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ABSTRACT 

The Principal Component Analysis (PCA) is the simplest 

eigenvector-based multivariate data analysis tool and dates 

back to 1901 when Karl Pearson proposed it as a way for 

finding the best fitting d-1 hyperplane of a system of points 

in a d-dimensional (Euclidean) space. 

Over the time, the PCA evolved in different fields with 

several different names and with different scopes, but, in its 

essence, it is always an orthogonal transformation to convert 

a set of observations of possibly correlated variables into a 

set of values of linearly uncorrelated variables called 

principal components. 

Generalizing Pearson’s purpose, the knowledge derived by 

such an analysis is mostly used to find a subspace which 

effectively and efficiently summarizes the original system of 

points by losing a minimum amount of information. 

In the field of Diagnostics, the fundamental task of detecting 

damage is basically a binary classification problem which is 

in many cases tackled via Novelty Detection: an observation 

is classified as novel if it differs significantly from other 

observations. Novelty can, in principle, be assessed directly 

in the original space, but the effectiveness of the estimated 

novelty can be improved by taking advantage of the PCA. 

In this work, the traditional PCA will be compared to a 

robust modification that is commonly used in the field of 

diagnostics to face the issue of confounding influences 

which could affect the novelty-damage correspondence. 

Comparisons will be made to shed light on the main 

misleading aspects of PCA, and finally, define a unique, 

theoretically justified procedure for Diagnostics via Novelty 

Detection. 

 

1. INTRODUCTION 

Novelty Detection (ND) is a well-known mechanism in data 

science. It is meant for the identification, from measured 

data, of patterns which are different from those 

characterizing the normal condition. Upon the removal of all 

the confounding influences (e.g., variations in the 

operational and environmental variables), ND is widely 

used in both Structural Health Monitoring and Condition 

Monitoring for diagnostics of both buildings and industrial 

machines [Worden, Manson, Fieller (2000), Yan, Kerschen, 

De Boe, Golinval (2005), Bellino, Fasana, Garibaldi, 

Marchesiello, (2010), Deraemaeker & Worden (2018)., 

Daga, Fasana, Marchesiello, Garibaldi (2017 & 2019), 

Castellani, Garibaldi, Daga, Astolfi, Natili (2020)].  In 

particular, this work will deal with Vibration Monitoring, 

which exploits mechanical vibration for conveying 

diagnostic information out of the object of the analysis (e.g., 

a machine or a structure), and will be limited to Damage 

Detection, the first fundamental piece of diagnostics 

devoted to recognize anomalous conditions related to the 

presence of damage. 

Damage Detection will be regarded as a Pattern Recognition 

problem, and we will deal with the important tasks of data 

pre-processing, features extraction and pattern processing 

via Principal Component Analysis and related algorithms 

for condition assessment and alarm triggering [Farrar & 

Doebling (1999)]. Statistical, Data-Driven, model will be 

used for “learning” information about the state of health of 

the machine. This is not a novel problem and is nowadays a 

common subject of Statistical and Machine Learning 

courses. 

Science as revolving around measurements susceptible to 

comparison is a point of view shared by many scientists and 

philosophers of all times and places. And comparability of 

measurements requires some way of evaluating the 
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uncertainty in their values, leading to the nowadays called 

statistical reasoning [Stigler (1986)]. 

Historically, the turning point of statistical reasoning can be 

considered the introduction of Least Squares Regression. 

Even if the mathematical framework was already set by 

Laplace, Legendre and Gauss at the beginning of the 19th 

century [Stigler (1986), Nievergelt (2000)] and successfully 

applied in astronomy and geodesy, it is only after Galton 

and his pupil Pearson in the late 1800s that the regression 

takes its name and start to be used for applied statistics in 

biology and genetics (actually, with meaning of “regression 

toward the mean”, for justifying that “extreme” parents 

originate “less extreme” sons) [Stanton (2001)]. 

Least Squares literally means “minimization of the sum of 

squared deviations” and is at the present time a standard 

approach to approximate the solution of overdetermined 

systems meant for data fitting. Which means, to extract 

information from noisy measured data. 

Nevertheless, this method shows a limit: it regresses an 

uncertain dependent variable over an independent variable 

assumed exact (i.e., in 2D, the deviations or residuals are 

computed as “vertical distances” by subtracting the 

measured dependent variable from its fitting curve for given 

values of the independent variable). 

To overcome this issue, errors-in-variables models were 

introduced, leading to Orthogonal Regression, Deming 

regression and, more in general, Total Least Squares method 

[Van Huffel & Vandewalle (1991)]. As for Least Squares 

Regression, the mathematical framework was introduced 

way before its spread in statistics. The original model for 

Orthogonal Regression was proposed by Adcock in 1878 

and was based on the idea of computing the residuals as the 

orthogonal distance measured points from the fitting curve. 

