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ABSTRACT 

Automatic Diagnosis is a novel algorithm developed by Brüel 
& Kjær Vibro to monitor various failure modes in wind 
turbines continuously. The algorithm aims at reducing false 
positives and false negatives, and most importantly, at 
eliminating the burden of diagnosis by human. Vibration 
analysis in the order domain using angular resampling helps 
to deal with speed variation in the vibration signal. The 
algorithm subsequently identifies prominent peaks in the 
order powerspectrum, labels these peaks, and then monitor 
the trends of any families of sidebands and harmonics. In this 
paper, we compare the results of Automatic Diagnosis with 
physical inspections using data from wind turbines monitored 
by Brüel & Kjær Vibro. Results show that Automatic 
Diagnosis can accurately detect the faults, as confirmed by 
physical inspections on the turbines. Diagnosing machine 
condition using high-performance computational 
infrastructure, instead of using a human, could hugely cut the 
cost of simultaneously monitoring many wind turbines. 

1. INTRODUCTION 

A condition monitoring system (CMS) is vital for effective 
maintenance and ensuring maximum wind turbines uptime. It 
is even more crucial for offshore wind turbines. Andersson, 
Gutt, and Hastings (2007) presented CMS implementation in 
the wind turbine industry. Vibration-based CMS is the most 
established system for monitoring the drivetrain of wind 
turbines, as shown by Tavner (2012) and Crabtree (2011). 
Marhadi & Hilmisson (2013) presented a case study of using 
vibration data to monitor fault progression in the generator 
bearing of a wind turbine in real industrial applications. 

Marhadi & Hilmisson (2013) described that primary 
components monitored in wind turbine CMS are generator, 
gearbox, main bearing, and tower. Accelerometers are 
installed on these components, and there could be up to ten 

accelerometers installed in a wind turbine. The data 
acquisition unit in a wind turbine collects vibration data 
continuously from each sensor. Different vibration 
measurements, also known as descriptors, are used to monitor 
any fault development in a wind turbine. To monitor 
generator bearings, for example, several descriptors are used 
at different frequency ranges. Different failure modes can be 
monitored from various sensors using a different set of 
descriptors. 

According to Marhadi & Hilmisson (2013), all descriptors are 
trended to monitor specific failure modes. Alarm or warning 
of individual failure mode is triggered when the trend from 
specific descriptors crosses over predefined thresholds. 
Diagnostic engineers, subsequently, performs vibration 
analysis to confirm and describe the alarms. 

Szabó (2017) proposed a maximum correlated kurtosis 
deconvolution method to identify bearing inner and outer 
race fault. Works by Ali, Fnaiech, Saidi, Chebel-Morello, and 
Fnaiech (2015) and Ali, Saidi, Harrath, Bechhoefer, and 
Benbouzid (2018) proposed machine learning approach to 
assess bearing degradation using selected broadband 
descriptors. 

In this paper, we present Automatic Diagnosis that detects 
turbine faults automatically. The algorithm employs a naive 
approach to finding fault frequencies in powerspectrum. As 
opposed to previous works, where the anomaly is detected 
using a machine learning approach, Automatic Diagnosis 
uses well-known physics in vibration analysis. It does not 
require calculating broadband descriptors, such as in the 
previous work, because broadband descriptors are prone to 
generate false alarms. Nevertheless, with high-performance 
computing power, and an efficient algorithm, faults can be 
identified automatically, fast, and accurately. 

2. AUTOMATIC DIAGNOSIS 

There are four essential strategies in Automatic Diagnosis 
algorithm: angular resampling, identification of peaks, 
priority labeling, and frequency tracking. Angular resampling 
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is essential in performing accurate machine diagnosis as it 
overcomes speed variation issues and eliminates smearing in 
powerspectrum, thus making fault peaks clear and easy to 
track. Spectral peaks are identified based on the following 
criteria: 

1. Signals larger than 3 dB relative to the spectrum carpet 
level are considered as peaks. As pointed out by Johnson 
(2006), 3 dB is the industry standard used as the boundary 
between high and low signal-to-noise ratios. 

2. The carpet level is determined by performing median 
filtering. The window size of the median filtering depends 
on the machine characteristics, such as the turbine type. 

