handling for short term prognostics. Recur-
rent neural networks and their derivative architectures - pri-
marily long short term memory networks (LSTM networks)
have also been employed because of their ability to handle
sequential data.

(J. Liu et al., 2019) apply an LSTM network for remain-
ing useful life (RUL) estimation and obtain results with
much higher accuracies than traditional backpropagation neu-
ral networks. Yang et al. integrate LSTMs and use them to
derive predictions that are then passed into particle filters for
higher precision (Yang et al., 2017). (Ma, Breaz, et al., 2018)
use LSTM networks for different fuel cells and operating con-
ditions and obtain accurate results for both - long term and
short term predictions. They then use the Grid LSTM net-
work (Ma, Yang, et al., 2018) - a modification of the tradi-
tional LSTM cell that allows for higher accuracies. Further-
more, they combine LSTM networks with the auto-regressive
integrated moving average (ARIMA) method to provide ac-
curate predictions in addition to accounting for fuel cell per-
formance recovery (Ma et al., 2019). (Wang, Cheng, & Hsiao,
2020) apply stacked long short term networks with hyperpa-

rameters derived using the differential evolutionary algorithm
to achieve even higher accuracies in predictions. Despite a
breadth of research in PEMFC prognostics methodologies,
there is insufficient exploration of the feasibility of apply-
ing such methods in an online prognostic framework where
it can be deployed for real-time (or close to real-time) opera-
tion. Furthermore, most data-driven methods do not provide
uncertainty measurements like many of their model-based or
hybrid counterparts. Uncertainty related information can be
beneficial for an online PHM framework as confidence in the
measurements can be used to help determine the extent of cor-
rective action required (Boškoski, Debenjak, & Boshkoska,
2017; Jouin, Gouriveau, Hissel, Péra, & Zerhouni, 2013).

This study first explores Gaussian Process Regression (GPR)
and LSTM networks in terms of prediction accuracy and suit-
ability for online diagnostics. The suitability for online op-
eration is determined by establishing ’pseudo-online’ condi-
tions where we control the amount of past data the model has
access to, similar to a model operation in a real-world appli-
cation. The study then proposes the use of GP-LSTM (Al-
Shedivat, Wilson, Saatchi, Hu, & Xing, 2017) which com-
bines the advantages of both methods by learning the trends
of the degradation through LSTMs and being able to provide
an uncertainty associated with the prediction to make it more
suitable for online prognostics of PEMFCs. GP-LSTM pro-
vides an uncertainty measurement for the predictions directly
due to the nature of Gaussian Processes. It is also more suited
for an online context when compared to other methods, such
as the one in (Yang et al., 2017) which uses a particle fil-
ter - LSTM fusion since GP-LSTM does not require mul-
tiple predictions to determine each output value. Primarily,
GP-LSTMs can provide uncertainty for predictions at a sig-
nificantly lower computational cost when compared to other
LSTM based methodologies (Al-Shedivat et al., 2017). Even
though GP-LSTM has been been used for time-series prob-
lems and sequential data because of the advantages it offers
(Qin, Zhu, Qin, & Wang, 2019; S. Zhu, Yuan, Xu, Luo, &
Zhang, 2019), it has not yet been explored for fuel cell prog-
nostics. This study further explores the suitability of GP-
LSTM and the aforementioned methods for real-world appli-
cations by comparing their performance in an autoregressive
setting as well as a ’free simulation’ setting - where the model
uses its outputs as inputs for future predictions. GP-LSTMs
are also explored for prognostics involving dynamic condi-
tions.

2. PEMFC SYSTEM

This study uses the IEEE PHM Data Challenge (FCLAB,
2014) provided by the FCLAB research federation for anal-
ysis when employing the different methodologies. The data
set consists of ageing and health data from two 5-cell stacks
- FC1 and FC2. The cells have an active area of 100 cm2 and
were subjected to a nominal current of 0.70 A/cm2. FC1 was
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operated at constant current load and FC2 was subjected to
dynamic conditions - a steady current with ripples. FC1 and
its associated data will be the main focus of this study. How-
ever, GP-LSTM, with modifications and retraining, will be
applied to data from FC2 to prove that the method can be ap-
plied to more dynamic profiles. During the test, numerous pa-
rameters were recorded including the stack temperature, gas
flow and reactant hygrometry rates, cell and stack voltages,
as well as the operating current. In addition, characterization
tests in the form of electrochemical impedance spectroscopy
(EIS) were also run periodically.

