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ABSTRACT

Recurrent neural networks (RNNs) such as LSTM and GRU
are not new to the field of prognostics. However, the per-
formance of neural networks strongly depends on their ar-
chitectural structure. In this work, we investigate a hybrid
network architecture that is a combination of recurrent and
feed-forward (conditional) layers. Two networks, one recur-
rent and another feed-forward, are chained together, with in-
ference and weight gradients being learned using the standard
back-propagation learning procedure. To better tune the net-
work, instead of using raw sensor data, we do some prepro-
cessing on the data, using mostly simple but effective statis-
tics (researched in previous work). This helps the feature ex-
traction phase and eases the problem of finding a suitable net-
work configuration among the immense set of possible ones.
This is not the first proposal of a hybrid network in prognos-
tics but our work is novel in the sense that it performs a more
comprehensive comparison of this type of architecture for
different RNN layers and number of layers. Also, we com-
pare our work with other classical machine learning methods.
Evaluation is performed on two real-world case studies from
the aero-engine industry: one involving a critical valve sub-
system of the jet engine and another the whole reliability of
the jet engine. Our goal here is to compare two cases con-
trasting micro (valve) and macro (whole engine) prognostics.
Our results indicate that the performance of the LSTM and
GRU deep networks are significantly better than that of other
models.

1. INTRODUCTION

Traditionally, the process of developing prognostics models
involves a high degree of expert knowledge and technical
skill (Medjaher, Camci, & Zerhouni, 2012). In contrast, data-
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driven approaches to prognostics involve constructing com-
putational models that result from an analysis of sensor data
without explicit knowledge of the underlying physical behav-
ior (Jardine, Lin, & Banjevic, 2006).

The development of models that can capture both spatial and
temporal patterns is of great importance to the community
of prognostics since to predict the remaining useful life of the
equipment it is necessary to deal with multiple sensor signals.
One possible way to handle this data is by the use of recurrent
neural networks (RNN). An RNN is a kind of artificial neural
network that is based on the idea of the neural memory. Here,
neural memory is the ability to remember input from previous
time steps. By having this ability, the network can process
sequential data.

Even though RNNs are not new to prognostics and have been
around for some time, only recently, with the emergence of
deep learning, have recurrent networks been subject to closer
examination. Deep learning brought the possibility to de-
velop larger networks (i.e. with more layers) with conse-
quently more representative power. As a result, larger RNNs
have started to be proposed in prognostics. Examples of RNNs
here are: the standard network (Elman, 1990; Jordan, 1997),
the Long-Short Term Memory (LSTM) network (Hochreiter
& Schmidhuber, 1997) and the more recent Gated Recurrent
Unit (GRU) network (Cho et al., 2014).

Defining network architecture is an important decision that
can greatly influence performance. In this work, and to take
full advantage of the capabilities of the RNN, we propose a
hybrid neural network that combines RNN layers with multi-
layer perceptron (MLP) layers. The RNN is responsible for
high-level feature extraction while the MLP performs the re-
maining useful life (RUL) prediction at each time step. To
accelerate training, raw features are preprocessed using sim-
ple and general statistical functions before they were fed into
the network.

Our work brings some innovative contributions in the sense
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that is an extensive comparison of networks. Since we com-
pare three RNN type of layers (standard, LSTM, and GRU)
and we also vary the number of layers (1 layer or 6 stacked
layers) we build and compare 6 kinds of models. With this,
we aim to (i) investigate which is the best RNN layer for our
architecture and to (ii) confirm that deeper (with 6 stacked
RNN layers) networks can attain better prediction results than
shallow ones (with a single layer).

