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ABSTRACT 

This paper proposes a data-driven approach for fault-

detection and isolation of bogie suspension components with 

on-board acoustic sensors. The fault detection technique is 

based on the acoustic emissions variation due to structural 

modal coupling changes in the presence of faulty 

components. A suspensions component failure introduces an 

imbalance into the system, resulting in dynamics 

interferences between the motions. These interferences 

modify the energy introduced into the system as well as its 

acoustic emissions. The unknown arbitrary track 

irregularities generate together with a variable train speed a 

random nonstationary vehicle excitation. Speech recognition 

techniques were used to generate features that consider this 

phenomenon. Frequency spectrums were analysed in 

different operating conditions to design efficient features. 

The robustness of the methodology was verified with data 

from two different test measurement campaigns on a test ring, 

where the influence of the sensor locations for the fault 

classification process was studied. The proposed 

methodology achieved good fault classification performance 

on the investigated use cases, removed dampers and 50% 

damper degradation on primary and secondary vertical 

suspension. 

 

1 INTRODUCTION 

The main goal of condition based maintenance (CBM) is to 

support maintenance practitioners to make right and fast 

decisions as well as analysing the system performance based 

on time series data acquired from different sensors 

depending on component functionality (Atamuradov, 

Medjaher, Dersin, Lamoureux, & Zerhouni, 2017). Interval-

based maintenance inspections of vehicle components can 

lead to unexpected failures and reduced availability of the 

vehicles. Through CBM concepts with on-board monitoring 

systems for monitoring chassis components, the availability 

of the vehicles can be decisively increased through precise 

knowledge of the component status. Suspension component 

faults influence the vehicle dynamic behaviour, which can 

be monitored using different on-board sensors. A sketch of a 

common approach with inertial sensor used on vehicle 

suspension monitoring is shown in Figure 1 (Zoljic-

Beglerovic, Golkani, Steinberger, & Horn, 2018; Zoljic-

Beglerovic, Stettinger, Luber, & Horn, 2018). Primary and 

secondary suspension condition can be estimated using 

inertial sensors like gyroscopes and accelerometers which 

are placed near dampers and springs to estimate their 

condition. This implies a considerable number of sensors, 

that must be robust enough to withstand the high fatigue 

loads at the less damped components like axle boxes. 

For this reason, inertial sensors which are the most used in 

on-board health monitoring systems for railway vehicles are 

being located over the first or second suspension level of the 

vehicle (bogie and/or carbody), were induced accelerations 

are smaller. But this results in a more challenging task of 

fault detection. With acoustic sensors this limitation could be 

overcome as they can be installed far from the structural 

loads and still register the fault acoustic emissions. 

Furthermore, high frequency acoustic emissions can be 

detected before vibration response is detectable by inertial 

sensors in the same location, increasing fault detection 

horizon.  
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Figure 1 Example of condition monitoring with on-board 

inertial sensors. 

 

1.1 State of the art of railway condition monitoring 

 

A review of health monitoring technologies on railway 

industry is presented in (Chong, Lee, & Shin, 2010), where 

wayside detection methods, advanced integrated sensor 

methods, operating principles and functions are analysed. 

Bogie performance standards from a regulatory perspective 

and existing technologies that are currently in use in railroad 

revenue service are summarized in (Shahidi, Maraini, 

Hopkins, & Seidel, 2014; Ward, Goodall, Dixon, & Charles, 

2013). Reducing estimation uncertainty of track and train 

component condition is critical for a robust and reliable 

prognostics.  This can be achieved with on-board monitoring 

of rail and bogie components.  

An overview of different fault detection and diagnosis 

approaches for health monitoring and a comparison between 

model-based and data-driven approaches with the advantages 

and disadvantages of each one is presented in (Tidriri, Chatti, 

Verron, & Tiplica, 2016). 

A particular model-based technique is the observer-based 

method, which is an effective component failure detecting 

system but presents difficulties when applied to systems 

which are subjected to unknown disturbances and model 

uncertainties (Ngigi, Pislaru, Ball, & Gu, 2012). Kalman 

filter (KF) is one of the most popular methods used to model 

linear system with additive Gaussian noise for estimation and 

prediction purposes (Jesussek & Ellermann, 2015; 

Tsunashima, Mori, Tsunashima, & Mori, 2010; Zoljic-

Beglerovic, Golkani, et al., 2018; Zoljic-Beglerovic, 

Stettinger, et al., 2018). Extended Kalman filter (EKF), 

Unscented Kalman filter (UKF) and Particle Filters (PF) offer 

accurate estimation results for nonlinear stochastic systems 

(P. Li et al., 2007; P. Li & Goodall, 2004). More examples of 

model-based applications on train dynamics monitoring are 

presented in (Bozzone, Pennestrì, & Salvini, 2011; Liu, Alfi, 

& Bruni, 2016; Ward et al., 2010). For systems that are 

dynamically complex and/or nonlinear, model-based 

approaches may lead to the use of high-order and/or 

linearized multiple models which can be difficult to 

implement. A component failure (e.g. a damper) in either of 

the suspensions will introduce and imbalance into the system, 

resulting in dynamics interferences between the motions 

(Mei & Ding, 2009). 

