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ABSTRACT

Predictive maintenance is emerging as a promising technique
to overcome the limitations of periodic maintenance. It inte-
grates automatic condition monitoring to evaluate the health
status of a system or device, with the estimation of Remain-
ing Useful Life (RUL) of its components, in order to schedule
maintenance only when really needed, minimizing the down-
time of a plant.

In this paper, we report our results in evaluating the health
conditions of the rotating ball bearings of a critical air pump
which is part of the Clean Room industrial facility operating
in the Micro-Technologies Laboratory of Fondazione Bruno
Kessler. We instrumented such component with vibration and
acoustic sensors with the aim of identifying a model of the
evolving degradation and estimating the RUL of the bear-
ings. The current dataset covers a period of one month before
bearing replacement and about six months after the replace-
ment. The first models, based on regression and particle fil-
ter processing of critical spectral components extracted from
the sensors, indicate an estimated RUL of about 12 months
that is in agreement with the average lifetime based on sched-
uled maintenance. Subsequent model evolutions have been
observed in conjunction with scheduled greasing and periods
of lower stress, which resulted in remarkable deviations from
the initial degradation trends and in a consequent notable in-
crease of the estimated RUL.

Results achieved so far are promising and could be used to
extend the temporal distance among periodic maintenance in-
terventions according to the estimated RUL.

1. INTRODUCTION

Gears and rotating elements are among the most critical com-
ponents of industrial equipments. They are subject to me-
chanical wear which in turn leads to progressive deteriora-
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tion, expensive long downtime, and production stops to repair
and/or substitute them. The common practice to mitigate this
problem consists in subjecting the critical components to reg-
ular periodic maintenance, despite still being in reasonably
good conditions. This results in an increase of costs and in a
waste of components, which might have a longer lifetime.

Prognostics and system Health Management (PHM) aims to
overcome the limitations of periodic maintenance through i)
an automatic condition monitoring intended to evaluate the
health status of the observed unit by analyzing proper sens-
ing information; ii) an estimation of the Remaining Useful
Lifetime (RUL) of the components, to further schedule their
maintenance only when really needed and in a way to min-
imize the impact on the associated production. Nowadays,
PHM has received considerable attention: it guarantees relia-
bility, overall performance and productivity of a system while
reducing the costs of the maintenance (Gouriveau, Medjaher,
& Zerhouni, 2016). Therefore, PHM has found wide range
of usage in different industrial application such as predic-
tive maintenance of compressors (Engelberth, Krawczyk, &
Verl, 2018), chillers (Ke, Mulumba, Shen, & Afshin, 2014),
wind turbines (Hossain, Abu-Siada, & Muyeen, 2018), or ve-
hicles (P. Li & Goodall, 2004) to mention a few.

PHM includes two main procedures, namely diagnostics and
prognostics. Diagnostics consists in detection, isolation, and
identification of a fault, while prognostics, based on the cur-
rent state of a system, aims at predicting the future evolution
of the state and at estimating the RUL (Lei, 2016).

Among the manifold applications of PHM, maintenance of
the bearings is of the highest importance, since they are one
of the most frequently failing components in industrial rotat-
ing machines. If deterioration is not timely detected and prop-
erly predicted, faults in bearings can cause costly breakdown
of operations (Kim et al., 2016) and even human casualties.
Thus, prognostics of bearings is a key issue in any mainte-
nance strategy. It requires early fault detection and a con-
stantly updated RUL estimation which can only be attained
by analyzing sensing information collected during machinery
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operation (Jardine, Lin, & Banjevic, 2006).