To make our work more comprehensive, we also compare the
proposed models against the classical methods (X. Wu et al.,
2008) of random forests (RF) (Breiman, 2001), support vec-
tor machines (SVM) (Cortes & Vapnik, 1995; Schölkopf &
Burges, 1998), neural networks (NN) (Reed & Marks, 1989),
k-nearest neighbors (KNN) (Aha, Kibler, & Albert, 1991)
and generalized linear models (GLM) (Nelder & Wedder-
burn, 1972). The goal here is to show the superiority of the
proposed deep architecture over traditional machine learning
methods. We should note that this comparison is done in two
large-scale real-world datasets.

The rest of this paper is organized as follows. Section 2 re-
views related work. Section 3 describes in detail the proposed
architecture. In Section 4 we provide a detailed treatment of
the two real-world datasets, which are used to establish the
validity of the proposed architecture. Finally, conclusions and
future work are in Section 5.

2. RELATED WORK

The motivation for this paper is to examine different RNN
structures for prognostics. This section starts with a general
review of deep learning models in prognostics. Then, we fo-
cus on papers that propose RNN models and discuss their re-
lation to our research.

The prognostics of the future health of equipment consists in
knowing/gnosis that a future health phenomenon (e.g. a fail-
ure event) will occur in a prospective time, or that the health
state at issue will prevail. This perception amounts to a pre-
diction of the equipment end of life (EoL) or remaining useful
life (RUL). Traditionally, prognostics have relied on model-
based approaches to estimate the damage and mitigate system
risk (Oppenheimer & Loparo, 2002; Adams, 2002; Chelidze
& Cusumano, 2004; Orchard, Kacprzynski, Goebel, Saha, &
Vachtsevanos, 2008; Saha & Goebel, 2009; M. Daigle, Saha,
& Goebel, 2012). These approaches use domain knowledge
of the system, including its components and how they fail, to
describe the underlying physical phenomena in a physics-of-
failure (PoF) model (M. J. Daigle & Goebel, 2011). These
prognostics tools are however expensive and time-consuming
which lends strength and credibility to the investigation of
new approaches and tools in the field. Moreover, when com-
plex engineering systems are involved with intricate and non-
linear interactions between their components and with the
domain where they operate, the development of such mod-

els may even exceed knowledge and technologies currently
available.

As an alternative to model-based tools, data-driven approaches
(Atherton, 1999; Gupta & Ray, 2007; Goebel, Saha, Sax-
ena, Celaya, & Christophersen, 2008) are applied to prognos-
tics when sufficient data exist to establish the damage space
(Goebel, Saha, & Saxena, 2008). Deep learning is a novel
kind of data-driven methods that attempts to somewhat re-
lief the dependence of classical machine learning on feature
extraction methods. In deep learning, features can be learned
from data using a general-purpose learning procedure (LeCun,
Bengio, & Hinton, 2015). This characteristic is especially
important to prognostics, where performance is severely de-
pendent on the quality of features and most feature extrac-
tion is still performed by machine learning experts in con-
junction with domain experts (Yan & Yu, 2015; Brownlee,
2014). Some methods have been proposed in the literature
for deep learning prognostics. Mainly, the techniques used
include Auto-encoder (AE) and its variants, Restricted Boltz-
mann Machines and its variants including Deep Belief Net-
work (DBN) and Deep Boltzmann Machines (DBM), Convo-
lutional Neural Networks (CNN) and Recurrent Neural Net-
works (RNN) (Zhao et al., 2019).

Recurrent Neural Networks is a learning model that is suit-
able for dealing with cross-sectional time series (i.e., inde-
pendent sets of single time-series). These networks can rep-
resent time series as they include a recurrent connection in
each of their computational units. The output (activation) of
a unit is feedback to itself with a weight and a unit time delay
at each time step, which provides the model with a memory
of its past activation and enables it to learn the temporal dy-
namics of sequential data.

