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ABSTRACT 

Many military assets such as surface ships and ground 
vehicles use diesel engines as their prime movers, and 
accurately estimating remaining useful life has a high value 
for enabling predictive maintenance and improving fleet 
logistics.  Most of these diesel engines are already equipped 
with an array of sensors and digital data busses to support the 
function of the integrated electronic control module (ECM).  
There are cost advantages to developing predictive analytics 
and prognostics using existing embedded sensors.  This paper 
describes a hybrid approach to predictive capabilities that 
utilizes multiple techniques for the implementation of 
embedded prognostics using existing sensors.  One of the 
challenges is the fidelity of the data. This paper describes an 
automated approach to feature and classifier selection for 
hybrid prognostics. Maintenance records with associated 
diesel engine sensor data for several different engine classes 
were acquired, which enabled the training data sets to be 
organized by failure modes.  To help prevent false positives, 
some filtering of the maintenance logs was required to only 
include those records likely to be associated with the selected 
failure mode sensor data sets.  The classifier-based, data-
driven approach essentially maps multiple channels of the 
sensor data into subspaces trained to classify multiple distinct 
failure modes.  The intent of this step is to enable fault 
isolation by quantitatively determining which failure mode 
class the data best fits statistically.  The remaining useful life 
estimate is provided by tracking the temporal path of the data 
from the healthy engine classification to one of the known 
failure mode classes using engine load-hours as the metric for 
the prognostics. 

1. BACKGROUND AND DATA ANALYSIS APPROACH 

A recent study of trends in prognostics research showed a 
significant increase in the use of machine learning 
techniques, particularly deep learning techniques, starting in 
about 2007 (Bernardo, 2017). Neural networks (NN) and 
other techniques which can be classified as machine learning 
(ML) have been applied in system health monitoring since 
the 1990s.  Japkowicz, Meyers and Gluck (1994) reported on 
the use of neural network techniques for novelty detection, 
and the technique was applied to the detection of faults in 
helicopter gearboxes.  While there are many references to the 
use of neural network techniques in the literature, the 
connectionist models referenced in the paper are forerunners 
of today’s deep learning techniques. In 2006 Hinton, 
Osindero, & Teh (2006) introduced deep learning techniques 
that changed the way neural networks are structured and 
trained. Further advancements were made in the late 2000s 
(Deng et al., 2009) with significant demonstrations and 
applications beginning to appear in 2011. A recent trend has 
been to focus on the development of prognostic algorithms 
using low bandwidth sensor data  (Grosvenor et al., 2014), 
such as that available on vehicle control and sensor busses.   

The primary objective of this work was to evaluate the 
feasibility of using existing health monitoring data, originally 
intended for consumption by physics based models and 
subject matter experts, for machine learning based 
prognostics algorithms. The discussed techniques, however, 
are not specific to diesel engines. Data logs from engine 
management sensors leading up to specific component failure 
events are grouped together to form a collection of 
Unscheduled Maintenance Events (UMEs).  These data 
histories are used to train a ML classifier with the goal of 
identifying trends in the sensor data that can be correlated 
with engine component health.  The hypothesized ML 
classifier can then recognize similar trends in new data from 
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operational engines, and provide prognostic estimates on 
engine component health. 

As a means for accomplishing this, a secondary objective was 
established to implement a software framework that enables 
the ingestion, preparation, and processing of maintenance 
records and sensor data through a variety of machine learning 
techniques. The result is automated generation and validation 
of classifiers that predict the health of the system relative to 
the state in which maintenance is required.  The subsequent 
evaluation of these techniques’ performance is reported.   

1.1. Data Sources 

The data used in the following approach originates from two 
independent databases – one storing engine maintenance 
records, and one storing control and monitoring system 
sensor measurements.  

The sensor measurements used by the engine management 
computer are logged by a third party data acquisition system 
for the purpose of traditional sensor based diagnostics and 
fault detection.  These logs are periodically uploaded from 
the engine’s location to a separate database for record 
keeping.  The sensor data used in this approach is periodically 
captured, low-bandwidth (sample rate) data, intended to be 
representative of steady-state engine operation. 