This was later generalized by Kummell in 1879 for a 

generic non-orthogonal distance. However, their ideas 

remained largely unnoticed for more than 50 years, until 

they were revived by Koopmans in 1937 and later 

propagated even more by Deming in 1943 [Cornbleet & 

Gochman (1979)]. 

The last historical piece of information regards Kendall in 

1957, Hotelling in 1957 and Jeffers in 1967 who re-

proposed the idea of using Principal Components in 

regression (i.e., Principal Component Regression) [Jolliffe 

(1982)]. But the Principal Components Analysis (PCA) was 

developed by Pearson (1901) with the precise scope of 

finding the line of best fit for a bidimensional point cloud, to 

give a mathematical form to the ideas of Galton (1886) who 

was solving such a problem by intuition, hand-drawing such 

fitting line on plots such as the one reported in Figure 1. 

In practice, PCA is a search for a linear transform to bring 

data into a new coordinate system of uncorrelated variables: 

a "best fitting" line is generated to minimize the average 

squared distance from the points to the line; the next best-

fitting line can be similarly found from directions 

perpendicular to the first. By repeating this process, an 

orthogonal basis can be found, whose basis vectors can be 

referred to as Principal Components (PC). As a 

consequence, the PCs are ordered according to their 

explained variability, so that the first elements are often 

sufficient to picture the main information contained in the 

data, leading to a good reduced dimensionality 

approximation of the whole dataset (exactly as a regression 

line can be considered a good approximation for a 2D point-

cloud of 2 variables showing a high linear correlation i.e., a 

Pearson correlation coefficient far from 0). 

 

Figure 1. Galton (1886) handmade Orthogonal Regression 

 

From a mathematical point of view, the PCA is the simplest 

of the true eigenvector-based multivariate analyses. In fact, 

the PCA linear transform, which corresponds to a rotation of 

the original coordinate system, can be found by eigen-

decomposition of the covariance matrix of a dataset [Jolliffe 

(2002)] and corresponds to the matrix containing in its 

columns the eigenvectors of the covariance matrix ordered 

so that the corresponding eigenvalues are sorted in 

descending order. PCA is then an unsupervised learning 

algorithm relying entirely on the data themselves (i.e., data-

driven). 

Usually the original data are normalized before performing 

the PCA. The normalization consists of mean centering each 

variable. Some fields use in addition a normalization of each 

variable’s variance to 1 (i.e., a standardization of each 

variable to its z-scores). Pre-whitening (i.e., the operation of 

removing the correlation from data which then shows an 

Identity covariance matrix) is obviously not an option, but 

PCA can be used to find a whitening matrix for a dataset. 

Starting from these considerations and adding the 

hypothesis of Normality, PCA can be used to give insight 

into the Mahalanobis Distance (MD), a multi-dimensional 

generalization of the 1-D distance from the mean, 
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adimensionalized and given in terms of number of standard 

deviations away from the mean. The MD, in fact, can be 

proved to “contain” PCA, so that an algorithm for Novelty 

Detection naturally arises from the unitless, scale-invariant 

and correlation-based results of MD. 

The relationship of PCA and MD is well recognized by 

statisticians, but although a few authors have commented on 

it in the condition monitoring literature (e.g., Deraemaeker 

& Worden 2018), this has been rarely exploited. 

This paper aims then to take advantage of such a 

relationship to derive an alternative formulation of the MD 

(similarly to that proposed by Brereton & Lloyd 2016 in the 

chemometrics field for improving Linear Discriminant 

Analysis) which opens to the evaluation of a novel Novelty 

Index which is possibly more robust to confounding 

influences. The methodology is described in next section 

and will be compared to the PCA-based algorithm of Yan et 

al. (2005), which can be considered as a benchmark for the 

condition monitoring community. At first, the algorithms 

will be tested on a synthetic dataset obtained from a 31-

Degrees of Freedom (DOF) Bridge Model for Structural 

Health Monitoring similar to the model proposed in Yan et 

al. (2005). A simple assessment on the performance of both 

natural frequencies and time-signal statistics as features is 

also proposed to justify the use of common time-signal 

statistics for the diagnosis of high speed bearing from 

acquisitions taken on the test rig described in Daga et al. 

(2019). 

2. METHODOLOGY 

In this section, the main tools useful to develop the 

proposed methodology are explained in details, based on 

Jolliffe (2002). 

2.1. Principal Component Analysis 

Let us organize a 𝑑-dimensional dataset of 𝑛  observations 

into a matrix 𝑋0 ∈ 𝑅𝑑×𝑛. Let us preprocess this dataset by 

centering it (i.e., by removing the mean value of each 

variable, stored in the rows of the matrix) so as to produce 

the data-matrix 𝑋. 

An unbiased estimator for the covariance of the dataset is: 

 𝑆 = 1/(𝑛 − 1) 𝑋𝑋′ (1) 

PCA corresponds to the solution of the eigenproblem  

 𝑆 𝑉 = 𝑉𝛬 (2) 

where 𝑉 is the orthogonal matrix whose columns are the 𝑑 

eigenvectors 𝑣𝑗  while 𝛬  is the diagonal matrix of the 𝑑 

eigenvalues 𝜆𝑗  of the matrix S, sorted to have descending 

magnitude. 