Data-driven approaches attempt to build degradation models 

using condition monitoring data collected via installed 

sensors to predict future health state instead of building 

physical models. They can detect faulty situations faster, are 

easier to implement and require less a priori knowledge. They 

are suitable for complex and large-scale systems where the 

developing and validation of a model becomes more difficult 

(Atamuradov et al., 2017). The success of data-driven models 

depends on the quality of the training data and the 

understanding of the problem, which can be given by an 

expert or by a model-based approach. Applications examples 

of data-driven models on bogie components monitoring can 

be found on (C. Li, Luo, Cole, Spiryagin, & Sun, 2017; 

Shahidi, Maraini, & Hopkins, 2016; Shahidi, Maraini, 

Hopkins, & Seidel, 2015).  

Hybrid approaches relax the need of accurate models of 

complex systems and use convenient statistics simplifying 

the monitoring task (Atamuradov et al., 2017). An example 

of vehicle dynamics monitored using hybrid  approaches is 

presented in (Gasparetto, Alfi, & Bruni, 2013).  

A method to monitor the running stability in a high-speed 

railway bogie and detect different faults in the critical 

components to vehicle stability, particularly wheel wear and 

degradation of yaw dampers is investigated in (Gasparetto et 

al., 2013). Three different wheel profiles and four different 

yaw damper conditions are considered in the classification. 

Prony method is used to identify the characteristic exponents 

of the system combined with random decrement technique to 

approximate the auto-correlation of the acceleration signals; 

the residual stability margin and the hunting mode frequency 

are used by the classification algorithms to estimate the 

condition of the yaw dampers and of wheel-rail conicity.  

 

1.2 Acoustic sensors in CBM application 

 

Acoustic emissions are commonly used to monitor 

components with high maintenance cost like: axle cracks, 

axle bearings (Amini, Entezami, & Papaelias, 2016), engine 

valves (Ali, Hui, Hee, & Leong, 2018), diesel injection 

systems (Elamin, 2013), railway wheels (Anastasopoulos, 

Bollas, Papasalouros, & Kourousis, 2010), rails ((Bergseth, 

Höjer, Lyu, Nilsson, & Olofsson, 2019; Jensen, Chauhan, 

Haddad, Song, & Junge, 2015; Lanza di Scalea et al., 2017; 

Thompson et al., 2018)), etc. 

Vehicle structure components act as signal filters for inertial 

sensors, wave-propagation attenuation at high frequency is 

higher in the structure than in air, due to geometric spreading 

of the wave front, internal friction, dissipation of energy into 

adjacent media and velocity dispersion (Pollock, 2018). 

When faults are detectable at low frequencies structural 

vibrations, it could be already too late to conduct a preventive 

action. The weak abnormality features of early faults are 

generally masked by background noise or other interference 

making them difficult to detect (Gong et al., 2018). 
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Installing acoustic sensors on the carbody minimizes their 

exposure to fatigue loads and enhances the overall robustness 

of the application extending the useful life of the monitoring 

system. At the same time, this remote location characteristic 

results in the challenge of pinpointing which exact 

component may be malfunctioning. Furthermore, a major 

drawback is the difficulty to perform validation experiments 

and simulations. To obtain reliable noise information, a real 

train with emerging or advanced faults must be instrumented 

and operated ((Bernal, Spiryagin, & Cole, 2019)).  

Other bogie component faults like wheel profile wear, rolling 

contact fatigue, wheel flats and wheel corrugation can cause 

track and vehicle component damage ((Nielsen & Johansson, 

2000)). At the same time, they can influence vehicle 

dynamics and introduce noise into the monitoring process of 

suspension components with acoustic sensors. An on-board 

approach to monitor the wheel wear state studying the vehicle 

dynamics with inertial sensors is proposed to elongate the 

inspection intervals in (Luber, Müller, Sorribes-Palmer, 

Pietsch, & Six, 2018). Worn rail profiles can be detected 

analysing the noise emitted from contact between the wheel 

and the rail, using two microphones located into the inner and 

outer wheel-rail contact ((Höjer, Bergseth, Olofsson, Nilsson, 

& Lyu, 2016)). A sensor setup on the axle box for wheel 

defect detection and bearing monitoring using accelerometers 

and acoustic emission sensors is presented in (Amini, 2016). 