Unlike feedforward networks, in which computations are per-
formed within a one-time frame, RNNs map inputs to outputs
over multiple time steps. Observing that the RNN undergoes
multiple transformations not only feedforward (from input to
output within a time step) but also recurrently (across multi-
ple time steps), two definitions of depth can be applied: the
traditional, feedforward depth and the recurrent depth (S. Zhang
et al., 2016). From these two distinct definitions follows the
notion that recurrent neural networks are the “deepest” of all
neural networks (Schmidhuber, 2015).

Several works have adopted RNNs in prognostics. The work
in (Atherton, 1999) employs a shallow variant of the stan-
dard RNN (Elman, 1990; Jordan, 1997). The network is
used to predict machine deterioration using vibration data. In
(Heimes, 2008), a hybrid RNN model is proposed for RUL
prediction of turbofan engines, with the architecture being
tuned using differential evolution and weights being set us-
ing an Extended Kalman Filter-based algorithm. The network
architecture is simple, utilizing only 24 inputs, with three lay-
ers of feed-forward connections, and three layers of recurrent
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connections (standard RNN layer). The authors, however, do
not disclose much information about the architecture as it is
proprietary.

Due to their specific topology, the LSTM is an RNN better
able to learn short term and long term temporal dependencies
that has yielded positive results in prognostics. For example,
In (Z. Zhang, Lu, Zhou, & Liao, 2018) authors show that the
LSTM can outperform auto-regressive methods. The model
in (Zhao, Yan, Wang, & Mao, 2017) combines convolution
neural work with bi-directional LSTM for RUL estimation.
In (Guo, Li, Jia, Lei, & Lin, 2017), an LSTM-based model
is used to predict the residual life of wind turbine generator
bearings. In (Zhao, Wang, Yan, & Mao, 2016), shallow and
deep LSTMs are developed to predict the wear condition of
a cutting tool. Experimental results suggest that both shallow
and deep LSTMs can outperform several state-of-art baseline
methods and that deep LSTMs are the best performing meth-
ods. As this work is mainly focused on the LSTM architec-
ture it lacks a comparison of other architectures such as the
gated recurrent unit (GRU).

Gated recurrent units (GRUs) (Cho et al., 2014) are an RNN
model with similar performance to that of LSTM (Chung,
Gulcehre, Cho, & Bengio, 2014) but with fewer parameters
and therefore a faster learning process. GRUs are used with
success in (Song, Li, Peng, & Liu, 2018). In (Yuan, Wu,
& Lin, 2016), the GRU is compared with the standard RNN
and the LSTM. Their experiment results show the standard
LSTM outperforms the others. From their paper it is however
not clear how many RNN layers were used and the specific
details of their architecture.

3. NETWORK ARCHITECTURE

In this section, we introduce the recurrent network architec-
ture for remaining useful life (RUL) estimation. The main
criteria justifying the choice of this architecture is to have a
solution able to deal with the temporal aspect of sensor data.
Fig. 1 illustrates the general architecture and its main build-
ing blocks. Formally, the goal is to provide for each time step
t, with t running from 1 to T , a predicted RUL ŷt given a set
of sensor inputs {x1, ..., xn}. The main assumption here is
that several layers of recurrent algorithms, followed by fully-
connected layers can give better flexibility and performance
to deal with RUL forecasting.

To train the neural networks we use the conventional back-
propagation learning procedure. This algorithm needs an adap-
tive step size method. After some empirical testing, with RM-
SProp, Adam and other optimizers, we found the Adam op-
timizer to be suited to our problem as the adaptive step size
method.

Table 1. Preprocessing functions.