The matrix 𝑉  can be used as a linear transform to 

decorrelate the dataset 𝑋 , that is, to rotate the coordinate 

system toward that identified by the eigenvectors of matrix 

𝑆: 

 𝑍 = 𝑉′𝑋 (3) 

If the eigenvectors in 𝑉 are normalized to have unit length 

(𝑣𝑗
′𝑣𝑗 = 1), the transform is a pure rotation, and it can be 

proved that 𝜎𝑗
2 = 𝑣𝑎𝑟(𝑧𝑗) = 𝜆𝑗 . Namely, the diagonal 𝛬 is 

the covariance matrix of 𝑍. This corresponds to traditional 

PCA. 

Adopting different normalizations is anyway possible. For 

example, 𝑉  becomes the whitening matrix 𝑊  if its 

eigenvectors are normalized so that 𝑣𝑗
′ 𝑣𝑗 = 𝜆𝑗. In this case 

𝑣𝑎𝑟(𝑧𝑗) = 1  so that the covariance matrix of 𝑍𝑊  is the 

identity matrix 𝐼. In this case, PCA is said to “whiten” the 

data, as it produces uncorrelated standard scores: 

 
𝑍𝑊 = 𝑊′𝑋 = Λ−1/2𝑉′𝑋
= Λ−1/2𝑍 

(4) 

2.2. Principal Component Regression as PCA 

dimensionality reduction 

Focusing on PCA Orthogonal Regression (PCA-OR), the 

direction given by the first eigenvalue is considered to 

correspond to the regression line, so that the regressed 

points 𝑋1 ∈ 𝑅𝑑×𝑛 standing on this line can be simply found 

by projecting back the first PC scores alone. On the 

contrary, the remaining PC scores can be seen as the 

orthogonal residuals of the regression. 

Considering that the scores for the j − th  principal 

components can be found as:  

 

𝑧𝑗 = 𝑣𝑗
′𝑋

= 𝑣𝑗1𝑥1 + 𝑣𝑗2𝑥2 + ⋯ + 𝑣𝑗𝑑𝑥𝑑

= ∑ 𝑣𝑗𝑘𝑥𝑘

𝑑

𝑘=1

 

(5) 

The regressed points are simply: 

 𝑋1 = 𝑣1𝑧1 = 𝑣1𝑣1
′ 𝑋 (6) 

While the residuals corresponding to the scores of the 𝐿 =
𝑑 − 1  components other than the first can be found by 

removing the first eigenvector from matrix 𝑉 to form a 𝑉𝐿 

such that: 

 𝑍𝐿 = 𝑉𝐿
′𝑋 (7) 

The PCA-OR is visualized in Figure 2. 
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Figure 2. Principal Component Orthogonal Regression  

2.3. PCA geometric interpretation 

The geometric interpretation of PCA is related to the fact 

that an ellipsoid centred in the origin can be associated to 

any positive definite matrix such as the covariance 𝑆 . Its 

equation can be proved to be: 

 𝑋′𝑆−1𝑋 = 1 (8) 

The eigenvectors of 𝑆−1  define then the principal axes of 

the ellipsoid while the eigenvalues of 𝑆−1 are the reciprocals 

of the squares of the semi-axes length. This can be verified 

remembering that the eigenvectors of 𝑆−1 are the same as 

the eigenvectors of 𝑆  and the eigenvalues of 𝑆−1  are the 

reciprocal of those of 𝑆 . Indeed, using the inverse 

transformation 𝑋 = 𝑉𝑍, one can get: 

 

𝑋′𝑆−1𝑋 = 𝑍′𝑉′𝑆−1𝑉𝑍

= 𝑍′𝛬−1𝑍 = ∑ 𝑧𝑗
2/𝜆𝑗

𝑗
= 1 (9) 

which is the equation of an ellipsoid whose half principal 

axes are √𝜆𝑗 = 𝜎𝑗 long. 

2.4. The Mahalanobis Distance and the proposed 

Reduced Mahalanobis Distance 

The squared Mahalanobis Distance of a set of data from 

their centroid is given by: 

 𝑀𝐷2 = 𝑋′𝑆−1𝑋 (10) 

It is interesting to note that the expression of the Probability 

Density Function of a generic Multivariate Normal 

Distribution is given by 

 𝑓(𝑋) =
exp (−

1
2

𝑀𝐷2)

√(2𝜋)𝑑|𝑆|
 (11) 

From which it is clear that the MD is a multi-dimensional 

generalization of the 1-D distance from the mean given as 

number of standard deviations (i.e., the z-score). 