To suitably perform prognostics and remaining useful life
(RUL) estimation, an appropriate ageing characteristic needs
to be chosen. The stack power is a defining feature for
stack degradation and is used as the ageing parameter (Jouin,
Gouriveau, Hissel, Péra, & Zerhouni, 2015). The power can
be computed by taking the product of the current and stack
voltage. The power output during the ageing test is shown
in Figure 1. The test was run for 1,154 hours and 143,862
points were generated. To make the predictive model suit-
able for online diagnostic and updating, the input variables
were restricted to past time and power values. The existing
data set was trimmed by applying a median filter with a one
hour window over the data to obtain a new data set of 1,154
points that helps remove large spikes and noise (Kimotho et
al., 2015). A sliding window of 10 points is used for perform-
ing predictions (Al-Shedivat et al., 2017). The first 670 hours
are used for training and the rest is the test data, as can be
seen in Figure 1. To effectively test the models for suitability
in an online context, where some data may not be available
when the model is operating, two different forms of predic-
tions were made (Al-Shedivat et al., 2017):

• Autoregression (AR) - One-step-ahead prediction is per-
formed. True past power values are used for predicting
the next power value. (Zhou, Gao, Breaz, Ravey, & Mi-
raoui, 2017; Cheng, Zerhouni, & Lu, 2018; Al-Shedivat
et al., 2017)

• Free Simulation (FS) - The model only uses the true
power values from the training set. In the test set, the
model maps its predictions as inputs for future predic-
tions. This is suitable for determining the general trend
of the stack power and for performing RUL determina-
tion well ahead of time (Al-Shedivat et al., 2017). This
helps emulate online conditions where the model may
have to predict power values far in the future instead of
just the power at the next time step.

To compare the efficacy of all the models for both prediction
forms, the power threshold for RUL estimation is set at 3.5%
of the initial power value, or 226.87W (FCLAB, 2014). The
root-mean-square error (RMSE) and mean absolute percent-
age error (MAPE) are then used to further compare the track-
ing capabilities of all the models in an autoregressive context
and can be found using (H. Liu et al., 2019):

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2

MAPE =
1

N

N∑
i=1

|ŷi − yi|
|yi|

where yi and ŷi represent the actual and predicted values
respectively, N represents the number of points used in the
measure - the number of test points used in this study.

3. RUL ESTIMATION METHODS

This study explores the use of long short term memory net-
works and Gaussian process regression for fuel cell prog-
nostics and the methods are briefly described. The study
then proposes the use of GP-LSTM for PEMFC prognos-
tics, which combines the two aforementioned methods and
explains how this method retains the advantages of LSTM
networks and Gaussian process regression.

3.1. Recurrent Neural Network and Long Short Term
Network

A recurrent neural network (RNN) is a form of neural net-
work designed to deal with sequential data and has found a
myriad of applications for time series problems. In a RNN,
an inner loop is used to loop back previous information within
the hidden layers to account for the past state, in conjunction
with the current input to form a prediction (Al-Shedivat et al.,
2017). While useful, RNNs cannot deal with long term trends
effectively due to the vanishing gradient problem where the
impact of backpropagation during neuron weight updates di-
minishes exponentially over the different time steps. To ac-
count for this, long short term memory networks (LSTM) are
popularly used (Wang et al., 2020; Géron, 2019).

LSTMs use a more elaborate structure as shown in Figure 2
(Géron, 2019). Here xt represents the current input, ht the
current output and ct represents the current cell state. ⊕ is
the addition operation and ⊗ is element-wise multiplication.
σ and tanh are found using:

σ(z) =
1

1 + e−z

tanh (z) = 2σ(2z)− 1

The LSTM cell structure is comprised of different gates and
layers which control the amount of historical information that
is preserved and how the historical information is used in con-
junction with the input to determine the output (Géron, 2019):

• Forget Gate - This gate controls the information that can
be ’forgotten’ from the previous cell state ct−1 - fun-
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Figure 1. Stack performance over time measured using the power output

damentally controlling the components of the long term
state that are erased. The output of ft can be computed
using:

ft = σ(W>xfxt +W>hfht−1 + bf )

where the generic form Wαβ represents the weight ma-
trices between connections α and β and bm represents
the bias for output m. For example, Wxf represents the
weight matrix between the input x and the forget gate
f , and bf represents the bias for the output of the forget
gate.