3. Peaks are always local maxima. 

4. For pruning purposes, chosen peaks should be within the 
first and third quantiles plus 1.5 interquartile range of all 
identified peaks. 

The chosen peaks are then prioritized and labeled according 
to the failure modes to be detected. For instance, on detecting 
a bearing fault, the running speed harmonics of the shaft are 
removed, then the bearing fault peaks such as inner race ball 
pass frequency (BPFI) and outer race ball pass frequency 
(BPFO) are identified. However, line frequency should 
always be the first to be removed as it is mainly related to 
electrical interference instead of mechanical faults. Some 
fault frequencies having the same priority, such as BPFO and 
sidebands of tooth meshing frequency (TMF), cannot be 
removed as they can coexist at the same frequency and 
accumulate in amplitude. Finally, peaks related to a known 
failure mode are then summed and trended over time as a 
descriptor. In other words, one failure mode is described by 
one descriptor. 

A unique feature in Automatic Diagnosis is its ability to track 
unknown bearing frequencies. When monitoring thousands 
of wind turbines from different turbine owners, the types of 
bearing installed in the turbine are often unknown. Therefore, 
frequency tracking is beneficial in the following three 
diagnosis cases: 

1. The diagnosed shaft has only one bearing, and we have a 
list of possible bearing types. In that case, the bearing 
frequency consistently converges to a number when a 
bearing fault develops. However, this case is relatively 
infrequent as sensors usually crosstalk among each other. 

2. The diagnosed shaft has many bearings, and we have a 
list of possible bearing types for each bearing position. In 
that case, the bearing fault peaks are grouped by bearing 
position, and the best bearing type is presented for each 
position. Bearing types will still be unknown until a fault 
develops. Nevertheless, when several bearings are failing, 
Automatic Diagnosis can identify which bearing is more 
severe than the others. The ability of the algorithm to 
identify the fault severity of multiple bearings solves the 
crosstalk issue. 

3. No list of possible bearing types. In that case, the correct 
bearing frequencies can be predicted, given an adequately 
more extensive frequency search space. 

3. EXAMPLES IN WIND TURBINE APPLICATIONS 

Over the years, Brüel & Kjær Vibro has managed to monitor 
more than 8000 turbines of various types from different 
manufacturers. We collect the descriptor scalars every half 
hour and the time waveform data from various sensors at 
different turbine components every two days. The time 
waveform is typically sampled at 25.6 kHz with a length of 
10.24 seconds due to the limitations of the data acquisition 
unit. We use these time waveform data to perform Automatic 
Diagnosis over specific periods. We analyze wind turbines 
with gearbox configurations of one planetary and two helical 
stages (1P2H) and two planetary and one helical stages 
(2P1H). The terms frequency and order are used 
interchangeably. Faults are indicated by increases in the 
trends of Automatic Diagnosis descriptors, and criteria for 
automatic detection are determined beforehand. All faults 
presented in this work were confirmed with actual 
inspections of the turbines. 

Automatic Descriptor reports early-stage fault when a 
descriptor that represents the fault crosses an alert threshold. 
The descriptor may then progress towards a breakdown 
threshold, which means that the fault is developing towards a 
later stage. We use statistical inference and machine learning 
on a turbine population to update both thresholds. The more 
turbines we feed into the machine learning algorithm, the 
more accurate Automatic Diagnosis predicts early- and late-
stage faults. More than 1,000 turbines were considered in this 
study to determine alert and breakdown thresholds for fault 
detection. 

3.1. Generator-Gearbox Coupling Fault 

Figure 1 represents the order spectrum of the vibration signal 
from the generator drive end of a 2P1H, 3MW turbine, and 
there is an early-stage sign of misalignment between 
generator and gearbox. 

Figure 2 shows the order spectrum of the same sensor when 
the misalignment signature became severe. Figure 3 
represents the trend of that misalignment signature calculated 
by Automatic Diagnosis over one and a half months. Tracing 
the fault development over time enables vibration analysts to 
observe the damage progression from when early signature 
occurs and perform prognosis. 