1.2. Data Analysis Framework 

The framework is a group of scripts developed in Python 3.6 
that automates the process of natively interfacing with the 
database servers, preparing the data, training the classifiers, 
and scoring their performance.  The program accepts 
configuration files that describe database connection 
information, a list of UMEs to use for training/test, and a list 
of preprocessing parameter and ML classifier parameter 
configurations to be evaluated. 

1.3. Limitations and Scope  

The training approach described in this paper attempts to 
correlate multiple engine sensor data trends with each other, 
according to known points in time where engine component 
failures occur.  It is understood, if not expected, that there 
may be more than one component demonstrating detectable 
degradation at any given time.  This approach assumes the 
fault signatures of each failure mode are sufficiently 
independent from one another such that a ML classifier 
trained to detect a specific failure mode’s trend will not be 
sensitive to an alternate failure modes’ trend.  Coupling 
between trends is the subject of planned future efforts. 

2. DATA PREPARATION 

Supervised ML-based classifiers require labeled data for 
training, where each data observation has an associated class 
label.  In this case, each observation is a vector in the n-
dimensional space defined by a combination of n-sensors, 

and the class label corresponds to how severely degraded the 
engine is believed to be.  To obtain labeled training data for 
a specific failure mode, first a group of similar UMEs must 
be identified from the maintenance records.  This list of 
UMEs represents specific dates in which a component of 
interest failed.  Next, sensor data histories ending with the 
failure date are extracted from the database. The resulting 
observations are then split into discrete degradation classes 
according to how close in the data history each observation is 
to the failure point.  Finally, the data undergoes 
normalization, missing value handling, and additional feature 
engineering, before it is finally ready for ingestion by the ML 
training algorithm.   

2.1. Maintenance Record Fault Identification 

UME list generation for building training data began with 
analysis of numerous maintenance records collected from the 
population of engines in consideration, and followed a similar 
process to that used to develop the system reliability and 
condition based maintenance strategy for the platform (Banks 
et al., 2008). First, an appropriate approximation to “failure 
mode” was created by combining several fields among the 
maintenance records in a database, allowing records to be 
grouped by failure mode. After grouping records in this 
manner, a degrader analysis could be performed. Using 
Pareto analysis principles, the most damaging failure modes 
were determined based upon numerous metrics. The resulting 
list identified the failure modes which, if predicted, would 
make the most significant impact in increasing engine 
uptime.  These became the focus of the effort.  The goal then 
became finding ways to group UMEs together for the purpose 
of constructing training data sets comprised of sensor data 
associated with component failures that occur in a similar 
fashion. 

2.1.1. Maintenance Record Fault Mode And Pareto 
Analysis 

The maintenance records provided for the purposes of 
creating datasets contained engine identification information, 
maintenance action details, and other tracking information. 
The primary challenge was to extract the specific failure 
mode which prompted the maintenance action recorded, if it 
existed. In addition to maintenance actions corresponding to 
equipment breakdown, the population of maintenance 
records included inspections, repairs due to human error, and 
minor maintenance actions unrelated to the operation of the 
engines in question which all needed to be filtered out. All 
maintenance records also included an opened date, a closed 
date, and a field describing the criticality of the maintenance 
action. The criticality field broadly defined whether the 
engine was operational or not until the maintenance could be 
completed. Records coded “Critical” or “Major” accounted 
for 5% of all maintenance actions – only these maintenance 
actions resulted in engine downtime. After confirming with 
the customer that this was a valid approach, the opening and 
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closing dates were combined to create a “repair time” field. 
By further combining this repair time field with the criticality 
description field, “downtime” could be calculated.  