In this paper, we make the following contributions. First, we
report our results in evaluating the health conditions and pre-
dicting the RUL of a critical component of the Clean Room
industrial production facility of the Micro-Technologies Lab-
oratory at Fondazione Bruno Kessler. This facility, devoted
to production of small and expensive lots, demands for an
accurate control to stabilize the temperature and pressure,
achieved by a complex air-conditioning and pressurization
plant. Such plant is equipped with a large number of criti-
cal air pumps whose main components consist of electrical
motors with shafts rotating on ball bearings. These units
incur in progressive wearing and require periodical replace-
ment of the bearings with typical life-cycle from 12 to 18
months. Maintenance is currently performed on the basis of
a predefined schedule and of periodical checking by expert
technicians who evaluate the conditions of the devices. We
instrumented one of such critical motors with vibration and
acoustic sensors with the purpose of identifying a model for
the evolving degradation and estimating the RUL of the bear-
ings. The current dataset covers a period of one month at the
end of the life-cycle (worn bearing before replacement) and a
period of about 6 months following the bearing replacement.
The observed and analyzed period includes the occurrence of
several contingencies (e.g. stops, periodic maintenance) that
may affect the analysis, but make the dataset significant since
it reflects a typical use of the machinery under test.

We remark that publications and related datasets targeting
the prediction of the RUL, in the context of a real industrial
environment operated in real working conditions, are quite
infrequent. For example, in (Nixon, Springer, Hoeprich, &
Clouse, 2013) the authors provided a comparison of bearing
life test results and predictive analysis methods for various
tapered roller bearings operating under debris-contaminated
conditions. However, the document is not accompanied by
experimental data nor by details on how the analysis was car-
ried out. The majority of the literature concentrate on dataset
obtained from test-benches or controlled conditions. Notice-
able examples are the PRONOSTIA (Nectoux et al., 2012)
platform used to create the FEMTO IEEE PHM 2012 Prog-
nostic Challenge1 or the NASA Ames Bearing Data Set (Lee,
Qiu, Yu, & Lin, 2007).

Second, we provide a thorough analysis of the relevance of
several features extracted from the measured vibration sig-
nals, based on the typical time- and spectral-domain analysis
for machinery diagnostics (Jardine et al., 2006). Such fea-
tures were tested in order to identify their suitability for de-
veloping models able to represent the evolving conditions of
the bearings. We identified the popular Short-Time Fourier
Transform (STFT) and Wavelet Transform (WT) as the most
promising analysis techniques from which to select the criti-

1https://ti.arc.nasa.gov/c/18/ accessed in June 2020.

cal frequency bands that are most relevant to highlight trends
associated with bearing conditions. The corresponding fea-
tures were then processed by means of a Particle Filter (PF)
and linear regression in order to extract an evolution model of
the conditions of the bearing under analysis and to perform
RUL estimation.

Finally, we observed evolving trends during the analyzed pe-
riod. While the results observed during the first months of
operation show trends that appeared to be quite stationary,
leading to an initial RUL estimation of about 12 months. The
results in the following months, due to several contingencies,
show important changes in the monitored trends. Specif-
ically, within the observation period, the analyzed bearing
was greased according to a periodic maintenance program;
Besides, subjecting the facility to stop due to the periodic
holidays (Christmas) affected the maintenance activities of
the monitored device. All these contingencies (typical of a
normal use of an industrial machine in an industrial context)
produced remarkable deviations from the initially modeled
degradation trend, leading to noteworthy updating of the esti-
mated RUL values. This clearly shows the need of a contin-
uous (or periodic) update of the models, in order to include
contextual information about the real usage of the component
under test.

Analysis and observations are still in progress to complete
the acquisition of a full life-cycle of the device and to further
refine the identified prediction models. The plan is to use the
computed models to support decision-making related to the
periodic maintenance in the next years.

This paper is structured as follows. In Sect. 2 we analyze
the related works. In Sect. 3 analysis of the use case and
adopted setup are presented. Sect. 4 discusses the approach
we followed, and presents a critical analysis of the results
achieved so far.2 Finally, in Sect. 5 we draw conclusions and
outline future work.

2. RELATED WORKS

PHM of bearings have received considerable attention in the
literature. Here we analyze the most relevant works tack-
ling diagnostics and prognostics of bearings. We consider
methods leveraging model based, data driven and hybrid ap-
proaches. Moreover, since feature extraction is one of the
key aspects in different phases of PHM, we consider meth-
ods relying on features extracted from time, frequency, and
time-frequency domain analyses (Nguyen et al., 2018).