• Input Gate - gt analyses the current input xt and the pre-
vious cell output ht−1. The input gate it controls which
components of gt are preserved:

it = σ(W>xixt +W>hiht−1 + bi)

gt = tanh (W>xgxt +W>hght−1 + bg)

• Output Gate - This controls the parts of the cell state
that are preserved to determine the output ht:

ot = σ(W>xoxt +W>hoht−1 + bo)

ct = ft ⊗ ct−1 + it ⊗ gt
ht = ot ⊗ tanh ct

3.2. Gaussian Process Regression

Gaussian process Regression (GPR) is a supervised learning
method that uses a Gaussian distribution over functions to de-
scribe the feature space (Murphy, 2014). This Gaussian dis-
tribution can be described using its mean function m(x) and
covariance function κ(x,x′).

Figure 2. LSTM Cell Structure

f(x) ∼ GP (m(x), κ(x,x′))

Essentially, for a finite number of inputs, [x1,x2, ...xn], the
distribution over the functions can better be understood as a
joint Gaussian distribution over the function evaluations

p(f(x1), f(x2), ...f(xn)) = p(f |x)
= N (µ|K)

where K is a matrix with the terms Ki,j = κ(xi,xj) and
µ = (m(x1, ....m(xN ))

Using this definition, training inputs x, training targets y, the
posterior distribution over function evaluations f∗ for a test
input x∗ can be described as (Murphy, 2014; Richardson, Os-
borne, & Howey, 2019):
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p(f∗|x∗,x,y) = N (f∗|µ∗,Σ∗)

where
µ∗ = Kx∗x

>Kxx
−1y

Σ∗ = Kx∗x∗ −Kxx∗
>Kxx

−1Kxx∗

Gaussian Process Regression is commonly used in time se-
ries modelling and the whole training set is typically used for
performing predictions. To allow the model to scale effec-
tively, modifications can be introduced, such as active learn-
ing (Roberts et al., 2013), whereby the training set is replaced
by a subset of the existing points that best describe the fea-
ture space or variational learning, where the existing GPR
model is replaced by a computationally less expensive model
by finding key inducing points in the feature space (H. Liu,
Ong, Shen, & Cai, 2020). However, in this study we employ
the whole data set and also apply a sliding window to gauge
the effectiveness of GPRs in determining short term and long
term trends. To predict the power value using a sliding win-
dow of size L, an L number of previous predictions are used
as features in the regression model.

For implementing GPR time series modelling in this study, a
mean function of m(x) = 0 suffices as GPs are quite flexible
(Murphy, 2014). A variety of kernel functions are used in
practice with the most popular one for times series prediction
being the squared exponential kernel - the one used in this
study (Roberts et al., 2013). The squared exponential kernel
describes the covariance between two inputs, x1 and x2, as
follows:

κ(x1, x2) = σ2
fexp

(
− 1

2l2
(x1 − x2)2

)
Thus, the influence two input points have over their covari-
ance wanes with distance l. In fact, most kernel functions
used in practice share this attribute. For time series predic-
tion, this ends up affecting the quality of the predictions as
the model may fail to capture long term trends effectively.
This is where GP-LSTMs prove to be quite effective.

3.3. GP-LSTM

GP-LSTMs combine the long term effectiveness of LSTMs
with the probabilistic non-parametric regression methodol-
ogy of GPs (Al-Shedivat et al., 2017). This is achieved by
employing LSTM based kernels in a Gaussian Process frame-
work. By doing so, the kernel can hold long term trend
knowledge gained by the nature of the LSTM and use the
GP method to determine the uncertainty associated with this
method when employing the LSTM based kernel. The reader
is directed to (Al-Shedivat et al., 2017) for a more compre-
hensive explanation.