Misalignment was first detected on February 6th, 2015, 
indicated by the yellow arrow. When it became severe on 
February 17th, 2015, as indicated by the red arrow, the 
coupling was realigned. 
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Figure 1. The order spectrum of a turbine with generator-

gearbox misalignment (February 6th, 2015). 
 

 
Figure 2. The order spectrum of a turbine with generator-

gearbox misalignment (February 17th, 2015). 
 

 
Figure 3. The trend of the twice of the generator running 

speed over 1.5 months. The yellow and red arrows are the 
misalignment peak amplitudes of the order spectrum shown 

in Figure 1 and Figure 2, respectively. 
 

3.2. High-Speed Shaft Looseness 

Figure 4 shows the order spectrum of vibration signals from 
high-speed bearing at the generator side of a 1P2H, 2MW 
turbine when the looseness signature occurs, as shown by the 
high amplitudes of the high-speed shaft's running speed 
harmonics. Figure 5 represents the trend of looseness 
signature over half a year as calculated by Automatic 
Diagnosis. First, it was detected on December 22nd, 2016, as 
indicated by the yellow arrow, and it became severe by 
January 25th, 2017, as indicated by the red arrow. 

 

 
Figure 4. The order spectrum of a turbine with severe high-

speed shaft looseness (January 25th, 2017). 
 

 
Figure 5. The trend of the Euclidean norm of high-speed 

shaft looseness peaks over half a year. The yellow and red 
arrows are the looseness values of the order spectrum shown 

in Figure 4 and Figure 5, respectively. 

3.3. High-speed stage pinion fault 

Figure 6 shows the order spectrum of vibration signals from 
the intermediate-speed shaft front bearing of a 2P1H, 3MW 
turbine. There are sidebands with the spacing of generator 
speed around the first and the second harmonics of the TMF. 
Figure 7 shows the order spectrum when the pinion tooth is 
predicted as broken by Automatic Diagnosis. Here, the 
sidebands have much higher amplitudes. 

 

 
Figure 6. The order spectrum of a turbine with early high-

speed stage pinion fault (April 15th, 2013). 
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As pointed out in Figure 8, the early-stage fault was detected 
as early as April 15th, 2013, as it rapidly increases towards the 
breakdown threshold. The trend continued to increase and 
remained high for many months. The existence of the pinion 
fault sidebands is on-and-off and erratic due to varying 
operating conditions. Automatic Diagnosis predicted a 
broken tooth by December 9th, 2014. The actual inspection 
was performed on February 19th, 2015, revealing a broken 
tooth of the high-speed stage pinion. Replacement of the 
gearbox was performed by the end of August 2016. 

 

 
Figure 7. The order spectrum of a turbine with a very severe 
high-speed stage pinion fault. Most probably, the tooth has 

been broken at this point (December 9th, 2014). 
 
 

 
Figure 8. The trend of the Euclidean norm of high-speed 
shaft pinion fault over 4.5 years. The yellow arrow is the 
point where Automatic Diagnosis alerted the early pinion 

fault. The red arrow is when the broken tooth was predicted. 
The green arrow is when the broken tooth was found. 

3.4. High-speed stage wheel fault 

To detect wheel fault at the high-speed stage of a gearbox, 
Automatic Diagnosis monitors the Euclidean norm of all 
sideband amplitudes around the 3rd stage tooth mesh 
frequency (TMF) with the spacing of the running speed of the 
intermediate-speed shaft. 

Figure 9 shows the wheel fault sidebands around the TMF 
harmonics of a 2P1H, 3MW turbine. This case shows that 
Automatic Diagnosis could detect potential faults as early as 
three years before the damage is visible. Figure 10 shows the 
trend of the descriptor for a turbine having a high-speed stage 

wheel fault. This fault can be detected as early as January 
2015, where the descriptor crossed the alert threshold 
predicted by Automatic Diagnosis. The overall trend 
continued to increase until the inspection was performed in 
May 2018.  During the inspection, the gear wheel was found 
to be corroded and damaged. Based on the finding, the wheel 
was recommended to be replaced. However, the turbine 
continues operating under this condition. 

 

 
Figure 9. The order spectrum of a turbine with severe high-

speed shaft gear wheel fault (September 26th, 2019). Red 
bars are the wheel fault sidebands around the TMF 

harmonics. 
 