Input Description Equation

p1 Average amplitude 1
k

∑k
i=1 s(i)

p2 Standard deviation
(∑k

i=1(s(i)−p1)
2

k−1

) 1
2

p3 Root mean square ampli-
tude

(
1
k

∑k
i=1 s(i)

2
) 1

2

p4 Squared mean root abso-
lute amplitude

(
1
k

∑k
i=1 |s(i)|

1
2

)2
p5 Kurtosis coefficient

∑k
i=1

(
s(i)−p1

)4
(k−1)p42

p6 Skewness coefficient
∑k

i=1

(
s(i)−p1

)3
(k−1)p32

p7 Peak value max |s(i)|
p8 Peak factor p7

p3
p9 Margin factor p7

p4
p10 Waveform factor p3

1
k

∑k
i=1 |s(i)|

p11 Impulse factor p7
1
k

∑k
i=1 |s(i)|

3.1. Input layer

As shown in Fig. 1, the proposed architecture comprises four
different types of layers, i.e. input, recurrent, fully-connected
and the output layer. The input layer receives at each iteration
a vector x of two dimensions: the time (t = {1, . . . , T}) and
the sensor (n = {1, . . . , N}) dimension. The time dimension
specifies the number T of time steps to be passed to the model
while the sensor dimension specifies the number N of sensor
inputs.

The size of the sensor dimension (N parameter) is fixed. How-
ever, the size of the time dimension (T parameter) varies. We
do this to prevent the mixing of data from different asset sam-
ples. As shown in Fig. 1, the model considers the existence
of several samples, where each sample contains the data cor-
responding to the lifetime of an asset. Data from two samples
should not be mixed to avoid situations where the network
uses past information about a given asset to predict the RUL
of another asset. If the data were to be continuously processed
with a fixed-size time window this would most likely happen.
Given the variability of the lifetime of each asset, it is not
possible to select a time window size that guarantees that dis-
tinct assets are not mixed within the same network input. If
this situation was not prevented, performance could degrade
unrealistically. What we do is we divide the data of one asset
into T chunks and we have a final chunk with the remaining
temporal size. There is no need for padding as the network
can deal with variable size sequences.

Please note that the number of sensor inputs does not equal
the number of raw sensory signals in the two cases. This fol-
lows from the volume of our data: the raw data collected from
the sensors are time series with a high sampling frequency. If

3



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 1. Architecture. The computation of the predicted remaining useful life (RUL) for a sample set of sensor signals is a
dynamic process. First, the sensor readings of each sample are fed into the recurrent neural network (RNN) layers time at a
time. Then, the hidden states of the recurrent layers are used to compute high-level features. Two layers of fully connected
neurons (FFN) are used to compute the remaining useful life (RUL) of each time step based on the extracted features.

the data were to be processed at each time point, the computa-
tion would be too expensive. Accordingly, the time-series are
processed by applying the functions shown in Tab. 1 (Q. Wu,
Yang, & Zhou, 2012) on segments of data to produce new
time domain inputs. The application of the functions in Tab. 1
is done on a flight by flight basis, similarly to what experts in
the field do. Four functions (p1, p3, p4, p7) are used to capture
the amplitude and energy of each signal while the remaining
ones aim to reflect the distribution of each signal over the
time domain. Also note that this preprocessing of the data is
especially important for the performance of the model: as the
recurrent layers are deep both in time and in space, they are
computationally expensive. Preprocessing the raw data using
simple and general functions allows us to have more recurrent
layers and hence a faster feature extraction by the network.

Please note that the used preprocessing functions are general
enough to be applied to most prognostics cases. The goal
here is not the extensive extraction of features by-hand, but to
propose a set of useful methods that can speed up the training
process of the deep learning models. The extraction of the
high-level features continues to be a responsibility of the net-
works. What we advocate here is the use of generic methods
to speed the network’s work.

3.2. Recurrent Layers

The present approach is one of the deepest architectures pro-
posed for RUL estimation, as it can involve up to six layers
of recurrent layers. Despite the benefits of such a deep ar-
chitecture, there is also the risk of model overfitting. To pre-
vent this situation and allow the model to generalize well to
unseen data we employ a set of strategies. First, we use a
dropout layer (Srivastava, Hinton, Krizhevsky, Sutskever, &
Salakhutdinov, 2014) after each of the recurrent layers. The
key idea here is to randomly drop units (along with their con-

nections) from the network during training. Second, we em-
ploy L2-norm regularization (Ng, 2004). L2 works by adding
a penalty on the norm of the weights to the loss. Third, early
stopping is used (Cataltepe, Abu-Mostafa, & Magdon-Ismail,
1999). The monitor object of early stopping is the perfor-
mance on the training set.