In (Kim et al., 2016) an entropy-based feature calculated from
a narrow-band signal in the spectral domain has been pro-
posed. To demonstrate the superiority of the proposed solu-
tion, authors made a comparison with traditional time-domain

2A sample of data and of the code used to present the results discussed in
this paper are available for download at the following URL: https://
tinyurl.com/y7k222n5. The full dataset is available on request.
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features such as kurtosis, root-mean-square, and envelope us-
ing a publicly available vibration dataset. As bearing moni-
toring signals are highly non-stationary, spectral components
in the Hilbert-Huang Transform (HHT) have been found suit-
able as features to reveal the evolving trend of a fault (Nguyen
et al., 2018). Moreover, the combination of HHT-features and
Support Vector Regression (SVR) and other Machine Learn-
ing (ML) solutions have been successfully proposed for di-
agnostics and prognostics of a bearing (Soualhi, Medjaher, &
Zerhouni, 2014).

The key role of fault diagnosis is to investigate the status of
internal components by observing related external informa-
tion. It has been proved that vibration analysis can contribute
to detect anomalies of rotating machinery (Lei, 2016). Differ-
ent ML techniques can be used to differentiate between nor-
mal and abnormal behaviors. To detect and classify bearing
faults from vibration signals (Janssens et al., 2016) proposed
a feature learning model for condition monitoring and the use
of a Random Forest (RF) classifier. The use of deep learn-
ing techniques, Convolutional Neural Networks (CNNs), pro-
vided higher accuracy in detecting different types of faults
and different levels of lubricant degradation. A procedure of
fault detection by considering electrical current and vibration
as suitable indicators of the degradation trend has been dis-
cussed in (Rações, Ferreira, Pires, & Damásio, 2019). Here
various ML techniques such as Support Vector Machines
(SVMs), Artificial Neural Networks (ANNs), RF with ex-
treme gradient boosting have been analyzed. Fault detection
is achieved using Hilbert transform and statistical analysis of
vibrations, and Parks Vector Modulus analysis of electrical
current, checking deviation from a perfect sinusoid.

In order to detect bearing faults at an early stage of degrada-
tion, it is important to mitigate the background noise affecting
the signals. To this end, complete ensemble empirical mode
decomposition with adaptive noise and improved multivari-
ate multi-scale sample entropy techniques have been shown
effective in (Lv, Yuan, Wang, Li, & Song, 2018).

RUL estimation is generally a more challenging problem than
fault detection. Also for RUL estimation the possible ap-
proaches are classified as either model-based, data-driven, or
hybrid. Model-based methods describe degradation processes
of a system using mathematical or physical models, and ad-
just model parameters using measured data (Lei, 2016; Yoo &
Baek, 2018). In (Liu et al., 2018), physical model based ap-
proaches are presented, including Paris Crack Growth Model,
Damage Mechanics-based Model, Spall Progression-based
Model, and Stress-based Fatigue Model. Generally, model-
based methods are quite reliable, provided that the adopted
model is accurate enough to encode the underlying system.
However, in real scenarios, assigning a precise mathemat-
ical or physical model to a complex system is often too
hard (Jardine et al., 2006).

Data-driven methods for RUL estimation aim at capturing
degradation processes of machinery directly from measure-
ment signals. These methods can be classified as statistical or
ML-oriented. There is a vast literature about statistical mod-
els, including linear regression, process models, Bayesian fil-
tering, covariate-based hazard, and Markov models (Jin, Que,
Sun, Guo, & Qiao, 2019). (Zhang & Li, 2014) used acceler-
ated degradation testing to determine the health condition and
RUL of bearings, making use of linear Wiener process mod-
els to perform reliability analysis under different stress lev-
els, while (Zhao, Tang, & Tan, 2016) proposed a regression-
based solution after the application of Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) on
a time-frequency representation of vibration signals.

ANNs, LDA, SVMs, decision trees and deep learning are of-
ten used for RUL estimation (Jin et al., 2019). In (Porotsky
& Bluvband, 2012) Adaptive Neuro-Fuzzy Inference Sys-
tem, ANNs, and the similarity-based prognostics approach
are compared using FEMTO-ST bearing data. In (Wang, Yu,
& Guo, 2020) the RUL of bearings is predicted in online man-
ner by means of a back propagation neural network using
kurtosis and other statistical features, and PCA sampling to
reduce the size of the input.