 

 
Figure 10. The trend of the Euclidean norm of high-speed 

shaft wheel fault sidebands over five years. 

3.5. Intermediate-speed stage pinion fault 

Figure 11 shows the order spectrum of vibration signals from 
the intermediate-speed shaft of a 1P2H, 2MW turbine. Two 
harmonics families appeared, one group is on the lower 
frequency, namely intermediate-speed stage TMF, and the 
other group is on the higher frequency, namely high-speed 
stage TMF. Sidebands around high-speed stage TMF look 
higher than the intermediate-speed one, which a human might 
identify it as a high-speed pinion fault. However, considering 
that the magnitude of intermediate-speed stage vibration is 
lower than the high-speed stage one, the lower-speed stage 
TMF and the sidebands of its harmonics should already be 
considered severe. Therefore, on July 8th, 2015, sidebands 
around high-speed stage TMF are considered an early stage 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

5 

fault, while sidebands around intermediate-speed stage TMF 
harmonics are considered a more severe problem. 

 

 
Figure 11. The order spectrum of a turbine with early 

intermediate-speed shaft pinion fault (July 8th, 2015). The 
first three TMF peaks are the intermediate-speed stage ones, 
and the last four TMF peaks are the high-speed stage ones. 

 

Figure 12 showed the order spectrum of the same sensor 
when Automatic Diagnosis predicts a broken intermediate-
speed stage pinion tooth. Here, the sidebands of the 
intermediate-speed stage TMF are higher than the ones in 
Figure 11. The high-speed stage TMF sidebands are still too 
early to be considered faulty because Automatic Diagnosis 
has learned much worse high-speed stage gear fault than this. 

As pointed in Figure 13, the early-stage fault was detected as 
early as July 8th, 2015, and the pinion tooth was predicted to 
break by September 17th, 2015. The actual inspection was 
performed on August 28th, 2015. According to the inspection 
report, it was also recommended to replace the pinion within 
14 days, as identified similarly by Automatic Diagnosis. 
Replacement of the broken component was performed on 
October 2015. 

 

 
Figure 12. The order spectrum of a turbine with severe 
intermediate-speed shaft pinion fault (September 17th, 

2015). The first five TMF peaks are the intermediate-speed 
stage ones, and the last four TMF peaks are the high-speed 

stage ones. 
 

 
Figure 13. The trend of the Euclidean norm of intermediate-
speed shaft pinion fault over 4.5 years. The yellow arrow is 

the point where Automatic Diagnosis alerted the early 
pinion fault. The red arrow is when Automatic Diagnosis 

predicted the broken tooth. 

3.6. First Stage Planetary Gear Fault 

A planetary stage in a wind turbine gearbox consists of a sun 
pinion, a ring gear, a planet carrier, and three or four planet 
gears. The planet gears revolve around the sun pinion while 
rotating on planet shafts at the same time. Once the planet 
gear finishes one revolution, the number of meshing teeth of 
the sun pinion becomes equal to the ring gear’s meshing 
teeth. Consequently, the ring gear and sun pinion fault 
frequencies equal to the number of planet gears times the 
meshing frequency over the number of gear teeth, while the 
planet gear fault frequency equals to the number of planets 
that are failing times meshing frequency over the number of 
planet gear teeth. Sidebands around planetary tooth mesh 
frequency with the spacing of planetary defect frequencies 
indicate the presence of planetary gear fault. Considering the 
planetary gears move at the same speed with the carrier shaft, 
sidebands with the spacing of the carrier shaft speed around 
planetary defect sidebands are used as a planetary gear fault 
indicator. 

Automatic Diagnosis algorithm tracks these sidebands of 
sidebands in the frequency order domain, as shown in Figure 
14. The sun output shaft is used to resample this fault using a 
vibration data from a sensor near the planetary gear. 
Consequently, the 1P2H 2MW turbine in Figure 15 and 
Figure 16 was diagnosed as having a planetary defect. To 
identify whether the planetary gear fault is a sun pinion fault, 
a planet gear fault, or ring gear fault, Automatic Diagnosis 
requires the powerspectrum to be in very high resolution as 
the defect frequencies of the three gears are very similar. 
After replacing the planetary gear train, the sidebands of the 
sidebands drastically decreased back to normal. 
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Figure 14. The trend of the Euclidean norm of planetary 
gear fault sidebands of tooth mesh frequency over a year 

 

 
Figure 15. The order spectrum of a turbine with early-stage 
planetary gear fault (June 27th, 2011). The first stage TMF 
harmonics are too low to be considered as peaks, but the 

sidebands start to appear at low amplitudes. 