Different kind of recurrent layers can be selected for the same
model. This is another distinguishing trait of our architecture:
a model can be constituted by the standard RNN layer, the
LSTM layer, and the GRU layer. LSTMs extend RNNs with
the use of memory cells instead of recurrent units. LSTM
memory cells make use of the mechanism of gating: each
cell is updated according to the activation of different gates
that control which operation is performed on the cell mem-
ory: write (input gate), read (output gate) or reset (forget
gate). GRU extends the RNN by an update gate and a reset
gate. The update gate determines how much the inputs can
change the new state while the reset gate determines to what
extent the old state needs to be erased. The GRU memory cell
only has two gates while the LSTM cell has three gates. This
makes the design of the GRU more simple. Here, the standard
RNN stood out for its simplicity, LSTM was selected for its
popularity and GRU for its training performance.

3.3. Prediction and output layers

After feature extraction, the extracted features are weighted
and combined in two fully-connected layers as shown in Fig. 1.
This represents the prediction part of the model. Finally, there
exists one output neuron for each time step in the input layer.

The fact that we are chaining a recurrent neural network (RNN)
with a fully connected network (FFN) brings several advan-
tages. The main advantage of RNN layers is that they are
capable of extracting useful patterns from temporal data. In
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turn, the main advantage of FFNs is that they are “input ag-
nostic”. No particular assumptions need to be made about
the input as in the case of RNNs (sequences) or CNNs (im-
ages). In a certain way, fully connected architectures act as
“universal approximators” capable of learning any function.
This generality is important for prognostics where each case
study has its peculiarities.

4. METHODOLOGY AND RESULTS

In this section, we evaluate the performance of the proposed
approach. First, the datasets of two case studies are described.
Then, details about the experimental setup are provided. Fi-
nally, results are presented and discussed.

4.1. Datasets

This study uses two real-world datasets from the aeronau-
tics sector: one related to the whole reliability of a modern
aero-engine (DS-1) and another related to a critical compo-
nent of the engine (DS-2). Regarding the first dataset, DS-1,
the data describe the evolution of the performance of a set
of commercial jet engines between approximately ten years
in different intervals of time for each engine. Formally, the
data consists of a cross-sectional time series in the sense that
for each engine, there is a multi-variate series that represents
the temporal progression of the engine sensor signals. These
signals are measured at three different flight phases: 1 mea-
surement is taken at take-off, another at climb and 3 other at
cruise. Overall, we analyze around 3GB of raw data. In ad-
dition to performance signals, there is also information about
the engine overhauls. An engine overhaul can be defined as
a comprehensive inspection that involves removing and dis-
assembling the engine, testing all its sub-systems, cleaning
and replacing parts as needed and then reassembling the en-
gine (Seemann, Langhans, Schilling, & Gollnick, 2010). The
dataset includes fixed-interval and condition-based overhauls.

The second dataset DS-2 describes the reliability of a set of
engine bleed valves. These valves are critical systems (de
Pádua Moreira & Nascimento, 2012) as, if not working as
expected, they can make the compressor “stall” (meaning it
abruptly ceases operating and stops turning, at least briefly).
If one of these valves happens to fail, large amounts of power
can be lost, even enough to result in an airplane on the ground
(AOG) scenario. Mostly due, not to the valve itself, but to
the complexity of the system where the valve operates, it is
not always easy to recognize fault existences (M. Baptista, de
Medeiros, et al., 2017). To address the problem of this kind of
RUL prediction, we study real data of several valve unsched-
uled removals recorded between 2010 and 2015 from com-
mercial aircraft of three airlines. Here, by removal we mean
a maintenance and repair action where the equipment is re-
moved from the aircraft and restored to its original condition
or replaced by a new/repaired unit. Fig. 2 shows the probabil-