4. RESULTS AND DISCUSSION

Gaussian Process Regression and Long Short Term Memory
Networks are first applied and compared in terms of their pre-
dictive performance for autoregression and free simulation.
Then, GP-LSTM is applied and demonstrated as a suitable
alternative to the aforementioned techniques due to its abil-
ity to learn long term trends as well as provide probabilistic
estimates. GP-LSTM is further explored for determining its
suitability in an online context by using a combination of au-
toregressive and free simulation predictions.

4.1. Gaussian Process Regression

Initially, the whole training data set is used for both autore-
gression and free simulation. The free simulation result is
shown in Figure 3. Although the model fits the training data
well and disparities are almost imperceptible, the fit over the
test data is a completely different story. The model predicts
the initial points well but stops doing so after 10-15 hours. It
appears to emphasise the short term trends over the long term,
and ends up propagating this short term trend through the en-
tirety of the prediction time. As a result, the predictions never
reach the RUL threshold. The uncertainty associated with the
predictions increases rapidly - as expected given the nature
of the squared exponential kernel. Even though most of the
actual data points are within the confidence interval of the
predictions, the uncertainty is too high to be of any practical
use.

Since it might not be feasible to use all of the training data in
an online context, the sensitivity of the model was tested by
applying a sliding window for training and testing. The pre-
dictions associated with applying a sliding window are shown
in Figure 4. The highest uncertainties in the predictions are
generally associated with the points following large transi-
tions, such as the ones around 900 hours and 1000 hours.
The free simulation predictions are shown in Figure 4b. The
model is able to predict the initial trend but deviates pretty
rapidly and flattens out after approximately 50 hours of pre-
diction. The End-of-Life (EOL) estimates associated with the
different methods can also be seen in Table 2. As expected
based on Figure 4a, the autoregression results are very accu-
rate but the free simulation results are not. The GPR model in
free simulation heavily underestimates the end of life (EOL) -
a testimony to its inability to suitably track the long term trend
associated with the stack degradation. Therefore, LSTMs are
explored to remedy this drawback.

4.2. Long Short Term Memory (LSTM) Network

LSTM Networks are designed to capture both long term and
short term trends for time-series predictions. This functional-
ity is quite apparent in Figure 5. The autoregression and free
simulation results were obtained using the same model - a sin-
gle LSTM layer with 50 units, tanh as the activation function
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Figure 3. Applying GPR over the whole training data set

(a) GPR Autoregression (b) GPR Free Simulation

]

Figure 4. GPR using a sliding window
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Table 1. RMSE and MAPE values associated with the autore-
gression predictions from the different models

Model RMSE MAPE
GPR 0.2261 0.2258
LSTM 0.3125 0.3092
GP-LSTM 0.3510 0.3156

and a dropout and recurrent dropout of 0.05 and 0.1 respec-
tively. The hyperparameters are selected based on values pro-
vided by other LSTM related papers (J. Liu et al., 2019; Wang
et al., 2020) and on heuristics suggested by (Géron, 2019) to
reduce over-fitting by changing the respective dropout rates.
Figure 5a shows the autoregression results which fit the ac-
tual power values quite well. The model does under-predict
the extent of the transitions when they are relatively drastic
compared to surrounding points, such as the ones around 810
hours, 890 hours and 1000 hours. However, in most cases,
it ends up converging with the actual values soon after in a
corrective manner. The RMSE and MAPE values associated
with the autoregression predictions are listed in Table 1 and
are higher than those of GPR. The higher accuracy linked
to the GPR predictions can be attributed to the inherent na-
ture of GPR modelling which involves using pairwise trends
between adjacent points through kernels (Al-Shedivat et al.,
2017)

However, LSTM’s long term trend recognition in the free
simulation setting is far more accurate, as manifested in Fig-
ure 5b. The mode appears to follow the downward trend and
has an understanding of the ”bounce back” in the trend - the
sudden increase around 1000 hours caused by the frequent
characterisation tests. The final power prediction at 1,154
hours is quite close to the real power value. However, the
initial modelling of the downward trend over-predicts for a
while before coming close to converging with the actual val-
ues. The EOL estimates for both procedures in Table 2 are
close to the actual EOL values. The LSTM prediction for
autoregression is less accurate than GPR as it reduces the in-
fluence of the characterisation disturbances (Ma et al., 2019).
The LSTM free simulation estimates are significantly more
accurate - approximately 6 hours away from the actual value.
Thus, the long term trend recognition comes at a slight cost
of short term accuracies. In an online setting where the model
would be expected to operate in autoregression and free sim-
ulation modes, LSTMs would be the more attractive option
in terms of accuracy when compared to GPR. However, to
suitably apply corrective actions to improve the health and/or
lifetime of the fuel cell, it is beneficial to have a probabilistic
measure associated with the predictions (Jouin et al., 2014).
To combine the probabilistic measures provided by GPRs and
the long term trend learning provided by LSTMs, GP-LSTMs
are employed.