This can be seen mathematically by using the PCA linear 

transform from 𝑋 to 𝑍: 

 

𝑀𝐷2 = 𝑋′𝑆−1𝑋 = 𝑍′𝑉′𝑆−1𝑉𝑍

= 𝑍′Λ−1𝑍 = ∑
𝑧𝑗

2

𝜆𝑗𝑗
 = 𝑍𝑊

′ 𝑍𝑊

= ∑ 𝑧𝑊𝑗
2

𝑗
 

(12) 

This proves that the squared Mahalanobis distance 

corresponds to the sum of squares of the whitened dataset. 

Hence, removing the first whitened component from the 

sum corresponds to merging PCA-OR and MD through 

PCA-whitening: this reduced MD (rMD), in fact, 

corresponds to the sum of the squared residuals from the 

orthogonal regression. 

 𝑟𝑀𝐷2 = ∑ 𝑧𝑊𝑗
2

𝑑

𝑗=2
 (13) 

It is also interesting to note that in the MD, as can be seen in 

eq.(12), the squared principal scores are normalized by the 

corresponding eigenvalues before the sum takes place.  

By changing the initial value 𝑗 , different rMDs can be 

produced.  

2.5. The naturally arisen Novelty Detection and the 

confounders 

The Mahalanobis Distance (MD) is widely used as a 

measure of novelty as it is unitless and scale invariant and 

takes into account the correlations of the multivariate data 

set. The idea to assess novelty is simple: 

• during the training, the dataset 𝑋0ℎ  corresponding 

to a healthy condition is used to compute the 

healthy mean vector 𝜇ℎ and covariance matrix 𝑆ℎ 

• the MD is used to produce normal Novelty Indices 

NIℎ which will be used to find a suitable threshold 

Th limiting the number of False Alarms (i.e., 

limiting the number of NIℎ  exceeding such 

threshold) 

 NIℎ = √(𝑋0ℎ − 𝜇ℎ)′𝑆ℎ
−1(𝑋0ℎ − 𝜇ℎ) (14) 

• in operation, when a new dataset 𝑋0𝑁 is tested for 

novelty, the derived eq.(14) will be used to obtain 

NI𝑁. These NIs will be compared to the previously 

defined threshold Th so that the acquisitions whose 

NI𝑁 is exceeding the threshold will be considered 

an anomaly. 

It is important to highlight that, if no confounding influence 

is assumed to affect the acquisition, damage will be the only 
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possible source of novelty left, so that the anomalous data-

points can be considered symptoms of damage. 

The MD NIs are also robust to strong quasi-linear 

confounding effects. In fact, if a strong confounder effect is 

present, this will be probably pictured by the first 

component. Nevertheless, the first PC scores will be 

normalized against a large variance before being summed 

up to form 𝑀𝐷2 . Hence, an automatic compensation is 

performed by MD NIs. 

Anyway, if one is sure that the first PC is picturing only the 

confounder, the reduced MD can be used to compute NIs 

which are completely insensitive to such direction. This can 

be proved using a simple synthetic dataset obtained by 

drawing samples from known distributions, as in Figure 3. 

(a) 

 

(b) 

 

(c) 

 

Figure 3. Synthetic example using bivariate normal 

distributions. (a) Draws from two distributions, the blue 

one is assumed healthy; (b) Mahalanobis NI vs Reduced 

Mahalanobis NI computed along the PC-2 direction only; 

(c) ROC with corresponding AUC (normalized to 1). 

From Figure 3 it can be noticed that, if the damage develops 

along the second principal component, the reduced 

Mahalanobis distance dropping the information along PC-1 

(a confounding factor) performs better than the traditional 

MD in terms of Receiver Operating Characteristic (ROC) of 

the corresponding Novelty Indices. This is better 

highlighted computing the Area Under the Curve (AUC) 

normalized to 1 (i.e., 0.94 against 0.91). 

Obviously, in real-life applications the information of the 

direction of damage evolution in the feature space is 

unknown. In this case it is advisable to start with the full 

MD and then test the behavior of rMD by gradually 

removing components so as to tune the algorithms for the 

best performance. 

2.6. Preprocessing 

As already said in the introduction, data are commonly 

normalized for PCA. This is also the case of MD-NI and 

rMD-NI, even if one has to bear in mind that data centring 

will always occur on the same reference mean vector 𝜇ℎ. 

It is not common to standardize each variable before PCA. 

In any case, if the variables are in different units and can 

assume very different values, showing then very different 

variances, a standardization can be suitable, otherwise the 

first PC will practically correspond to the largest variance 

measurement, the second to the second largest variance 

measurement and so on. This corresponds to a PCA 

performed on the correlation matrix. 

Obviously, it is meaningless to perform PCA on whitened 

data (i.e., with Identity covariance matrix). For such cases, 

the MD directly corresponds to the Euclidean distance of a 

point from the centroid (i.e., the sum of squared deviations 

from the mean over the different variables). 

2.7. Considerations about the numerousness of the 

training set 

As the proposed methodology is based on estimates of the 

mean and of the unbiased covariance matrix, the 

numerousness of the training set become relevant for 

ensuring a high enough statistical confidence of the 

estimates. 