 
Sensors Advantages Disadvantages 

Inertial Capture vehicle 

dynamics and 

structural modes 

Easier to be used in 

simulation validation 

and parameter 

influence study 

Sensors on axle-box and 

bogie frame are exposed to 

higher fatigue loads 

Acoustic Capture acoustic 

modes 

Higher frequencies 

can be analysed to 

maximize the fault 

detection horizon 

Sensors exposed to 

smaller vibration 

loads 

Detect several faults 

with just one sensor 

Acoustic emissions from 

faulty components are 

mixed with exterior noise 

sources (aerodynamic 

noise, other faults; trains, 

bridges, tunnels, other 

faults, etc) 

Enough energy must be 

introduced into the system 

in the fault frequency range 

High excitation uncertainty 

Table 1. Pros and cons of inertial and acoustic sensors for 

bogie component monitoring. 

 

The main objectives of the present work are: 

• perform condition monitoring of train vertical 

suspension dampers with on-board acoustic sensors  

• present a framework for fault detection and isolation 

(diagnosis) of bogie components  

• find the right operating conditions to detect the 

expected difference between normal and faulty 

damper to perform classification 

• validate and verify robustness of the methodology 

and explore capabilities of acoustic sensors for fault 

detection applications 

The paper is organised as follows: in Section 2, the fault-

detection and isolation (FDI) approach is introduced. In 

Section 3, the test data from experiments, operating 

conditions and targeted faults are described. Model 

classification results are presented and discussed in Section 

4. Finally, conclusions are drawn in Section 5. 

 

2  PROPOSED FDI APPROACH   

Acoustic emissions from different vertical suspension faults 

were monitored with on-board acoustic sensors and 

processed to extract features and generate data-driven models 

to perform FDI. The main steps performed on the data-driven 

models’ generation are sketched in Figure 2.  

 

 
 Figure 2. Main steps of the data-model generation for FDI of 

bogie components. 

 

In the pre-processing phase, signal unit check, outlier 

removal (sensor malfunction/ wrong measurements), handle 

missing values and filters are performed. Also signal 

synchronization with GPS data for later segmentation on 

different track section types is carried out. All the passages 

through the track sections are considered as observations and 

organized in a structured data frame.  

Inside the feature generation block, noise identification for 

signal denoising with spectrum subtraction are performed. 

Separation techniques between harmonic and percussive 

signal are considered to detect impact hearing events and 

modal excited response. 

Generally, signal-to-noise ratio increases with increasing 

recording time and decreases with increasing test speed, as a 

result of the increased standard deviation of the incoherent 

portion of the wheel-generated excitation ((Lanza di Scalea 

et al., 2017)). For this reason, the influence of signal length 

of each observation on the classification performance has 

been studied. 

Among the features used in this work are statistical based in 

time domain; and in frequency domain, energy frequency 

bands from discrete Fourier transform (DFT) and power 
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spectral density (PSD) are used. Due to the non-stationarity 

of the excitation also time-frequency features like mel 

frequency coefficients (MFCCs) have been used. 

In a first attempt, simple features like energy content from 

PSD frequency bands are used to explore influencing 

parameters and to analyse the limitations of the features for 

fault classification. The probability to excite the targeted 

suspension mode depends on the track condition and train 

speed.  The hypothesis that suspension dampers faults modify 

the energy introduced into the system, increasing the energy 

content at higher frequencies is assumed. The modal coupling 

with other structural components is also influenced and with-

it the acoustic emissions. This effect is chased to be retained 

into features for fault classification. Keeping this in mind, this 

work proposes to monitor also higher acoustic modes to 

consider cases in which excitation energy could have not 

been introduced in the fault targeted frequency band but in a 

coupled mode of higher frequencies. PSDs ratio between 

faulty and normal dampers acoustic signal were analysed to 

find the frequency bands at which faulty behaviour could be 

detected.  

Before feature selection and after outlier removal a robust 

scaler was applied. To find the most informative features, 

different methods of feature selection were used: Filter 

(SelectKBest, reliefF), wrapper (recursive feature 

elimination, sequential feature selection) and embedded 

methods (decision trees). The combination of these methods, 

using first filters and later wrappers, provided the best results 

to find the most efficient feature pool.  

The hypothesis that similar excitation energy is introduced on 

the normal fault observations and faulty ones is assumed. 