In (Sutrisno, Oh, Vasan, & Pecht, 2012) three RUL estimation
algorithms used in the IEEE 2012 PHM Data Challenge Com-
petition are compared. The first method is based on a mov-
ing average spectral kurtosis feature extraction process and
Bayesian Monte Carlo simulation. The second one uses a soft
computing techniques based on least-squares SVR method,
while the third algorithm is based on vibration frequency sig-
nature analysis and survival time ratio.

Recently Yoo and Baek applied deep learning based on a
signal-to-image-based feature extraction process and CNNs
for RUL estimation on the PRONOSTIA dataset. A continu-
ous WT converts signals into images which are fed to a CNN
for feature extraction. In (Ren, Sun, Wang, & Zhang, 2018)
eigenvectors computed from raw vibration signals are used
as inputs of a CNN, obtaining better results than with SVR
and multi-layer perceptron. Deep learning solutions are also
proposed in (Gugulothu et al., 2017) and (Hinchi & Tkiouat,
2018), where long-term dependencies in the input data are
captured by means of long short-term memory recurrent neu-
ral networks.

Hybrid approaches attempt to integrate the strengths of both
the data-driven and the model-based methods to build a more
reliable RUL prediction (Lei, 2016). The works described
in (Zio & Peloni, 2011; Qiu, Li, Jiang, & Zhu, 2018) com-
bines a spectral analysis-based health index and particle fil-
tering, while (Wu, Li, & Qiu, 2017) integrates the generalized
Weibull failure rate function in a radial basis function neural
network, introducing power on the sensitive frequency band
as a suitable indicator of the bearing degradation.
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Figure 1. Schema of the air recirculation system.

Vulnerability to noise, presumption of Gaussian distribution,
or need for considerable amount of data are frequent limita-
tion of the data-driven approaches and, to some extent, hybrid
approaches. Recently, Kalman filter is gaining momentum as
an effective method to predict RUL estimation of bearings
that contributes positively to overcome aforementioned lim-
itations (Qiu et al., 2018; Cui, Wang, Xu, Jiang, & Zhou,
2019; Lim & Mba, 2015). (Singleton, Strangas, & Aviyente,
2013) suggested to extract measures that quantify the com-
plexity of the time-frequency surfaces computed from vibra-
tion signals. These features are tracked through the lifetime
of a bearing using curve fitting and Extended Kalman Fil-
tering algorithms. Authors proposed Switching Kalman Fil-
ters (SKF) both for fault detection and RUL estimation. As
SKF uses multiple dynamic models to demonstrate different
degradation phases, it was mentioned that SKF can outper-
form the methods that allocate pre-defined thresholds (Lim &
Mba, 2015). Recently Cui et al. applied a new version of SKF
called Switching Unscented Kalman Filter. The proposed
method attempts to estimate RUL when degradation speed is
negative (i.e., early fault occurrence) (Cui et al., 2019).

3. THE CLEAN ROOM ENVIRONMENT

The Clean Room is a 700 square meters silicon production
factory located in the Micro-Technologies Laboratory at Fon-
dazione Bruno Kessler. It is an industrial production environ-
ment with an extremely low level of particulates, necessary
to produce small lots of specialized microchips and hi-tech
electronic devices, such as radiation detectors from silicon
wafers. In this context, any stop due to a failure of a machin-
ery results in loss of money. For the purpose of guaranteeing
such a cleanliness level, the Clean Room is equipped with
an extremely complex air treatment system, which provides
controlled conditions and includes humidity and temperature
stabilization, air recirculation and particle filtering. Poor air
quality might lead to a bad adhesion of the photoresists to the
surface in the photo-lithography process, leading to an overall
inappropriate design and, consequently, a compromised final
device. In order to avoid a similar situation, the infrastruc-
ture must guarantee continuity of service and preserve the air
quality without any downtime, which might lead to a signifi-
cant increase of production costs.