3.7. Generator Bearing Inner and Outer Race Fault 

When the bearing fault frequencies, e.g., BPFI and BPFO, are 
unknown, the most probable frequencies must first be 
determined. It requires having an adequately broad frequency 
band to search. From this frequency search range, the fault 
frequency of the most apparent bearing fault in the high-
frequency envelope is trended over time. Automatic 
Diagnosis tracks fault frequencies that consistently appear in 
this trend and use them to quantify bearing fault signatures at 
low frequency. The bearing fault is quantified as a descriptor. 
The descriptor is calculated as the Euclidean norm of the 
amplitudes of all possible harmonics of the predicted bearing 
frequency and the amplitudes of their sidebands, if any. 

 

 
Figure 16. The order spectrum of a turbine with severe 

planetary gear fault (June 20th, 2012). The TMF harmonics 
might not be very high, but their sidebands are high. 

 

Figure 17 displays the trends of bearing outer and inner race 
faults in a 2P1H, 3MW turbine. In general, the outer race fault 
indicated as the blue line is consistently high before July 
2017, which is confirmed by a consistent trend of BPFO, 
indicated as an orange line, since January 1st, 2015. 
Meanwhile, the bearing inner race defect, indicated as a green 
line, starts to develop at the later stage since May 17th, 2016, 
confirmed by a consistent trend of BPFI, indicated as the red 
line, from May 17th, 2016, to July 2017. The shift of BPFI 
and BPFO values in August 2017 can be inferred as a change 
of generator bearing type. The predicted BPFO and BPFI 
fluctuate after August 2017, but the consistent frequency can 
be seen. This event indicates no bearing fault or mild bearing 
fault. After bearing replacement, the bearing fault trend is still 
relatively high, which could indicate a real bearing defect. 
Around spring 2018, the trend of the inner race bearing fault 
slightly increases, yet there is no indication of bearing 
change. This incident could be due to a misalignment issue, 
indicated as the purple line, since January 2018. Once the 
generator was realigned back by early summer 2018, the 
trend of the inner race defect returned to its previous level.  
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4. PERFORMANCE EVALUATION OF AUTOMATIC DIAGNOSIS 

The performance of Automatic Diagnosis is evaluated by 
statistical measures called sensitivity, which quantifies the 
avoidance of false negatives, and specificity, which does the 
same for false positives. Feedbacks from turbine inspection 
is considered the actual machine condition. If Automatic 
Diagnosis detected a fault and inspection found nothing, then 
the number of false positives is incremented. If turbine 
inspection resulted in fault detection that Automatic 
Diagnosis does not identify that, then the number of false 
negatives is incremented. The number of true negatives is 
retrieved from routine turbine inspection, reporting that the 
turbine condition is excellent, and it concurs with Automatic 
Diagnosis reporting no fault. If some components are not 
inspected, then the uninspected component will not be 
included in the benchmark. 

There are 169 fault diagnoses from 24 turbines for this 
benchmark, 42 of them are confirmed faults based on 
physical inspection, the rest are either confirmed no faults or 
considered insignificant faults. Among all 169 diagnoses, 32 
are planetary gear faults, 81 are bearing faults, 52 helical gear 
faults, two generator shaft unbalance faults, and two 
generator-gearbox coupling misalignment faults. The 81 
bearing faults consists of 26 high-speed bearing faults, 11 
intermediate-speed bearing faults, nine low-speed bearing 
faults, 19 planet bearing faults, and ten carrier bearing faults. 
The 52 helical gear faults consist of 14 high-speed stage 
pinion faults, 11 high-speed stage wheel faults, 16 

intermediate-speed stage pinion faults, and 11 low-speed 
shaft wheel faults. 

