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ABSTRACT 

Accurate estimation of the mechanical property of aging 

pipes is critical to maintain the safety and to scheduling 

maintenance. Destructive testing for mechanical properties 

measurement is very expensive and sometime impossible. 

Inference methods are needed for estimating the bulk 

properties by multimodality surface material measurements 

from nondestructive testing, such as chemical composition, 

volume fraction and hardness. Bayesian network modeling 

is utilized to integrate the information from various types of 

surface measurements for a more accurate bulk mechanical 

property estimation. To improve the approximation of the 

actual underlying model and avoid the risk of overfitting, 

Bayesian model averaging (BMA) of Bayesian networks is 

implemented to account for Bayesian network model 

uncertainty. The models considered are weighted based on 

the posterior model probability. Markov Chain Monte Carlo 

sampling provides an effective way for numerically 

computing the marginal likelihoods, which are essential for 

obtaining the posterior model probabilities. The predictive 

performance of single best model and BMA are compared 

by logarithmic scoring rule. The predictive capability of the 

proposed method is evaluated. It is shown that the Bayesian 

network and model averaging approach can provide more 

reliable results in predicting the bulk mechanical properties 

of the pipelines. 

1. PROBLEM STATEMENT 

The United States has become one of the leading nations 

that constructs the most millage length in the gas pipelines. 

Accurate pipe material mechanical property estimation is 

critical for the integrity and risk assessment of aging 

pipeline infrastructure systems. The objective of this 

research is to carry out Bayesian network-based data 

analytics approach to estimate the pipe material strength and 

toughness. Multimodality surface information are to be 

fused for the inference of the bulk properties. These surface 

measurements include surface chemistry, surface 

indentation and scratch testing results and microstructure 

observations. A complete data set from 20 aging pips is 

available from industry and shown schematically in Figure 

1. Each type of measurement contains certain amount of 

valuable information for pipe mechanical property 

estimation. Also, they are all associated with different 

amount of uncertainties. This research works on integrating 

all types of information in a statistical meaningful way for 

more reliable estimation. 

 

Figure 1. Data set. 

2. EXPECTED CONTRIBUTIONS 

This research investigates the inference of the bulk 

mechanical properties of aging pipe materials using 

measured multimodality surface measurements. To achieve 

this goal, the methodology involves using the BMA of 

Bayesian networks as a general information fusion 

framework to incorporate the multimodal measurements and 

to derive the statistical inference. As a statistic based 

approach, Bayesian network has the capacity to improve 

robustness in modeling and reasoning under uncertainty. 

However, the number of high-scoring models is usually 

large especially when the given dataset has small sample 

size and several Bayesian networks describing the sparse 

training data equally well (Xiao, Chen, & Chang, 2014). 

The single best Bayesian network structure does not always 

give a good approximation of the actual underlying structure 

(Kyu-Baek & Byoung-Tak, 2005). The Bayesian model 

averaging (BMA) of Bayesian networks is utilized to 

enhance the confidence for decision making by considering 

the model associated uncertainties and model choice 

uncertainty (Guan, Jha, & Liu, 2011). 

For implementing BMA theory for Bayesian network 

model averaging, there exist the following difficulties. 1. To 
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calculate the model probability, the marginal likelihood of a 

model is needed whose closed form integral may not 

available.  Markov Chain Monte Carlo (MCMC) approach 

provides a way to overcome this problem. 2. The number of 

models considered to be averaged may be extremely large. 

One approach is to reduce the number of models by leaving 

out the models which are not evidently supported by the 

data. This can be accomplished by introducing Occam’s 

window to the process of BMA (Madigan & Raftery, 1994). 

3. A scoring metric is needed for assessing the predictive 

performance of BMA and the single models. The 

logarithmic scoring rule measures the predictive ability by 

comparing the probabilities each model assigns to the events 

that actually occur (Hoeting, Madigan, Raftery, & Volinsky, 

1999). This research focus on addressing the above issues to 

fulfill BMA of Bayesian networks for bulk mechanical 

estimation using multimodal surface data.   

3. RESEARCH PLAN 

To implement the Bayesian model averaging of the 

Bayesian networks, the research is carried out following two 

main steps. First, the models are simplified as naïve 

Bayesian network by assuming the surface measurements 

are independent given the bulk properties. Next, the 

Bayesian network are constructed by allowing the modeling 

of inter-feature-node dependencies to improve the quality of 

the inference process. 

3.1 Work Performed 

The first main step of the research plan is performed 

currently, i.e. BMA over the naïve Bayesian networks.  