Also, the hypothesis that in-service trains will travel at 

similar running speeds and experience similar track quality 

as on the test ring is assumed. In case that track quality is 

much different a proper rescaling must be performed. Overall 

and specific data-driven models were created for the different 

speed ranges and track sections, under the assumption that 

track quality is similar in all sections. 

The amount of available data and the imbalance in each speed 

range as well as the number of features selected was analysed 

to avoid model overfitting. Observations were grouped into 

similar excitations regarding track irregularities and train 

speed ranges with enough available data.  To overcome data 

imbalance of faulty components, several correction methods 

were analysed, and different scores were considered.  

The data-driven models were trained using the 70% of the 

available data in the operating conditions range selected and 

tested in the other 30%. All test sets classification scores were 

averaged over 10 random repeated splits, with 5-fold 

stratified cross-validation. 

To consider the imbalance between normal and faulty 

conditions, normalized Gini Coefficient (NGini) was used as 

classification scorer. Gini Coefficient represents twice the 

area under the curve of receiver operating characteristic curve 

over the random guess (Contributors, 2019). When it is 

normalized with the maximum possible Gini Coefficient, 

considering the imbalance between classes, it can vary 

between 1 (100% accuracy) and -1 (0% accuracy), and 0 

means random guess (50% accuracy). NGini coefficient 

value of 0.7 has been considered a good model, but also the 

number of features used (Nfeatures), and the data explained 

with should be also considered. To compare data-driven 

models’ generalization for different operating conditions an 

indicator was created (classifier overfit factor, COF). This 

indicator considers the number of features used, the amount 

of explained data (Samples), the NGini and its standard 

deviation, and is given by the equation: 

 

COF = (
0.5

1 + Nfeatures/Samples
) (

NGini

0.05 + std(NGini)
)          (1) 

 

Models are considered acceptable when COF value is over 

1.3 (e.g. NGini=0.68, Samples=42, Nfeatures=3 and NGini 

standard deviation=0.2). 

 

3  EXPERIMENTS AND DATA DESCRIPTION 

In supervised learning, measured observations from normal 

and faulty component status must be available to generate 

data-driven models.  This reference data cannot be retrieved 

from in-service vehicles by removing dampers, as this would 

compromise the safety of the passengers. To obtain the 

required data under controlled operating conditions, 

experimental tests were performed on the test ring in 

Wegberg-Wildenrath, Germany. The track is composed by 2 

curves (Cur1 and Cur2) of 1700 m length (radius 540 m), 2 

straight sections (Str1 and Str2) of 550 m length and 4 

transitions (Tra1, Tra2, Tra3 and Tra4) of 400 m length. 

Information about track irregularities was not available. To 

analyse the influence of the acoustic sensor locations on the 

fault classification performance, two test campaigns were 

carried out.  

A test campaign (test 1) with 8 microphone sensors sampling 

at 19200 Hz and 1 GPS sensor sampling at 1 Hz was 

performed. In this case, the track postprocessing was divided 

into straight (2 and 4) and curved (1 and 3) sections, see Table 

2.  

 
Test 1 1 - 2 - 3 - 4 - 

Test 2 Cur1 Tra1 Str2 Tra2 Cur2 Tra3 Str1 Tra4 

Table 2. Wegberg-Wildenrath test ring track sections 

considered in both tests. 

 

 Another test camping was carried out (test 2), with 12 

microphones sampling at 8000 Hz, together with 2 GPS 

sensors. In the second campaign, the acoustic sensors were 

more exposed to aerodynamic noise, making more 

challenging to distinguish the faulty pattern from the noise 

inside the signal. This required to imply more complex 

methods to generate features for classification. The data-

driven models generated for classification were focused on 

the fault of primary and secondary vertical suspension 

dampers, which are indicated in Table 3.  
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Fault 

code 

Fault description 

SVD00 Secondary vertical damper removed 

SVD50 Secondary vertical damper with 50% 

degradation 

PVD00 Primary vertical damper removed 

PVD50 Primary vertical damper with 50% degradation 

Table 3. Suspension dampers faults considered in the 

classification. 

 

3.1 Data imbalance  

A clear data imbalance between normal and faulty samples 

can be seen in the observations count in both tests shown in 

Table 4. There were no available measurements of fault 

PVD50 in test 1.  

 Available samples 

Fault code Test 1 Test 2 

Normal 3075 17325 

SVD00 420 1284 

SVD50 376 1132 

PVD00 420 642 

PVD50 0 566 

Table 4. Fault observations inside test data. 