The sensitivity, specificity, and accuracy of Automatic 
Diagnosis are 97.62%, 99.21%, and 98.82%, respectively, as 
calculated from the confusion matrix in Table 1. One false-
negative case was because vibration data did not arrive when 
the fault occurred. One false-positive case happened because 
the signal sampling duration is not long enough for the 
requirement of low-speed shaft diagnosis, leading to an 
inaccurate diagnosis. 

Table 1. Confusion matrix of Automatic Diagnosis 

 
Inspection Report 

Faulty Not Faulty 
Automatic 
Diagnosis 
Prediction 

Faulty 41 1 

Not Faulty 1 126 
 

5. CONCLUSION 

Automatic Diagnosis algorithm shows that faults can be 
detected automatically. These faults were confirmed by 
actual inspection. It shows that the sensitivity (97.62%) and 
specificity (99.21%) of Automatic Diagnosis are high, 
meaning that the number of false alarms is quite low. 
Consequently, there is a significant potential to replace 
human diagnosis with Automatic Diagnosis, which 
dramatically reduces the cost of condition monitoring many 
turbines. 

Figure 17. The trend of the outer and inner race defects on the generator bearing of a wind turbine over 4.5 years. 
Misalignment, outer race fault, and inner race fault are the Euclidean norms of the fault signature peaks in m/s2. BPFO and 

BPFI are in the order of generator running speed. 
 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

8 

REFERENCES 

Andersson, C., Gutt, S., & Hastings, M. (2007). Cost 
effective monitoring solution using external surveillance 
centre. In The second world congress on engineering 
asset management and the fourth international 
conference on condition monitoring. Harrogate, UK.  

Tavner, P., (2012). Offshore Wind Turbines: Reliability. 
Availability and Maintenance, 441. 

Crabtree, C. (2011). Condition monitoring techniques for 
wind turbines (Doctoral dissertation, Durham 
University). 

Marhadi, K., & Hilmisson, R. (2013). Simple and effective 
technique for early detection of rolling element bearing 
fault: A case study in wind turbine application. In 
International congress of condition monitoring and 
diagnostic engineering management (pp. 94-97). 

Ali, J. B., Fnaiech, N., Saidi, L., Chebel-Morello, B., & 
Fnaiech, F. (2015). Application of empirical mode 
decomposition and artificial neural network for 
automatic bearing fault diagnosis based on vibration 
signals. Applied Acoustics, 89, 16-27. 

Szabó, L. (2017). Using maximum correlated kurtosis 
deconvolution method in the bearing fault detection of 
wind turbine generators. In 2017 14th International 
Conference on Engineering of Modern Electric Systems 
(EMES) (pp. 184-187). IEEE. 

Ali, J. B., Saidi, L., Harrath, S., Bechhoefer, E., & 
Benbouzid, M. (2018). Online automatic diagnosis of 
wind turbine bearings progressive degradations under 

real experimental conditions based on unsupervised 
machine learning. Applied Acoustics, 132, 167-181. 

Johnson, D. H. (2006). Signal-to-noise ratio. Scholarpedia, 
1(12), 2088. 

 

BIOGRAPHIES  

Dhany Saputra is a data scientist in the Wind Business Unit 
of Brüel and Kjær Vibro, where he joined in 2018. He 
received his Ph.D. in Bioinformatics at the Technical 
University of Denmark in 2015. He has M.Sc. in Computer 
Science from Universiti Teknologi PETRONAS, Tronoh, 
Malaysia in 2008, and a B.Sc. in Information System from 
Sepuluh Nopember Institute of Technology Surabaya, 
Indonesia in 2005. His research interests are in machine 
learning and algorithm optimization. 

Kun S. Marhadi is a research and development engineer in 
the Wind Business Unit of Brüel and Kjær Vibro, where he 
joined in 2012. Previously, he was a postdoctoral fellow in 
the Department of Mathematics at the Technical University 
of Denmark (DTU). He received his Ph.D. in computational 
science in 2010 from San Diego State University and 
Claremont Graduate University. He has M.S. and B.S. in 
aerospace engineering from Texas A&M University. His 
expertise is in structural vibration and analyses, probabilistic 
methods, and design optimization. 

 

 

 