The air recirculation system consists of several pumps (see
Fig. 1), which include electrical motors with shafts rotating

on ball bearings. Such bearings are characterized by an im-
portant progressive wearing and so require an accurate and
frequent inspection by technicians. The installed bearings are
the “SKF 6206-2RS/C3” model with 9 balls, an inner diam-
eter of 30 mm, an outer diameter of 62 mm and a ball width
of 16 mm. Maintenance of the pumps is performed periodi-
cally by experts, and consists in the lubrication of the rotat-
ing bearings during their lifetime, prior to their replacement,
besides scheduled status checks. The bearings’ substitution
operation occurs in a time window which ranges from 12 to
18 months of activity. In order to follow the working hours of
the facility, with the aim of avoiding a waste of energy, the air
recirculation plant operates in two different regimes: i) from
07:40 AM to 07:00 PM, during working days, the pumps run
at 1270 rpm; ii) in the remaining time and on weekends the
system works at a lower regime, operating at 700 rpm. In
this paper we will provide information gathered from an ac-
celerometer attached directly to the chassis of the pump en-
gine, and from a microphone placed nearby in an enclosure.

3.1. Our setup

The adopted data collection setup (depicted in Fig. 2) relies
on usage of open source software. An industrial PC mount-
ing Ubuntu 18.04.4 LTS provides a robust solution for data
collection from sensors. On the mentioned device runs a
multi-threaded Python 3 script making use of the PyAudio
library for signal acquisition at 16 kHz sampling rate. Data
is then serialized into protocol buffers (protobuf) and sent via
MQTT to the central internal server; this particular combina-
tion is widely used for message sending in Industrial IoT. The
central server is continuously listening to the MQTT broker
(Mosquitto), applying DSP techniques to received messages
and saving both raw and processed data locally. Files are
stored using the Parquet format provided by Apache, which
provides a strong compression of data. A lower amount of
data intended for visualization purposes is then stored in a
real-time InfluxDB database, which provides temporal ana-
lytics to Grafana, an open source tool for dashboards enabling
real-time analytics and alerting. Data analysis is achieved by
means of the popular data science oriented libraries NumPy,
Pandas and Matplotlib.

4. BEARING RUL ESTIMATION

In this section we describe the methodology we adopted and
the techniques we used for the estimation of the RUL of the
considered bearing.

Feature extraction and selection are important steps in cap-
turing the bearing health status in operation (Nguyen et al.,
2018; Kim et al., 2016; Soualhi et al., 2014; Rações et al.,
2019; Lv et al., 2018; Zhang & Li, 2014; Zhao et al., 2016).
Various feature extraction methods, that typically consist of
time- and spectral-domain analysis of bearing vibration sig-
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Figure 2. The adopted Clean Room PHM Infrastructure for data acquisition, processing, visualization and decision-making.

nals, have been investigated by researchers (Jardine et al.,
2006; Nguyen et al., 2018). We analyzed almost all of them,
and we identified the STFT and WT (Jardine et al., 2006)
as the most promising ones. Both STFT and WT allow us
to decompose a time-series signal into precise time-versus-
frequency components in compare with traditional Fourier
transform. Therefore, we select critical frequency bands with
maximum energy criteria for STFT and WT. Logarithms of
these energy values are selected as features and named Spec-
tral Energy (SE) for STFT analysis and Wavelet Spectral En-
ergy (WSE) for WT analysis. SE and WSE provide an effec-
tive model that we combined with linear regression and PF
methods respectively for RUL estimation (Qiu et al., 2018).

First, in Sect. 4.1 we describe the approach based on a SE
linear regression model which, for simplicity, assumes a con-
stant degradation trend in the evolution toward the degraded
condition. Second, in Sect 4.2 we describe a more elabo-
rated approach based on PF for RUL estimation and show the
extracted models. Finally, in Sec. 4.3 we provide a critical
analysis of the extracted models.

4.1. Spectral Energy Regression based RUL Estimation

A plot of the spectrum of the vibration signal, averaged dur-
ing an observation period, provides a concise representation
of the vibration energy distribution over the different fre-
quency bands. By comparing the spectrum measured before
and after the degraded bearing replacement (see Fig. 3), we
can perceive the effect of the bearing degradation on the fric-
tion of the rotating shaft. From the plots in Fig. 3, it is clear
how bearing degradation is mainly reflected on the range from
1500 to 5500 Hz and partially also in the highest range close
to the Nyquist frequency (8 kHz).