 

The observations were grouped into speed ranges and track 

sections to limit excitation variability. Fault observations 

were not uniformly distributed in all speed ranges. An 

example of the observation speed distributions for each fault 

in straight sections (Str1 (4) and Str2 (2)) in both tests is 

shown in Figure 2. Observations were group into different 

operating conditions ranges to minimize data imbalance. 

 

 
Figure 2. Train speed distributions of fault observations in 

straight track sections, in test 1 (top) and test 2 (bottom). 

At speeds over 38 m/s it is not possible to generate a model 

for all faults in test 1. And in the same way, it is not possible 

to make a model with data from test 2 at speed under 25 m/s. 

 

3.2 Excitation variability 

The energy transferred between the track and the vehicle, is 

a combination of track and soil stiffness, track irregularities, 

train speed and vehicle dynamics. This interaction must be 

high enough to excite the modes that contain information 

about the status of the monitored component. Also, the 

acoustic signals captured by the on-board pressure sensors 

can be influenced by other environment conditions (e.g, 

presence of vegetation, passing through tunnels and bridges).  

PSDs of normal and faulty condition were analysed to find 

which frequencies contain information about the monitored 

component and to analyse the influence of the track quality 

in different sections. For comparative reasons, in PSD figures 

the red line corresponds to the average of blue PSDs (faulty 

condition), and black to the average of orange PSDs (normal 

condition). In Figure 3, in a narrow speed range, from 30 to 

34 m/s, a clear difference in the spectrum between both 

straight sections (Str1 and Str2) can be seen at frequencies 

higher than 700 Hz. It can be induced that excitation over this 

frequency was higher in section Str1 than in Str2, as the 

acoustic energy radiated is higher. This will explain the better 

performance of the data-driven models in Str1 compared with 

the models created on section Str2. The acoustic radiated 

energy in the frequency range between 700 and 1100 Hz 

could contain rail acoustic emissions, which often dominates 

mid-frequency region between 400 and 2000 Hz (Zhang et 

al., 2018).  

 
Figure 3. Fault PVD00 PSDs on straight sections (Str1 and 

Str2).  

 

A trade-off between spectrums separability, considering 

excitation and response, between normal and faulty status and 

number of available samples must be achieved to create 

robust data-driven models.  

It can be seen in Figure 4 and Figure 5 that at around 1100 

Hz there is a frequency range that could contains relevant 

information to classify fault PVD00. There is also a clear 

Str1 

Str2 
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difference in track quality when changing traveling direction 

sense in both straight sections. Looking in both section in 

sense 0, a considerable difference in energy is observed 

between Str1 and Str2, see Figure 4a and Figure 5a.  

If the vehicle structural modes are not damped due to a failure 

in the bogie suspension dampers, energy from the track 

vehicle interaction is converted into vehicle kinematic 

energy, which can be seen at low frequencies. Possible 

relative movements between rail and wheel induced by the 

vehicle dynamics can increase the energy injected into the rail 

increasing the acoustic energy radiated from the sleeper, rail, 

and wheel. This effect could be observable around rail 

acoustic modes frequencies, like the first pinned-pinned 

resonance at midspan in lateral (around 300 Hz to 600 Hz) 

and vertical direction (around 900 to 1100 Hz) (Zhao, Wang, 

& Xing, 2017). 

Further investigations (e.g. track settlement and surroundings 

as well as irregularities could be surveyed) would be needed 

to determine the true nature of these difference in both track 

sections. 

a)  

b)  

Figure 4. Fault PVD00 PSDs on straight Str1 section in both 

travelling sense: a) sense 0; b) sense 1. 

a)  

b)  

Figure 5. Fault PVD00 PSDs on straight Str2 section in both 

travelling sense: a) sense 0; b) sense 1. 

 

The energy in the PSD observations from transitions and 

curved sections are in the same level at all frequencies as it 

can be seen in Figure 6. For this reason, transition sections 

are grouped together with curved sections as similar 

operating conditions to generate data-driven models.  
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Figure 6. Fault PVD00 PSDs on transitions (top) and curves 

(bottom) sections at speed range 30 to 34 m/s. 

 

4 RESULTS AND DISCUSSION  

Performance classification of data driven modes from both 

test campaigns are presented separately to show the influence 

of acoustic sensor location. Different monitoring parameters 

have been studied: track section type, faulty wheelset 

location, sensor near leading of trailing edge, signal sub 

segmentation, number of features used for classification. 

Logistic regression was used as a classifier in all the models 

generated. 

 

4.1 Microphones located on a central bogie-position 

Fault classification performance with microphones located 

on a central bogie-position is less influenced by 

aerodynamics noise, achieving a more robust classification. 