Figure 2. Probability Density Function (PDF) of removal
times (DS-1).

ity density function (PDF) of time between two consecutive
unscheduled removals. As illustrated, the maintenance events
are highly dispersed, with the time between removals ranging
from 0 to 543 days. In addition to the removal events of the
valves, the data set comprises 100 GB of data collected from
aircraft sensors as time series with a sampling frequency of
1 Hz as well as information about environmental conditions
during flight.

4.2. Research Question

The goal of our experiments is to show the effectiveness of
the proposed RNN approach for RUL prediction. Concretely,
we empirically evaluate the performance of a deep standard
recurrent neural network (DSRNN), a deep long-short term
memory (DLSTM) and a deep gated recurrent unit (DGRU)
models with other data-driven algorithms that have been ap-
plied to the datasets in earlier works (M. Baptista, de Medeiros,
et al., 2017; M. L. Baptista et al., 2017; M. Baptista, Sankarara-
man, et al., 2017) namely, generalized linear model (GLM),
neural network (NN), random forests (RF), k-nearest neigh-
bors (KNN) and support vector regression (SVR). To study
the influence of deep learning we also empirically evaluate
the performance of the proposed deep models (DSRNN, DL-
STM, and DGRU) against their shallow versions (SSRNN,
SLSTM, and SGRU).

4.3. Software and Hardware Specifications

All experiments were run on a personal computer with Intel
Core i7-4500U (1.80GHz) CPU, 4GB memory and Ubuntu
14.04. All code is written in Python 3.6 with scientific com-
puting library “Theano” and deep learning library “Keras”.
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4.4. Performance Metrics

A considerable number of performance metrics have been
used in prognostics (Saxena et al., 2008). In this study, we
feature a subset of these. The used accuracy and robustness
metrics include, for example, the root mean squared error
(RMSE), and the median absolute deviation (MAD) respec-
tively. An extensive list of the considered metrics and cal-
culation methods is provided in Table 2. We encourage the
reader to get more details of these metrics from (Tang, Or-
chard, Goebel, & Vachtsevanos, 2011).

4.5. Evaluation Methods

The 10-fold cross-validation scheme is used to verify the learn-
ing ability of the algorithm to generalize to unseen data, i.e.
the testing dataset. This scheme is used to evaluate the pro-
posed models and the baseline classical machine learning mod-
els.

4.6. Results

In this section we present the results of testing the three pro-
posed RNN algorithms (DRNN, DLSTM, and DGRU) and
their shallow versions (SRNN, SLSTM and SGRU) as well
as five traditional data-driven methods (NN, GLM, RF, KNN
and SVR) on DS-1 (whole engine) and DS-2 (bleed valve
case). Table 3 and Table 4 illustrate the comparison results
across the two datasets in terms of bias, accuracy and robust-
ness. It can be observed that the deep methods consistently
achieve the best values in accuracy and robustness. For in-
stance, the deep LSTM (DLSTM) predicts the RUL of the en-
gine with an average absolute error (MAD) of 43 cycles (see
Table 3) and the deep standard network predicts the RUL of
the valve with an average error (MAD) of around 5 cycles (see
Table 4). The performance of the machine learning methods
are not so impressive, with the best methods having larger ab-
solute errors. For example, the generalized linear model, has
a MAD of 70 cycles in the engine case (DS-1) (63% more
than the DLSTM), and the support vector regression (SVR)
has a MAD of 9 cycles in the valve case (DS-2) (80% more
than the DSRNN). As expected, in scenarios where machine
learning already provides good estimates (DS-1), the deep al-
gorithm leads to less significant performance differences.