In order to assess the effect of the numerousness 𝑛 of the 

training set for a dimensionality 𝑑 = 6, which is of interest 

in this work, and 𝑑 = 12, a Monte Carlo simulation is set 

up. After the consideration that the MD directly correspond 

to the Euclidean distance of a point from the mean if the 

original dataset shows identity covariance matrix, a draw 

from a multivariate Gaussian distribution (i.e., a normal 

distribution with zero mean and identity covariance matrix) 

of dimension 𝑑  is repeated 1000 times for an increasing 

numerousness of samples. Taking the mean difference of 

MD and Euclidean distance, and the standard deviation of 

the difference, the graph in Figure 4 is produced.  
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As can be noticed, in both cases the knee of the graph is for 

a sample size 𝑛 =  100, which proves to be enough for 

producing reliable MDs.  

2.8. Benchmark method for condition monitoring 

In the condition monitoring field, the paper of Yan et al. 

(2005) can be considered as a benchmark for PCA-based 

methods. The algorithm can be summarized with few 

relevant steps: 

• Eigen-decomposing to find the transform matrix T: 

PCA is performed on the non-normalized dataset 

and the first m eigenvalues (i.e., column vectors) 

are used to generate the matrix T 

 𝑋0𝑋0
′ = 𝑈Σ𝑈′ (15) 

 𝑇 = [𝑢1 … 𝑢𝑚] (16) 

• Mapping, reducing the dimensionality and re-

mapping to the original space for error computation 

 𝑋0̂ = 𝑇′𝑇𝑋0 (17) 

 𝐸 = 𝑋0 − 𝑋0̂ (18) 

• Computing the NIs in one of the two proposed 

ways, Euclidean or Mahalanobis based 

 𝑁𝐼𝑘
𝐸 = ‖𝐸𝑘‖ (19) 

 𝑁𝐼𝑘
𝑀 = √𝐸𝑘

′ 𝑆−1𝐸𝑘 (20) 

It is relevant to point out that in this methodology the 

original dataset is not normalized by purpose, so that the 

first PC always points to the centroid of the point-cloud. 

This ensures a sort of robustness, nevertheless, if the true 

PC-1 is not actually aligned to the expected, it can be 

detrimental. Secondly, for a better comparison with the 

proposed MD based algorithms, the Mahalanobis  𝑁𝐼𝑀 will 

be used in this work. Finally, it is common to set 𝑚 = 1 

considering that only one confounding factor (e.g., the 

temperature) is usually predominant. The authors, however, 

states that the selection of an appropriate dimension 𝑚 is not 

so critical and when the number of environmental factors is 

not known a priori or is difficult to find by observing the 

eigenvalues, choosing a series of order 𝑚  for verification 

may be considered. 

In general, in order to select the number of PCs to get rid of, 

a clever way is to look for the knee in the eigenvalues 

spectrum [Cattel (1966)]. For the sake of code automation, 

both the selection of 𝑚 for the benchmark method and of 𝑗 

for the proposed rMD method are, in first approximation, 

computed by counting the components explaining more than 

a percentage 𝑃  of the overall variability (i.e., the 

components whose eigenvalues normalized over the sum of 

all the eigenvalues are higher than 𝑃%  are automatically 

neglected, with 𝑃 usually between 10 and 25%). 

3. TEST ON DATA FROM A 31-DOF BRIDGE MODEL FOR 

STRUCTURAL HEALTH MONITORING WITH VARIABLE 

TEMPERATURE 

In Yan et al. (2005) the here considered benchmark method 

is tested on the model of a 3-span bridge (Figure 5). In this 

work, a simplified 31-DOF scaled model of the same bridge 

is proposed. The same temperature gradients are applied to 

the structure (i.e., a linear gradient generated by letting the 

temperature of the left side – lowT – linearly varying from -

15 to 15°C while the temperature of the right side is linearly 

changing from -15 to 45°C), and similar relations are used 

to model the effect of temperature on the elastic moduli of 

iron and concrete (and hence on the stiffnesses). 

 

Figure 4. Averages of the difference 𝐷 of the estimated 

Mahalanobis distances (continuous) and Euclidean distances 

(dashed) for 𝑛 draws from a 6-dimensional multivariate 

Gaussian, considering 1000 Monte Carlo repetitions. ±𝜎 

confidence intervals of the estimated error are also given 

(d=12 – dotted and d=6 – dash-dotted). 

 

The natural frequencies are computed for different 

temperatures conditions, and the parameters are tuned to 

produce results similar to those shown in Yan et al. (2005). 

In particular, the values of the first six natural frequencies 

are reported in Figure 7 for the healthy case and for a 

simulated damaged case, featuring stiffness reductions in 

the central region of each span. 

Of particular interest is the plot of the natural frequencies 

normalized against the first frequency, which highlights a 

quasi-linear relationship among these features. Figure 6 

visualizes the weak nonlinearity of the natural frequencies 

induced by the variation of the temperature. 