We made the following simplifying assumptions: a) the
degradation of the rotation smoothness and the correspond-
ing increase of vibration energy over time is due entirely to
the wear of the bearing; b) the wear follows a progressive
evolution without abrupt discontinuities due to unexpected

Figure 3. Average spectrum at 1270 rpm speed before (de-
graded, plotted in blue) and after (new, plotted in orange)
bearing replacement.

deterioration or breaks of the bearing parts; c) the bearing
deterioration is comparable between different life-cycles, i.e.
after each replacement. We remark that, these simplifying
assumptions reflects the experience gained by the engaged
maintenance team in several years of operation.

The average spectrum is computed day by day, and its evo-
lution at each frequency bin (a total of 257 bins from 0 Hz
to the Nyquist frequency, providing a frequency resolution of
about 30 Hz) is analyzed to detect the presence of consoli-
dated trends. Data were analyzed over a period of 3 months
after bearing replacement (see spectrogram in Fig. 4). Some
frequency bins demonstrated a vibration energy increasing
with time while other bins showed a stationary or decreasing
trend.

Figure 4. Spectrogram of the vibration signal (at 1270 rpm)
during the first 3 months after bearing replacement.
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Figure 5. Slope of linear regression of energy over time as
a function of frequency. Observation interval is of 3 months
after bearing replacement.

Figure 6. Progression of vibration energy level at 3400 Hz
before and after bearing replacement. Time axis is the num-
ber of working days (operation at 1270 rpm). Note the jump
in correspondence of the bearing replacement.

A linear regression over time was applied at each frequency
bin. Since energy is expressed in dB, this corresponds to an
exponential progression of energy amount with time.

Fig. 5 shows the resulting slope as a function of frequency. It
is evident that the highest slope (the fastest increasing energy
level) occurs at 3400 Hz. The peak indicates that energy at
this frequency provides a significant feature for monitoring
the condition of the bearing.

Based on this observation, we analyzed in detail the progres-
sion of the energy level of the bins around the peak. A first
analysis was conducted over a period of one month before
and three months after the replacement of the bearing. We
detected a steady trend both at the beginning and at the end
of the life-cycle, with an almost constant progression in time
(see Fig. 6) at a rate of about 10 dB in three months. Consid-
ering the hypothesis of constant rate of degradation over the
life-cycle would lead to estimate a RUL of about 12 months
(in November 2019). In practice one month corresponds to
about 20 working days, during which the pump operates at
a rotational speed of 1270 rpm, while during the weekend it
operates at a lower speed.

However, analysis over a longer period (see Fig. 7) evidenced
that in the following months the operating conditions changed
(lower load for the motor, lubrication of the bearing) and we
observed a counter-trend toward the end of November 2019.
This implied an extension of the estimated RUL which, ac-

cording to a linear regression, amounted in December 2019
to about 20 months. Subsequently, after a month of down-
time due to holidays and maintenance interventions, a period
of two months with no definite trend follows. As a result,
the estimated RUL is further extended and reaches a value of
about 21 months in February 2020.

Figure 7. Vibration energy level at 3400 Hz (operation at
1270 rpm) over the full observation period after bearing re-
placement (on August 21, 2019).

The same sequence of trends is also confirmed by the analysis
of a spectral distance measured with respect to the spectrum
when the bearing was in degraded condition. Such distance
measure was defined as the integral of the absolute difference
between the current spectral curve and the curve associated
to the degraded device, as depicted in Fig. 3. The evolution
of this distance measure was depicted in Fig. 8, normalized
with respect to its value on the first day after bearing replace-
ment. Ideally, the curve would reach zero as soon as it returns
to the initial degraded condition (supposing that exactly the
same degradation occurs). The curve suggests that after the
first three months, during which we can extrapolate a quite
steady value for RUL, a change of trend develops and causes
a jump in the normalized spectral distance, implying a higher
RUL estimation. Finally, the constant phase at the end of
the observation period gives rise to an updated RUL estimate
which increases with time, given an almost constant spectral
distance.