Suppose there is a set of reasonable models M1, … , Mk for 

estimating a quantity of interest μ from the set of data y. The 

marginal likelihood λn, j (y) for model Mj is expressed as 

 , ( ) ( | , ) ( | )n j j j j j jy f y M M d    =  , (1) 

where f (y | Mj, θj) is the likelihood of data given the model 

Mj and its parameters θj, π (θj | Mj) is the prior densities for 

parameters θj of model Mj. The posterior probability of the 

model is obtained as 
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where P (Mj) is prior probabilities for models under 

consideration. After computing the posterior density π (μ | 

Mj, y) of μ for each model, the averaged posterior 

distributions weighted by posterior model probability is 

given by 
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Eq. (3) shows that the posterior density π (μ | y) is a 

weighted average and mixture of the conditional posterior 

densities, where the weights are the posterior probability of 

each model. The posterior density π (μ | y) for the model 

averaging is the mixture distribution of the single 

conditional posterior density π (μ | Mj, y) considered. 

The full data of 20 aging pipes are used for the Bayesian 

model selection, averaging and variable analysis. The results 

are shown in Table 1. Pr (Ai≠0) is the probability that the 

coefficient Ai of a variable is non-zero and is used as a 

metric of evaluating the usefulness of a variable. The 

subscripts all and Occam show that the model set considered 

are the class of all models and the models selected by 

Occam’s window, respectively. From the bottom row of 

Table 1, Prall (Ai≠0) is close to PrOccam (Ai≠0), which means 

that Occam’s window method which considers part of the 

models has similar results as that from the whole model set. 

It can be observed that the variables of best model (Cu and 

HD) have the highest probabilities that their coefficients are 

non-zero and show relatively strong predictive usefulness. 

The results provide positive evidence for Cr and indecisive 

evidence for P, Si, GS-1/2, and VF. 

Table 1. Model ranks and posterior probabilities for the full data. 

Model rank P Cr Cu Si GS-1/2 HD VF P (Mj|y) 
BIC 

rank 

1   •   •  0.169 1 

2  • • •  • • 0.056 30 

3  • • • • •  0.053 34 

4  • •  • • • 0.052 35 

5  •  • • • • 0.049 40 

Prall (Ai≠0) 0.34 0.66 0.83 0.42 0.33 0.84 0.39   

PrOccam (Ai≠0) 0.37 0.62 0.77 0.44 0.36 0.78 0.41   

The performance of BMA for predictions of pipe 

strength is assessed by randomly splitting the data from 

a total of 20 aging pipes into two sets: build data (15 

pipes) and test data (5 pipes). BMA shows better 

predictive performance than the best model. The log 

score of BMA is 0.4 less than that of the best. There are 

5 data in the test data set. Therefore the predictive 

probability of what is actually observed is [exp(0.4/5) -
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1] × 100% = 8.3% larger for BMA than for best model 

M1. 
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Figure 2 shows intuitively the comparison of 

predictive performances of the direct surface 

indentation technique, lowest BIC model, highest 

posterior probability model, and BMA. The error bars 

represent the 95% credible intervals. The dots with 

different shapes are the expectations of different 

models. On average, the error of each model is less 

than that of the surface indentation technique. BMA 

shows better performance than the lowest BIC model 

and highest posterior probability model. In order to 

check that the above results are not due to the particular 

split used, the full data are randomly split for 100 times 

and the average results are analyzed. Among the 

repeated experiments of 100 times, BMA have better 

predictive ability for 71 times. The average predictive 

log sores are 15.07 and 14.26 for the highest posterior 

probability model and BMA, respectively. On average 

BMA can predict the strength with an improvement of 

17.6%.  
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Figure 2. Predictive performance comparison. 

3.2 Remaining Work 

Naïve Bayesian network needs a strong assumption 

that the feature nodes (surface measurements) are 

independent from each other given the root node (bulk 

mechanical property), which is not always the case in 

practice. By considering the dependencies of the 

feature nodes, the quality of inference can be improved 

(Dash & Cooper, 2004). The future work will focus on 

BMA over Bayesian networks with inter-feature-node 

dependences.  

The remaining work includes:  

1. Choosing the class of model over which to average 

needs an efficient algorithm for learning the top 

Bayesian network structures. Posterior model 

probabilities are used as a metric to guide the search. 

Occam’s window has shown effectiveness in naïve 

Bayes case and will be extended for Bayesian 

networks. 

2. Bayesian model averaging over the representative 

Bayesian networks. An appropriate method for 

averaging needs to be selected to perform the BMA 

efficiently. 

3.  Evaluation of the performance of BMA over 

Bayesian networks using the pipe data. The logarithmic 

scoring rule is to be used to measure how well a model 

predict future observations. 

4. CONCLUSION 

This research aims to estimate the bulk mechanical 

properties by fusing the multimodal surface 

measurements. To fulfill this objective, Bayesian model 

averaging of Bayesian networks is proposed for the 

implementation. The top models are selected and 

averaged according to the posterior model probability. 

The decision is made by averaging over the prediction 

results of the top Bayesian networks. BMA over naïve 

Bayesian networks has been performed and shows the 

BMA can improve the reliability and accuracy of the 

predictions. The remaining work will focus on the 

BMA considering the dependencies of the feature 

nodes to further improve the predictive capacity. 
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