In addition to Yan et al. (2005), this work was also 

interested into the comparison of the performance of the 

natural frequencies as features (i.e., frequency features) 

against other common time-series statistical features (i.e., 

time features). Hence, the response of a single DOF to a 
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random force applied in the middle of the bridge was also 

produced considering a proportional damping producing 

damping ratios bounded in the range 1-3,5%. 

A Monte Carlo simulation was set up for aggregating 

information from 10 repetitions with a random forcing term, 

increasing the reliability of the features computed from the 

time response. Six common time-series statistical features 

were then extracted: the root mean square value, the 

skewness, the kurtosis, the crest factor, the maximum of the 

absolute value and the mean of the root of the absolute 

values. The resulting average values of the MC repetitions 

are reported in Figure 8. 

(a)

 

(b)  

 

(c) 

 

Figure 5. (a) Yan et al. (2005) 3 span bridge as a 31-DOF 

scaled model with a representation of the temperature 

gradient, the indication of the material and of the damage. 

(b) the m-c-k model for the 𝑖 − 𝑡ℎ mass. (c) the stiffnesses 

as a function of temperature. 

 

To faithfully reproduce the analysis in Yan et al. (2005), 5 

particular temperature conditions will be considered, as 

reported in Table 1. Per each condition, the model estimated 

features will be repeated 100 times while being corrupted by 

random normal noise with standard deviation of 5% and 1% 

of the absolute value of the feature. Both the healthy set and 

the damaged set will be composed by 500 points at different 

temperature conditions, so that the temperature will play as 

a confounder for the diagnosis. 

 

Figure 6. The natural frequencies normalized against the 

first frequency highlight a quasi-linear relationship 

 

 

Figure 7. The first 6 natural frequencies as a function of the 

left side temperature (lowT) while the right side is changed 

from -15 to 45°C producing a linear temperature gradient on 

the bridge. Damaged features are drawn as dashed lines. 

 

The results will be compared not only in terms of Novelty 

Indices, but also in terms of receiver operating characteristic 

(ROC) curves generated by increasing the level of a 

threshold and computing each time the true positive rate 

(TPR: the percentage of damaged points correctly identified 

over the total damaged) and the  false positive rate (FPR: the 
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percentage of healthy points identified as damaged over the 

total healthy). The farthest the ROC curve is from the 45° 

line, the better. In any case, the Area Under the ROC Curve 

(AUC) is added in the plots for a better comparison. 

Table 1. Temperature conditions 

# T left (lowT) [°C] T right [°C] 

1 -15 -15 

2 -7.5 0 

3 0 15 

4 7.5 30 

5 15 45 
 

 

 

Figure 8. The six considered time-series statistical features. 

Damaged features are drawn as dashed lines. 

 

The NIs are computed with the benchmark method Yan et 

al. (2005), here called B, with MD and with a reduced MD 

neglecting the first 𝑟 components explaining more than the 

25% of the overall variability (i.e., if their eigenvalues 

normalized over the sum of all the eigenvalues are higher 

than 0.25, the PCs are automatically neglected). In Figure 9 

the results in terms of ROC curves are reported for the NIs 

resulting from the applied methods on the different features 

groups corrupted by 5% of noise. In particular, the first 

features group is composed by the 6 natural frequencies, the 

second by the 6 time-series features, and the third by all 

these 12 features together. From the pictures in Figure 9 

several considerations can be drawn. As first, it can be 

recognized that, even if the amount of relative noise is the 

same for all the features, the frequency features prove to be 

much more affected by it, as probably the effect size of the 

damage is smaller than that in time-series features, which on 

the contrary proves to lead to quite satisfying ROC curves 

(i.e., the damage can be quite confidently detected). 

Furthermore, considering all the features together in a 12-

dimensional problem, the damage detection slightly worsens 

with respect to Time Features alone, but not for rMD, whose 

AUC increases from 0.91 to 0.96. 

(a) 

 

(b) 

 

(c) 

 

Figure 9. ROC curves for NIs computed with MD, reduced 

MD and Benchmark method – noise: 5%. a) frequency 

features, b) time-series features, c) all the 12 features 

together. 
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Then, focusing on the algorithms, it can be noticed that the 

proposed rMD algorithm is able to provide an improvement 

in the damage detection both for the frequency features and 

for all the features together. 

For the time features alone unfortunately, the rMD worsens 

the damage detection of the very good MD-NIs. 

In general, anyway, it can be said that the MD novelty 

indices prove to be superior to the benchmark method. 

Similar considerations are still valid when 1% noise 

corrupts the features. The results reported in Figure 10 are 

again rewarding MD NIs, whose ROC curve are slightly 

better than the benchmark method and the rMD. 

(a) 

 

(b) 

 

Figure 10. ROC curves for NIs computed with MD, reduced 

MD and Benchmark method – noise: 1%. a) frequency 

features, b) time-series features. Notice that the graph for all 

the 12 features together is omitted as equivalent to b). 