4.2. Particle Filter based RUL Estimation

We considered a second RUL estimation algorithm which is
based on PF and consists in the following steps: i) calcu-
late WSE in the narrow-band of a WT of the vibration signal;
ii) apply a PF to estimate the WSE trend according to an ex-
ponential model of degradation.

The purpose of WSE calculation is to find a spectrum band
where the vibration energy is mostly concentrated. Follow-
ing (Antoni, 2007), we thus apply a 5-level wavelet decom-
position to the vibration signal to iteratively decompose it into
sub-bands as shown in Fig. 9. Spectral energy is then com-
puted for each sub-band and the maximum energy of the sub-

6
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Figure 8. Normalized spectral distance between the curve of
spectral energy distribution and the corresponding curve just
before bearing replacement.

Figure 9. A K-level wavelet transform. g[n] and h[n] indicate
low-pass and high-pass filter respectively.

Figure 10. Wavelet spectral energy at 1270 rpm speed before
and after bearing replacement.

bands is selected as WSE. The calculation of WSE is dynamic
in nature since the sub-band with maximal energy is not de-
fined a priori. WSE of the vibration signal is illustrated in
Fig. 10 in a day-by-day manner over a period of one month
before and three months after the bearing replacement. Ac-
cording to the plot, there is a trend of increasing WSE which
denotes a progressive bearing degradation both before and af-
ter the replacement. Note that WSE, in the first three months
after replacement, increases toward the value it had in the bad
condition, and the difference with respect to it decreases of

about 20%.

When a bearing starts to deteriorate, the degradation trend is
expressed by an exponential model (N. Li, Lei, Lin, & Ding,
2015). Thus, we assume that the WSE value λ evolves over
time as λ = α exp(βt), where α and β are model parame-
ters, t is time. For simplicity, we impose α = 1, and thus we
normalize the WSE values within the range 0 and 1, where 1
represents the maximum WSE value before replacement (de-
graded condition). In this paper, a particle filter is applied to
estimate unknown parameter.

In PF, an update process is performed in a Sequential Monte
Carlo manner with a set of particles representing probabilis-
tically the unknown parameters (Jouin, Gouriveau, Hissel,
Péra, & Zerhouni, 2016). When a new measurement is avail-
able, the posterior probability at previous step is used as prior
information at the current step, and the parameters are up-
dated by multiplication with the likelihood.

Once the parameters of the model have been estimated, the
RUL is obtained as the time interval required by λ to reach
a predefined threshold. The principle of the PF-based RUL
estimation technique is depicted in Fig. 11.

Figure 11. Procedure to predict the RUL using particle filter-
ing technique.

We tested the proposed PF-based RUL estimation algorithm
using a set of 4500 particles.3 The results provided by the PF
algorithm on the basis of the measurements during the first
three months (till November 2019) is provided in Fig. 12. The
peak of the predicted RUL distribution (see detail in Fig. 13)
indicates the most likely RUL which is 289 working days
(and corresponds to about 14.5 months, since the pump op-
erates at high speed for about 20 days per month).

After the first three months, there were maintenance interven-
tions (lubrication) and periods of lower stress which changed

3This value is in the typical range used in related literature (Zio & Peloni,
2011; Qiu et al., 2018), and represents a tradeoff between complexity and
achieved accuracy.
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Figure 12. A visualization of predicted RUL trend at Novem-
ber 2019.

Figure 13. Distribution of the predicted RUL at November
2019. The predicted RUL is 289 working days (i.e. about
14.5 working months).

the operating conditions. These changes reflected also in the
WSE trend(Fig. 14). Another contingency that caused a jump
in the WSE trend was due to holidays and maintenance in-
terventions. This also confirms the results obtained through
spectrum analysis in Sect. 4.1. Considering these contingen-
cies, we applied the RUL estimation algorithm again in De-
cember 2019 and February 2020.

The RUL predicted at December, reported in Fig. 15 and
Fig. 16, turns out to be increased with respect to the previ-
ous estimate and amounts to 418 working days (e.g., about
21 working months). In February (Figs. 15 and 16) we found
again a further increase instead of a decrease. These results
confirmed the trends observed with the spectral energy re-
gression discussed in Sect. 4.1. According to the distribution
of the predicted value, the RUL amounted in Febraury 2020 to

Figure 14. WSE trend over the full observation period after
bearing replacement in August 2019.