All maintenance records were coded by the maintainer into 
one or more of 95 possible work breakdown structure codes. 
Also obtained was a text description of each work breakdown 
code used, allowing these codes to be human-interpretable. 
See Figure 1 for a Pareto analysis of the downtime associated 
with these different work breakdowns, and Figure 2 for a 
Pareto analysis of the number of occurrences of various work 
breakdown structures.  

 

Figure 1: Pareto Chart, Maintenance Event Code vs 
Downtime 
 

 

Figure 2: Pareto Chart, Maintenance Event Code vs Counts 
 
Further analysis of records within specific codes revealed that 
many of the work breakdown structure codes were not 
specific enough for our purposes if used alone. For example, 
while UMEs associated with the code for main bearings are 
sufficiently similar, there were several significantly 

dissimilar failure modes represented by the fuel injection 
nozzle code. This field was also prone to misclassifications 
and false positives.  

Records also list the specific parts consumed by the 
maintenance actions, which offers another dimension of 
comparison in addition to the work breakdown structure 
codes. Many records listed several parts consumed, while 
some listed dozens of parts as consumed. This is reasonable 
to expect, as even simple repairs may require multiple 
consumables. This does, however, create issues in grouping 
records, as the same failure mode may require slightly 
different low value consumables depending on the exact 
details of the failure, including how far it had progressed. One 
solution to this is to find a “primary” or “source” part number, 
ideally the part number corresponding to the part originally 
responsible for the maintenance action. This kind of 
information regarding a specific maintenance action most 
likely is impossible to gather and was not recorded in the 
maintenance records available. As a substitute, cost data was 
acquired from another source and merged with each record, 
allowing the identification of the most expensive part 
consumed during a maintenance action. Following the 
assumption that repairs would require one significantly 
expensive part and zero or several less expensive auxiliary 
parts, the most expensive part number consumed for each 
record was recorded as the primary part number. Figure 3 
gives one trivial and theoretical example of this analysis with 
fabricated costs for the different parts.  

 

Part Number Part Description Cost 

015623 Main Bearing $1,100 

023654 Seal $60 

010023 1/4 -20 bolt $1 

 

 

 

If a maintenance record only has a single part number 
consumed, that part number is obviously recorded as the 
primary part number. Pareto analysis of the downtime 
associated with different primary part numbers can be seen in 
Figure 4.  This analysis revealed that only 86 unique primary 
part numbers were associated with engine downtime in the 
population of maintenance records, and 16 of those part 
numbers were associated with 80% of all recorded downtime.  
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Figure 3: Primary Part Number Determination (part 
numbers randomly generated to demonstration concept) 
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Figure 4: Pareto Chart, Primary Part Number vs Downtime 
 

Ultimately, a combination of the codes used by the 
maintainers, specific part numbers consumed while 
preforming the maintenance actions, and several plain text 
descriptions of the maintenance action were used to classify 
the maintenance records into different failure modes. 

Having classified the maintenance records into different 
failure modes, and establishing down time as the metric for 
UME severity, the failure modes found to be responsible for 
large percentages of total downtime were then analyzed by a 
diesel engine subject matter expert to determine if that 
specific failure mode was a good candidate for prediction. 
Good candidates were failure modes which satisfied the 
following criteria: 

1. Expected to follow a reasonably continuous failure 
progression 

2. Expected to change the operation of the engine in 
question 

3. Not expected to be visible to engine operators until 
the failure had significantly progressed 

The purpose of this filtering was to remove failure modes 
which would have a low chance of successful modeling, or 
failure modes where even the best predictive analytics 
modeling would offer little new information to the operator.  

2.1.2. Maintenance Record Final Cleaning and 
Preparation 

Having determined which failure modes significantly impact 
engine availability, have a potential for successful prediction, 
and are not immediately obvious to operators, there was some 
necessary final data cleaning and analysis to be done. Failures 
which commonly surfaced were main bearing failures, 
various sensor failures, and fuel system faults.  