In this case Figure 11 is reported to better understand the 

relationship of a certain ROC curve to the corresponding 

NIs. There, it easy to notice that time-series features NIs 

shows a large separation of healthy and damaged condition. 

On the contrary, focusing on the frequency features NIs, 

their probability histograms result partially overlapped, 

indicating a lower effect size of the damage, leading to a 

more difficult diagnosis (reflected by the not so good ROC 

curve of Figure 10.a). 

(a) 

 

(b) 

 

Figure 11. MD NIs visualized for frequency features (a) and 

for time-series features (b) in the case of 1% noise. The 5 

temperature conditions are separated by dotted lines. Light 

gray dots refer to the healthy condition, dark gray crosses 

indicate the damaged condition. The corresponding 

probability histograms are also reported. 

4. TEST ON EXPERIMENTAL DATA FROM POLITO TEST RIG 

FOR HIGH SPEED BEARINGS VIBRATION MONITORING 

WITH VARIABLE SPEED 

The dataset considered in this analysis comes from a test rig 

built by the Dynamic & Identification Research Group 

(DIRG), part of the Department of Mechanical and 

Aerospace Engineering of Politecnico di Torino, to test 

high-speed aeronautical bearings. The rig is fully described 

in Daga et al. (2019), but the main information is 

summarized hereinafter. The rig is made by a single direct-

drive rotating shaft supported by two identical high-speed 

aeronautical roller bearings (B1 and B3 in Figure 12). B3 is 

known to be healthy while B1 is damaged on purpose with 

indentations of different size in different parts of the bearing 

(Rolling Element and Inner Ring) as described in Table 2. 

The third central bearing B2 is mounted on a sledge meant 

to load the shaft with a variable force, here left to 0 N, while 

the speed is reducing from 470 to 0 Hz (run-down 

acquisitions). Two tri-axial accelerometers located 

respectively on the B1 bearing support (accelerometer A1, 

as reported in Figure 12) and on the loading sledge 

(accelerometer A2). The acquisitions last for about T = 50 s 

at a sampling frequency fs = 102400 Hz. In order to perform 

a significant analysis, the five selected features root mean 
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square, skewness, kurtosis, peak value and crest factor are 

extracted on one hundred independent chunks (about 0,5 s 

each) for each of the 6 channels in all the 7 health 

conditions (from 0A, healthy, to 6A). Finally, 100 

observations in a 30-dimensional space (6 channels, 5 

features) per each health condition are obtained. The dataset 

is visually summarized in Figure 13. 

It must be said that frequency domain features other than the 

natural frequencies (which well applies to structural 

monitoring but not to industrial machines condition 

monitoring) could be found after a common procedure 

called Order Tracking [Fyfe & Munck (1997)], or using 

other spectrogram-based algorithms meant to remove the 

effect of the speed variation [Antoni et al. 2017]. 

Nevertheless, the additional computation of defect 

frequencies is usually not straightforward, not completely 

automated and requires additional algorithms which are out 

the scope of this analysis (e.g., envelope analysis to 

highlight the bearing damage frequencies – Randall & 

Antoni 2011). 

(a) 

 

(b) 

 

Figure 12. The experimental setup (a) and the detail of the 

triaxial accelerometers location (A1 and A2) and 

orientation (b) 

Being the acquisitions made during the run-down of the 

machine, the speed naturally decreases from a maximum of 

470 Hz to a still condition. This strongly affects all the 

features, but in particular RMS and peak value, which show 

important trends (Figure 13). 

The speed is then a strong confounder which could 

potentially hide the diagnostic information.  

It is also interesting to point out that the samples on which 

statistics are computed are 0.5s long. The rotation speed is 

decreasing from 470Hz to 0Hz, so that the first samples will 

be computed accounting for about 235 shaft rotations, while 

the last will capture less then few rotations. In order to 

ensure significance, then, the data was cut right before the 

complete stop. Nevertheless, it must be kept in mind that the 

features extracted from the last chunks will be less 

significant, but this does not affect much the analysis. 

 

Table 2. Bearing B1 codification according to damage type 

(Inner Ring or Rolling Element) and size. The damage is 

obtained through a Rockwell tool producing a conical 

indentation of maximum diameter reported as characteristic 

size. 

 

 

 

 

Figure 13. The considered dataset after features extraction 

for a load of 0 N while the speed is decreasing to a stop 

starting from 470 Hz. The black dotted lines divide the 

different damage conditions (0A to 6A). For each, 100 

observations are plotted sequentially. 

 

The described dataset was then treated with the previously 

introduced algorithms of MD and rMD and compared to the 

benchmark. In this case, being the dataset dimensionality 

𝑑 = 30, the first 20 PCs will be removed when using rMD. 