NGini and its standard deviation for fault SVD00 using 

microphones on a central bogie-position in different sections, 

straight and curved at different speed are shown in Figure 7. 

Additionally, the imbalance between normal and faulty 

observation in all generated models is also shown at the 

bottom in Figure 7.  

Higher classification performance is achieved in curved track 

sections than in straight track sections when observations are 

grouped into similar speed ranges. Reducing excitation 

variability and sensor redundancy increased classification 

performance. The model bias is reduced at higher speeds, 

where more samples are available. Models for the complete 

speed range show better performance when using the 

microphone near the trailing edge in straight track sections. 

The classification performance is higher when the ratio 

between normal and faulty is closer to 50%. The speed range 

between 36 and 39 m/s shows higher performance in straight 

and curved sections.  

 
Figure 7. Fault SVD00 classification normalized Gini 

coefficient with logistic regression model in all sections, 

straight and curved at different speed ranges (top left), overall 

speeds using sensor located near a leading and trailing 

wheelset (top right).  

 

Model performance parameter COF for fault SVD00 with 

logistic regression is shown in Table 5. Not all the models 

generated for fault SVD00 can be considered acceptable 

following the criterion previously defined (COF>1.3), as the 

model was not capable to classify the component condition 

with enough accuracy and low variance.  

 
v 

[m/s] 

COF (near leading 

wheelset sensor) 

COF (near trailing 

wheelset sensor) 

All  Straight Curved  All  Straight  Curved  

10-23 0.8 2.2 2.1 3.5 2.0 2.7 

23-30 3.3 1.2 3.3 2.5 1.3 3.3 

30-36 4.4 2.4 3.8 2.5 2.3 1.9 

36-39 4.3 3.4 4.8 6.0 3.7 5.4 

10-39 4.3 2.5 3.6 5.6 4.1 2.9 

Table 5. Fault SVD00 classification performance at different 

speeds and track sections. Model is considered acceptable if 

COF>1.3. 

 

The cross-validated accuracy and its standard deviation 

corresponding to the NGini showed in Figure 7 when all in 

all sections are considered and using the sensor near the 

leading wheelset is 92±2%, while using the near trailing 

wheelset sensor is 95±3%. The exceptions are: for all sections 

in the leading wheelset sensor at speeds between 10 and 23 
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m/s with 78±12%, in straight tracks between 23 to 30 m/s 

with 76±5% and in the same operating conditions using the 

near the trailing wheelset sensor is 85±12%. 

NGini for fault SVD50 in several wheelsets at different speed 

ranges considering all track section types is shown in Figure 

8. The classification can vary considerably depending on its 

location in the train. Regardless, Ngini is close to 0.7 at 

middle speeds when considering samples from all track 

sections and all speed ranges.  

 
Figure 8. Fault SVD50 classification normalized Gini 

coefficient with logistic regression model for all sections in 

three wheelsets at different speed ranges (top left) and overall 

speeds (top right). 

 

COF for fault SVD50 is considerable smaller than SVD00. 

As fault SVD50 is less severe than SVD00, more energy must 

be introduced into the system to detect it. This hypothesis will 

explain the low classification performance at low speeds, and 

how it grows with increasing speed. Models show overfitting 

at low speeds, in which many features were required to 

classify between faulty and normal component status. 

 
Fault SVD50 COF (All sections) 

v [m/s] FWS 1 FWS 2 FWS 3 

5 – 23 1.0 0.4 2.0 

23 – 29 2.5 1.6 0.8 

27 – 33 1.2 1.8 1.4 

23 – 33 1.4 1.4 1.9 

5 – 33 1.4 1.9 3.1 

Table 6. Fault SVD50 classification performance on different 

wheelset at different speeds considering observation from all 

sections. FWS: Faulty wheelset. 

 

The cross-validated accuracy and its standard deviation 

corresponding to the NGini showed in Figure 8 using the 

sensor near wheelset W1 is 83±8%, while using the sensor 

near wheelset W2 is 85±7% and on wheelset W3 is 72±7%. 

The exceptions are: on W1 in the speed range between 5 and 

23 m/s which is just 79±10%, and between 27 and 33 m/s 

which is 82±11%; on W2 between 5 and 23 m/s which is just 

70±14%; and on W3 between 23 and 29 m/s which is just 

75±11%. 

NGini of fault PVD00 considering all sections is shown in 

Figure 9. These curves show how sensor redundancy can 

increase robustness and classification performance up to 

20%. NGini in fault PVD00 remains close to 0.8 for speed 

ranges over 23 m/s, and best speed range interval is again the 

one with more available observation samples, 36 to 38 m/s. 