Not surprisingly, deep networks were able to outperform their
shallow versions for both datasets. This can be seen by com-
paring the performance of shallow neural learning against the
performance of deep learning in Table 3 and Table 4. The
difference of performance is however not as extreme as in the
previous comparison. In DS-1, the best performing shallow
model, the shallow RNN (SRNN), has a MAD of 50 cycles
(16% more than the DLSTM). In DS-2, the best performing
shallow model, the shallow GRU (SGRU), has a MAD of 8
cycles (60% more than the DSRNN). These results indicate
that shallow RNNs can outperform machine learning despite

their relative simplicity. We hypothesize that this is due to
the fact that any RNN layer can capture temporality in a more
effective way than classical machine learning methods.

Among the three proposed methods, we consider that DGRU
achieved the best overall performance on dataset DS-1 (en-
gine) and DLSTM on the dataset DS-2 (valve). Since there
was no clear winner, this result suggests that performance de-
pends significantly of the industrial application. The most ad-
equate learning method appears to depend on the health man-
agement system and its operating environment. From our ex-
periments, however, It seems that if well configured, the deep
layers of LSTM and GRU can yield better overall results than
standard RNN. This is not surprising as these methods are
more sophisticated.

Interestingly, the relative accuracy (RA) of the best perform-
ing models was somewhat similar for both scenarios (40% for
DS-1 and 31% for DS-2). The models had similar predictive
ability even though the first model was more powerful. This is
an intriguing result as it was expected that macro prognostics
(DS-1:engine case)would be more difficult than micro prog-
nostics (DS-2:valve case). To explain these results, we hy-
pothesize that the difficulty of the prognostics task depends
mostly on the input data and the intricacies of its failure pat-
terns and not the macro or micro aspect of the task.

The performance over time of the proposed deep models is
shown in Figure 3 and 4 for datasets DS-1 and DS-2. In the
x-axis of plots a) to c) the fraction of time to end-of-life is
shown (tλ) while the y-axis represents different evaluation
metrics. From an inspection of the top plots, it can be seen
that deep recurrent neural networks excel at capturing failure
patterns close to the end-of-life while the other more tradi-
tional methods exhibit more difficulties in achieving the same
level of accuracy near the equipment end of life. Regarding
robustness, the bottom plots ascertain the slightly more robust
nature of the predictions of the proposed models.

Overall, these results lend recognition to the use of recurrent
neural networks and the further exploration of deep learning
methods in prognostics.

5. CONCLUSIONS

It is widely recognized by the community that deep learning
models can outperform other methods. However, it is still not
so clear the extent to which recurrent neural network (RNN)
algorithms can promote better prediction models. The RNN
models are powerful in the sense that they can explicitly cap-
ture the temporality of the data and hold a memory between
calculations, a unique property that most artificial neural net-
works do not hold. This capability makes them worthy of
further exploration, especially in the field of prognostics. We
aimed here to provide two concrete and complex real-world
industrial cases on the topic.
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Table 2. Performance metrics.

Metric Abbr Formula

Mean Error ME
1

n

n∑
i=1

(ŷi − yi)

Median Error MdE median({ŷi − yi}ni=1)

Root Mean Squared Error RMSE

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

Relative Accuracy RA 1− 1

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣
Mean Absolute Error MAE

1

n

n∑
i=1

|ŷi − yi|

Median Absolute Error MdAE median({|ŷi − yi|}ni=1)
Median Absolute Deviation MAD median ( {|yi −median({yi}ni=1)|}ni=1 )

Sample Standard Deviation SSD

√√√√√√
n∑
i=1

((ŷi − yi)−ME)2

n− 1

Note: the term n stands for number of {yi}ni=1 observations in the testing set. For
each observation yi, the model outputs the ŷi prediction. Here, variable yi means the
time to next condition event at time index i. All measures are given in days except the
MAPE (%).

Table 3. Results for DS-1 (engine) (ordered by RMSE/ best in bold).