4.3. GP-LSTM

To obtain predictions with an associated probability, GP-
LSTMs are applied and the corresponding results are shown
in Figure 6. The results were obtained using a kernel compris-
ing of an LSTM layer of 50 units, with tanh as the activation
function and a dropout and recurrent dropout of 0.001 and
0.025 respectively. The number of units and the activation
function were kept the same as the previous LSTM model
(Al-Shedivat et al., 2017). However, since Gaussian Pro-
cesses use a separate hyperparameter for uncertainty - like-
lihood (Murphy, 2014), the dropout values were significantly
lowered to provide regularisation but not significantly impact
the uncertainty measurements. The specific values were cho-
sen based on their fit over the training measurements. The au-
toregression results in Figure 6a are very accurate prior to the
substantial spike around 1000 hours. After that, the predic-
tions under-predict but appear to converge, albeit slowly. This
implies that the effect of the characterisation disturbances is
being mitigated, in a manner similar to LSTMs, and similar
to the LSTM-ARIMA fusion model suggested by (Ma et al.,
2019). Similar to LSTMs, the mitigation can be attributed to
the long term trends coming into play and influencing short
term results. The uncertainty in the predictions seems to in-
crease with time and around strong transitions, such as the
one close to 1000 hours. The RMSE and MAPE estimates
for GP-LSTM in Table 1 are slightly lower than the other
methods.

However, in free simulation, the GP-LSTM model predicts
the general trend before the sharp rise at 1000 hours much
better than the other models - as is observable in Figure 6b.
The uncertainty, as expected, increases over time in the free
simulation mode. Even though the model does not predict the
rise after 1000 hours, it is much better at following the trend
prior to that. Furthermore, the uncertainty sharply increases
after 1000 hours, reflecting a severe lack of confidence in the
values predicted. This, in an online setting, would indicate the
need to incorporate more measurements before implementing
any decisions or corrective actions. The EOL estimates in Ta-
ble 2 are also quite accurate, especially the free simulation
result which is off by approximately 15 hours. Certain hy-
perparameters can be adjusted to improve the free simulation
performance or the autoregression performance, but usually
at the cost of the other.

4.3.1. Applying autoregression and free simulation

Free simulation results can be improved by increasing the
dropout and recurrent dropout. This would help the model
generalise better but at the cost of autoregression accuracies.
Correspondingly, the dropouts can be decreased slightly for
improving autoregression performance. However, the two
procedures can be combined in an online prognostic setting
for EOL estimations by applying them to different parts of the
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(a) LSTM Autoregression (b) LSTM Free Simulation

]

Figure 5. LSTM using a sliding window

(a) GP-LSTM Autoregression (b) GP-LSTM Free Simulation

Figure 6. GP-LSTM using a sliding window
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Table 2. Comparing predicted EOL estimates against the actual EOL of 805.57 hours

Model Autoregression Free Simulation Autoregression Free Simulation
Predicted EOL %Er

GPR 806.36 742.97 0.10 7.77
LSTM 807.07 799.79 0.19 0.72
GP-LSTM 807.20 821.71 0.20 2.00

data as shown in Figures 7 and 8. In Figure 7 it is assumed
that in an online setting, the model has only been trained un-
til 350 hours. However, power data between 350 and 500
hours becomes progressively available so autoregression is
applied. At each step within this range, the predictions are
made based on the true power values for all preceding times.
At 500 hours, the model aims to predict ahead without pro-
gressively available data and thus, free simulation is applied.
The autoregression results fit the available data quite well bar-
ring the slight under-prediction around 370 hours which has a
sharp transition. The free simulation results are also quite ac-
curate as they predict the general long term trend quite well.
The predictions deviate from the actual results around 1000
hours where there is a sharp improvement in performance due
to the characterisation test.