443 working days (e.g., about 22 working months). Although
the estimated RUL values are slightly different from the ones
obtained in Sect. 4.1, the observed trend is in accordance with
those estimates.

Figure 15. A visualization of predicted RUL trend at Decem-
ber 2019.

4.3. Critical analysis of the results

The two proposed RUL estimation methods, leveraging re-
spectively on spectral regression and particle filtering, pro-
vide slightly different but comparable results. In particular,
we identified three different phases in the evolution of the
spectral data, leading to models with correspondingly distinct
degradation rates and consequent increasing RUL estimated
values (from about 12 months to almost 2 years).

The obtained RUL estimates are characterized by a quite
high uncertainty and variability, due to the influence of many
boundary contingent conditions that, in the real operative
setup, change with time. This clearly shows the need of a con-
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Figure 16. Distribution of the predicted RUL at December
2019. The predicted RUL is 418 working days (i.e. about 21
working months).

Figure 17. A visualization of predicted RUL trend at Febru-
ary 2020.

tinuous (or periodic) update of the models, in order to include
contextual information about the real usage of the component
under test in the online running condition monitoring.

Another source of uncertainty is due to the physical constraint
in the placement of the sensor on the operating device. As
a matter of fact, the accelerometer is not directly mounted
on the bearing frame but on the motor chassis close to the
bearing. Vibration of the bearing, which is indeed the most
rapidly wearing component, is therefore acquired only indi-
rectly (after passing through a mechanical filtering with un-
known transfer function) and is mingled among other signal
components due to vibrations of the overall pump system.

Data collection and analysis are still in progress. Given the
long observation time required by the real case of the air-

Figure 18. Distribution of the predicted RUL at February
2020. The predicted RUL is 443 working days (i.e. about
22 working months).

recirculation pump operating in a running plant, the dataset
currently includes only one partial life-cycle of a single de-
vice. We are aware that under such circumstances the data
we collected and the analysis we performed are still incom-
plete and, being very specific for the case under study, can
hardly be generalized to a more generic scenario. However,
we are confident that the overall approach to RUL estimation
we followed, i.e. isolating meaningful trends within a time-
frequency representation, keeps its validity in a very wide
range of analogous situations.

5. CONCLUSIONS AND FUTURE WORKS

Past studies on predictive maintenance related to critical ro-
tating machines health monitoring are mostly confined to arti-
ficial or simulated test-bed dataset. In this paper, we continu-
ously recorded vibration data of rotating bearings of a critical
air pump of an industrial plant. To predict the RUL of the sys-
tem under test, we applied state-of-the-arts signal processing
techniques namely STFT and WT to extract informative fea-
tures that correspond to bearing degradation trends. These
degradation models are further employed with linear regres-
sion and particle filter respectively for RUL estimation. The
preliminary results indicate that estimated RUL mostly com-
plies with provided RUL of the bearing. Moreover, analysis
over a reasonably long period of real usage in an industrial
setting (e.g., around 6.5 months after replacement) evidenced
that operating conditions such as motor load, rotational speed,
and periodic lubrication of the bearing have a non-negligible
impact on the life of the component and thus on the respective
RUL prediction. These cases have been vastly ignored in the
past research, and demand for techniques that will allow to
properly integrate the contextual information to improve the
confidence and accuracy of the predictions.

We are continuously monitoring the air pump, updating the
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predictive models to consider the occurring contingencies.
We work together with the maintenance experts of the clean
room facility to support them in future maintenance activities
to possibly reduce periodic maintenance costs.

In the future, we plan to further investigate the relations be-
tween the estimated RUL and the true RUL from run-to-
failure bearing dataset obtained from industrial environment
subject to work load variability and periodic maintenance
integrating contextual reasoning. To this extent, we envis-
age the identification of hybrid approaches combining model
based techniques (e.g. finite state machines) with statistical
reasoning and digital signal processing. The model based
techniques seems very promising to allow to reason on con-
textual information. Finally, reliability and robustness analy-
sis of the evolving prediction models will also be conducted
to meet industry standard.
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