Bias Accuracy Robustness
ME MdE RMSE RA MAE MdAE MAD SSD

Classical Machine Learning
RF 149.32 164.60 234.19 22.89 208.87 192.93 81.28 120.62
GLM 153.18 170.40 223.59 23.64 205.02 197.70 70.41 91.68
NN 136.51 138.36 214.78 24.48 194.81 182.63 71.62 102.50
KNN 113.29 128.90 211.22 25.30 184.26 179.82 78.80 115.25
SVR 31.97 60.22 150.56 31.93 135.00 132.56 75.43 88.52

Shallow Neural Learning
SLSTM -58.75 -51.89 113.47 37.13 98.53 90.24 61.24 78.21
SSRNN -33.63 -20.34 111.38 37.06 95.25 88.40 50.46 79.28
SGRU -56.17 -51.38 109.99 36.65 95.22 89.15 59.26 81.07

Deep Learning
DLSTM -45.18 -34.22 108.48 36.22 100.38 94.83 42.68 67.90
DSRNN -29.75 -30.52 106.79 38.58 96.44 87.81 48.56 74.20
DGRU -28.51 -12.48 102.98 40.07 89.16 80.13 50.24 72.22
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Table 4. Results for DS-2 (bleed valve) (ordered by RMSE/ best in bold).

Bias Accuracy Robustness
ME MdE RMSE RA MAE MdAE MAD SSD

Classical Machine Learning
NN 20.88 19.78 48.77 15.12 38.57 33.38 21.39 35.03
RF 20.87 24.82 37.03 22.72 32.63 31.62 13.03 19.04
GLM 18.33 28.35 35.64 20.22 32.93 33.17 9.82 16.28
KNN 19.51 27.82 35.72 20.48 31.86 31.90 13.00 15.94
SVR 20.60 27.91 35.13 21.25 32.09 33.00 8.82 12.71

Shallow Neural Learning
SGRU 13.12 7.89 31.35 29.99 28.27 27.04 7.71 13.84
SSRNN 14.11 12.88 31.10 27.16 27.79 26.29 7.76 12.98
SLSTM 13.70 10.59 30.78 27.56 27.79 25.56 8.85 13.76

Deep Learning
DGRU 9.91 7.45 29.17 27.09 24.80 24.28 5.56 10.13
DSRNN 2.27 6.68 23.43 32.02 20.91 18.74 5.12 10.13
DLSTM -8.80 -2.54 16.86 30.87 14.38 14.94 5.82 9.70

Figure 3. Performance on DS-1 (engine). The performance of machine learning and deep learning models is compared in a)
mean absolute error, b) relative accuracy, c) median absolute deviation and d) error distribution. Here, tλ is the fraction of time
until the condition event.
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Figure 4. Performance on DS-2 (bleed valve). The performance of machine learning and deep learning models is compared in
a) mean absolute error, b) relative accuracy, c) median absolute deviation and d) error distribution. Here, tλ is the fraction of
time until the health event.

Our goal with this work was to show that data-driven ap-
proaches based on deep recurrent neural networks can be more
suited to prognostics than other methods. The novelty of our
approach lied in a comprehensive analysis and comparison of
data-driven techniques in two related real-world maintenance
problems. The results are promising, indicating that deep
learning and recurrent neural networks are powerful tools for
further exploration in prognostics.

To conclude we wish to also shed some light on the limita-
tions and constraints of these approaches. First, it is important
to note that these are data-driven approaches and are there-
fore always dependent on the volume and quality of the data.
Second, deep learning models tend to be black-box tools and
are, to an even greater extent than classical machine learn-
ing, not easy to understand. Third, these models, especially
recurrent networks, are difficult to train. These dimensions
are future research directions worth exploring. Also, another
research direction will be to combine the relative strengths
of different deep learning techniques using more complex
hybrid approaches, ensemble, and other system combination
techniques.
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