The result in terms of NIs is reported in Figure 14. From the 

picture it is clear that the effect size of damage is quite large 

Code 0A 1A 2A 3A 4A 5A 6A 

Damage type none 
Inner 

Ring 

Inner 

Ring 

Inner 

Ring 

Rolling 

Element 

Rolling 

Element 

Rolling 

Element 

Damage size [µm] - 450 250 150 450 250 150 
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and not affected too much by the decreasing speed, in fact 

the damaged NIs are quite far away from the healthy (notice 

the logarithmic scale). 

It is interesting to notice that at the end of the run-downs for 

all the different health acquisition, the last sample tends to 

show an increase in the NIs which is due to the lower 

significance of such sample (i.e., few shaft rotation in the 

0,5s chunk). In any case this effect is not particularly 

affecting the Novelty Detection. 

Nevertheless, the separability is not perfect, as some 

damaged NIs are smaller than the maximum healthy NIs. 

Finally, the ROC curve is reported for the three methods. 

From Figure 15 it can be noticed that the rMD is able to 

give a substantial improvement in the performance of the 

damage detection, pushing the ROC curve farther away 

from the 45° line (corresponding to a random damage 

detection). 

For the sake of research completeness, Figure 16 reports the 

trend of the novelty detection performance in terms of AUC 

of the ROC curves obtained for a variable dimensionality 

reduction for both the rMD and the benchmark method. As 

it can be easily seen, rMD is able to effectively improve the 

performance, while the benchmark, in this experimental 

case, fails. 

 

Figure 14. Novelty Detection of the experimental dataset 

with the different NIs. 0-100 samples are the healthy 

reference, 100-200 corresponds to 1A damage, and so on 

until 600-700 coming from 6A damage. 

In this practical application then, as confirmed by Figure 16, 

it can be said that the MD novelty indices prove to be 

always superior to the benchmark method, while only rMD 

is able to really improve the damage detection. 

 

 

Figure 15. The ROC curves for NIs computed with MD, 

rMD (last 10 PCs) and Benchmark method on the 

experimental dataset. 

 

Figure 16. The AUC values of the ROC curves as a function 

of the different dimensionality reductions of both the rMD 

and the benchmark method on the experimental dataset. 

5. CONCLUSION 

Summarizing, in this paper PCA was analyzed in detail, so 

as to highlight both its essence and its mathematical 

formulation. PCA was then used to understand the 

Mahalanobis Distance, finding an alternative formulation 

which puts together PCA-Orthogonal Regression and 

Mahalanobis Distance. This naturally opens to the 

possibility of evaluating a reduced Mahalanobis Distance 

(reduced because only the information from last PCs is used 

to produce the rMD NI). This idea is in practice the same as 

that of the benchmark model: removing strong quasi-linear 

confounding influences by fitting a line (in case m=1) and 

considering as NI the distance of the points from such fit. 

0𝐴 

1𝐴    2A    3A    4A    5A    6A 
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 The proposed method was tested both on the 31-DOF 

scaled bridge model (a structural simulation similar to the 

assessment made in the paper describing the benchmark 

method [Yan et al. (2005)]), and on laboratory acquisitions 

from the PoliTO-DIRG test rig [Daga et al. (2019)] meant 

for studying high-speed aeronautical bearings. 

The results proved that MD NIs are, in general, superior or 

comparable to the benchmark NIs. Furthermore, without 

dropping information, MD NIs can automatically 

compensate for the strong influences which are pictured in 

the first components (as these scores will be normalized on 

the variance along the component). Notice that, on the 

contrary, the benchmark method neglects the information 

contained in the direction of the fitted line (m=1). 

Anyway, also the rMD NIs proved to be able, in some cases, 

to improve the diagnostic ability of the ND, in particular 

with the experimental test rig acquisitions. Obviously, as 

rMD also neglects some information, it is not wise to start 

directly with it, as the risk is to drop diagnostic information 

together with the quasi-linear confounding influences. It is 

then suggested to start with the regular MD-NIs and then to 

check whether rMD can lead to substantial improvements as 

for the experimental case here considered. 

Finally, the bridge model was used to prove that time-series 

statistical features are potentially able to bring more 

diagnostic information than the natural frequencies. 

Obviously, in real-life structural cases, confounding 

influences other than the temperature alone can be present, 

and these can affect more the time features rather than the 

frequency features. Nevertheless, it can always be worth to 

give them a try given the low computational burden. On the 

other hand, condition monitoring of industrial machines is 

performed in relatively controlled environments, so that the 

confounding influences are typically related to variable 

operational conditions. In this case also, an analysis using 

common time features aggregated with multivariate 

statistics (e.g., with MD NIs) can deserve to be tested, as 

proved in this paper. 

 

NOMENCLATURE 

DOF Degree of Freedom 

MD Mahalanobis Distance 

ND Novelty Detection 

NI Novelty Index 

OR Orthogonal Regression 

PCA Principal Components Analysis 

rMD reduced Mahalanobis Distance 

RMS Root Mean Square 

T temperature 
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