Similarly, Figure 8 shows the results with a larger train-
ing set and similarly sized autoregression set. Like before,
the autoregression results fit the actual values. However, in
free simulation, the model’s long term trend realisation over-
whelms the predictions and the model under predicts. There-
fore, in the future, the model will need to be adapted to make
it more sensitive to short term trends. (Al-Shedivat et al.,
2017) recommend the use of structured prediction algorithms
such as DAGGER (Ross, Gordon, & Bagnell, 2011) to im-
prove the performance of the model in free simulation.

4.3.2. Applying GP-LSTM to Dynamic Data Set

To further prove the efficacy of the model, it is applied to the
dynamic data set from FC2. The model, without modifying
the hyperparameters, is retrained using data until 500 hours
and the results are shown in Figure 9. The results are defi-
nitely not accurate, especially the free simulation results. The
high deviation of the predictions from the actual measure-
ments can be attributed to the lack of training variables that
inhibit it from learning the variations caused by the dynamic
current load, a factor that was not significant for FC1 since
FC1 was subjected to stationary current loads. To account for
this, current is included as an input variable for the model.
The number of units in the LSTM layer is increased to 60 to
account for the additional inputs but the other hyperparame-
ters are kept the same. Figure 10 shows the autoregression
and free simulation results. The model in auto-regression,
shown in Figure 10a, generally under-predicts power, espe-
cially after spikes. However, its learned long term tendencies
still allow it to converge the actual results at the end. The free

simulation results in Figure 10b also under-predict generally
but also converge with the actual values towards the end. Un-
like the results for FC1, the results for FC2 have extremely
high uncertainties in free simulation, resulting from a much
more dynamic input set. In order to improve its uncertainty
for predictions, more training data would be required. The
free simulation performance could also be improved by em-
ploying structured prediction methods like DAGGER (Ross
et al., 2011; Al-Shedivat et al., 2017).

5. CONCLUSION

This study explores the use of GPR and LSTM for prognos-
tics and assesses them in terms of their suitability for online
RUL estimation by applying them in autoregression and free
simulation contexts. While both methods display highly ac-
curate results for autoregression, GPR fails to appropriately
capture the long term tendencies of the data. On the other
hand, LSTM is a lot more effective at learning long term
trends but does not provide an uncertainty - a characteris-
tic beneficial in an online prognostics setting, especially if
corrective action is to be applied. In order to combine the
strengths of both methods, the use of GP-LSTM is explored
(Al-Shedivat et al., 2017).

GP-LSTM is able to determine long term tendencies and pro-
vides an uncertainty measure. It provides autoregression and
free simulation results on par with LSTM when applied to the
FC1 data set - their performances are very similar for practi-
cal purposes. It also reduces the influence of disturbances
and favours the long term trends. This study further proposes
the use of GP-LSTM in both autoregression and free simula-
tion contexts simultaneously. Here, autoregression helps up-
date the estimates constantly and is used for short term trends
while free simulation provides a window into the long term
trends. The efficacy of the method is further demonstrated by
applying it on a dynamic data set.

To properly establish the efficacy of the model in an online
context, the timing associated with the model training and
predictions will need to be considered in more detail. Moving
forward, structured prediction methods like DAGGER can be
incorporated to make the free simulation results more sensi-
tive to short term trends. Since PEMFC performance can also
fluctuate with ambient conditions and operating parameters,
the methodology can be expanded to account for these fac-
tors. The method can also be explored in even more dynamic
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Figure 7. Applying GP-LSTM in phases with autoregression starting at 350 hours and free simulation starting at 500 hours

Figure 8. Applying GP-LSTM in phases with autoregression starting at 500 hours and free simulation starting at 670 hours
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(a) GP-LSTM Autoregression (b) GP-LSTM Free Simulation

Figure 9. GP-LSTM for the dynamic data set without using current as an input variable

(a) GP-LSTM Autoregression (b) GP-LSTM Free Simulation

Figure 10. GP-LSTM for the dynamic data set with current as an additional input variable
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settings, such as automotive profile proposed by (Gonzalez et
al., 2019).
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