 
Figure 9. Fault PVD00 classification normalized Gini 

coefficient for logistic regression model for all sections in 

two wheelsets at different speed ranges (top left) and overall 

speeds (top right). 

 

COF for fault PVD00 increases with the amount of data 

available, in this case at higher speed ranges, see Table 7. A 

drop in classification is observed in speed range between 28 

and 36 m/s. A possible explanation could be an overlapping 

with other noise sources that could mask relevant fault 

information in the used frequencies band features. 

 
Fault PVD00 COF (All sections)  

v [m/s] FWS 1 FWS 2 

10 – 23 1.6 0.7 

23 – 28 1.5 2.5 

28 – 36 2.3 2.3 

36 – 38 4.0 5.2 

10 – 39 2.3 3.1 

Table 7. Fault PVD00 classification performance in different 

wheelsets at different speeds considering observation from 

all sections. 

 

The cross-validated accuracy and its standard deviation 

corresponding to the NGini showed in Figure 9 using the 

sensor near wheelset W1 is 85±4%, while using the sensor 

near wheelset W2 is 92±2%. The exceptions on W2 in the 

speed range between 5 and 23 m/s which is just 77±10%. 
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4.2 Microphones exposed bogie-position to 

aerodynamic noise 

Fault classification performance is more challenging when 

microphones exposed to aerodynamic noise. Advanced 

signal processing methods were required to extract useful 

features to achieve an acceptable fault classification.  

Time length of each observation varies within track sections 

and train speed between 20 and 40 seconds. The observations 

were split into 10 second subsegments (SubSeg) as a first step 

to increase available data. This did not increase NGini in all 

cases but increased the model performance parameter COF 

for fault SVD00 and PVD00. The probability to introduce the 

required excitation energy is higher with longer time signals. 

This effect is not observed for faults SVD50 and PVD50. 

This sub segmentation (SubSeg) increased NGini and COF 

on fault SVD50 in straight section Str1, but did not achieve 

similar results with PVD50, see Table 8. 

A NGini reduction in fault SVD50 is obtained when 

including also Str2 compared with the case considering just 

straight track section Str1. Reducing excitation variability 

grouping observation into similar track sections types 

improved classification, see COF of fault SVD00 in Table 8. 

 
COF Sub

Seg 

Fault FWS LR 

NGini 

1*std Track 

2.8 no SVD00 6 0.78 0.09 Cur+Tra 

1.9 yes SVD00 6 0.80 0.15 Str1 

3.7 no SVD00 11 0.82 0.06 Cur+Tra 

2.4 yes SVD00 11 0.58 0.07 Cur+Tra 

3.8 no SVD00 11 0.87 0.06 Cur 

3.1 no SVD00 11 0.77 0.07 Tra 

8.0 no SVD00 11 0.99 0.01 Str1 

4.6 yes SVD00 11 0.98 0.05 Str1 

2.3 yes SVD00 11 0.71 0.10 Str1 

4.9 yes SVD50 11 0.92 0.04 Str1 

2.4 no SVD50 11 0.77 0.11 Str1 

1.4 no SVD50 11 0.53 0.14 Str1+Str

2 

3.5 yes PVD00 6 0.63 0.04 All 

3.8 yes PVD00 6 0.69 0.04 Cur+Tra 

2.7 no PVD00 6 0.65 0.07 Cur+Tra 

4.3 yes PVD00 6 0.98 0.06 Str1 

6.0 no PVD00 6 0.99 0.03 Str1 

3.9 no PVD00 11 0.80 0.05 Cur+Tra 

2.4 no PVD00 11 0.72 0.10 Cur 

5.4 no PVD00 11 0.99 0.04 Str1 

8.1 yes PVD00 11 0.99 0.01 Str1 

2.6 yes PVD50 6 0.80 0.10 Str1 

5.1 no PVD50 6 0.96 0.04 Str1 

2.9 no PVD50 6 0.84 0.09 Str1 

Table 8. Faults classification performance at speed range 30-

40 m/s in different track sections for sensors exposed to 

aerodynamic noise. NF: number of features used; %F: 

percentage of faulty cases.  

 

Fault PVD50 was just possible to be successfully classified 

in straight section Str1. Fault SVD50 was classified 

successfully in straight and transitions. Fault PVD00 and 

SVD00 were classified in all sections, but meanwhile models 

COF for these two faults reached values around 8 in section 

Str1, it stayed around 5 for PVD50 and SVD50.  

Model decision functions of all fault classifications in straight 

track Str1 are shown in Figure 10 and Figure 11. Under the 

mentioned operating conditions, first Mel frequency cepstral 

coefficient skewness (skew) and impulse factor (im),  

together with the PSD frequency band around 1105.2 Hz and 

spectral bandwidth (sbw) are useful features to classify 

between normal and faulty status for fault PVD00 and 

PVD50. 

 

 
Figure 10. Decision function of primary suspension faults on 

straight track section Str1 using logistic regression, PVD00 

(top) and PVD50 (bottom). 

 

In the case of faults SVD00 and SVD50, the PSD frequency 

band around 562.8 Hz, the first and seventh Mel frequency 

cepstral coefficient achieved a considerable classification 

performance. 

A small improvement could be achieved using a nonlinear 

classifier, in the case of 50% damping efficiency reduction 

faults (SVD50 and PVD50), but the present work was 
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focused on finding proper features for classification rather 

than model selection and hyperparameter tuning of the best 

machine learning algorithm. 

 

 
Figure 11. Decision function of secondary suspension faults 

on straight track section Str1 using logistic regression, 

SVD00 (top) and SVD50 (bottom). 

 

The cross-validated accuracy of the classifications for the 

same operating condition as the one shown in Figure 10 and 

Figure 11 is: 98±3% for PVD00, 92±6% for PVD50, 98±3% 

for SVD00 and is 90±8% for SVD50. 

Figure 12 shows an intuitive representation of the confusion 

matrix of the multiclass classification models for both tests in 

two different wheelsets, in which the wrong classified 

observations are stacked one on top of the other. Just one 

existing fault at a time was considered. If multiple faults 

occur simultaneously, masking between important 

frequencies could happen (Lacey, 2008). The classification 

using microphones located near a leading and trailing 

wheelset (Figure 12a), in which just PSD energy bands were 

used in the initial feature pool, shows lower performance. 

SVD50 is just misclassified with PVD00 in both wheelsets, 

while PVD00 is misclassified also with normal condition.  

The amount of data available from signals sensor on an 

exposed bogie position in straight track Str1 (Figure 12b and 

Figure 12c) is considerably reduced. Depending on the 

wheelset, misclassification can vary considerably.  

 

a)   

b)   

c)  

Figure 12. Multiple fault classification models confusion bars 

for first tests in all section (a) and second tests in straight track 

Str1 (b and c). 
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Normal condition and PVD00 are mostly well classified, 

while SVD00 and SVD50 show higher misclassification. 

Multiple fault classification models showed the capacity to 

be used as fault model selector for specific operating 

conditions. 

 

5 CONCLUSIONS  

The approach presented in this paper for suspension damper 

fault detection and classification with data-driven models 

using on-board acoustic sensors shows promising results.  

Normalized Gini coefficient NGini (where Gini coefficient 

represents twice the area under the receiver operating 

characteristic curve minus one, normalized with the area of a 

perfect classifier, ground truth) has been used as classifier 

scorer. Data-driven models are considered as good with 

NGini values over 0.7. 

With microphones located sensor near the leading or trailing 

wheelset, removed dampers in vertical suspension were 

classified considering all section types and speed ranges with 

a NGini of 0.75±0.1 (PVD00) and 0.77±0.04 (SVD00), while 

classification of secondary vertical 50% damper efficiency 

reduction fault achieved a NGini of 0.71±0.06 (SVD50). The 

cross-validated balanced accuracies of the classifications for 

the same operating condition are 92±2% (PVD00), 95±3% 

(SVD00) and 85±7% (SVD50). 

The speed range from 30 to 36 m/s seems to be the most 

appropriate for classification of fault SVD00 in straight 

section, while in curves the range 36 to 39 m/s shows higher 

performance. The speed ranges from 23 to 28 m/s and 36 to 

38 m/s show higher classification performance for fault 

PVD00. 

Using microphones exposed to aerodynamic noise, all faults 

were classified successfully with just 2 features in the speed 

range of 30 to 40 m/s. Removed dampers in vertical 

suspension were classified in straight track Str1 with a NGini 

of 0.99±0.03 (PVD00) and 0.99±0.01 (SVD00), while 

classification of 50% damper efficiency reduction fault 

achieved a NGini of 0.84±0.09 (PVD50) and 0.77±0.11 

(SVD50). The respective cross-validated balanced accuracies 

of the classifications for the same operating condition are 

98±3% (PVD00), 92±6% (PVD50), 98±3% (SVD00) and 

90±8% (SVD50). 

Multiclass classification models achieved acceptable 

classification performance when faults were grouped under 

similar required excitation, they can be used for model 

selection of specific fault detection depending on the train 

operating conditions.  
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