Having concurrently developed some understanding of the 
schema of the parametric databases which were to be queried, 
some fields in the maintenance record database were 
reformatted for agreement between the two different 
databases. This relatively simple step significantly simplified 
downstream work.  

Certain automatically generated failure modes were deemed 
too broad, and required some manual cleaning and further 
classification. This accounted for a small fraction of the total 
maintenance record population and was not a surprise.  

2.2. Parametric (Sensor) Data Preprocessing 

2.2.1. Degradation Class Labeling 

We assume that as engine operational hours accumulate, the 
expected remaining life of its components decreases - the 
components degrade.  It has been established that sensor data 
observations are assigned a degradation class according to 
how far away they are in the history from the failure event.  
As such, a method for establishing this distance is required.  
A similar approach was explored by Roemer (2017) to 
examine faults in flow valves. 

A simple metric of elapsed time does not work well in 
practice due to the fact that the engines of the population do 
not see identical usage patterns.  Instead, fuel consumption 
was used as the measurement for expended life.  Fuel 
consumption effectively represents “load-hours” and 
accounts for periods of shutdown as well as normalizing light 
vs. heavy engine load.  An example fuel history vs. time and 
how degradation classes are defined is shown in Figure 5.  It 
is seen here that various engines burn through fuel at differing 
rates when all engine’s fuel histories are aligned at the point 
of the Unscheduled Maintenance Event.  

 

Figure 5: Example fuel history vs time showing fault 
classification levels. 
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2.2.2. Missing Value Handling, Additional Processing 

Many ML algorithms are unable to handle missing data.  
Linear Discriminant Analysis, in particular, requires a fully 
dense observation matrix for determining the subspace 
transformation mapping.  As such, a method was developed 
for paring down the sensor data to remove incomplete 
observations. 

Procedure for handling missing data: 

1) Resample data by averaging each N-minute span 
into a single data observation.  This averages 
neighboring data observations into a single vector 
that may have more non-missing values than each of 
the individual source vectors. 

2) Calculate the percentage of missing values in each 
row, and determine the maximum value 

3) Calculate the percentage of missing values in each 
column, and determine the maximum value 

4) If the row maximum percentage is greater than the 
column maximum percentage, delete all rows 
having that percentage score.  Else, remove the first 
column having that percentage score 

5) Loop back to step 2 until no missing values remain 

The framework includes flexibility to add further subject 
matter expert defined preprocessing/feature engineering 
steps as well.  An example of this would be starting with a 
list of engine bearing temperature measurements, and using 
them to derive a new feature representing the maximum 
differential bearing temperature. 

2.3. Machine Learning 

Upon completion of the previously described process, we 
arrive at a set of engine operating point observations labeled 
with degradation classes corresponding to fuel history 
distance from failure.  This is the form required for training a 
ML classifier.  As the data processing framework was 
developed in Python, the scikit-learn toolbox was used for 
ML functions.  To make the trained classifiers and preprocess 
results portable for classifying new data, a high-level, custom 
classifier object is defined.  This object encapsulates a list of 
the specific sensor channels used for training after conducting 
the missing values handling, sensor data normalization 
coefficients, and the scikit-learn ML classifier objects 
themselves (i.e. Linear Discriminant Analysis (LDA) 
transform coefficients, Bayesian weights, decision trees, etc.) 
(Pedregosa, et al., 2011). The framework is intended to be 
flexible, enabling any classifier that accepts labeled data 
observations to be evaluated for use with little additional 
integration effort. 

 

2.3.1. Linear Discriminant Analysis-Naïve Bayes  

Many standard classifiers are available for use in the scikit-
learn toolbox, which is one of the strengths of Python for data 
science. One of the modeling architectures proposed 
throughout this effort is a combination classification model 
which uses LDA for subspace creation and dimensionality 
reduction in combination with a Naïve Bayes classifier 
trained on the transformed data. At a conceptual level, LDA 
calculates the subspace transformation of labeled data that  
maximizes Fisher’s discrimiant ratio, which can be thought 
of as the scatter between classes divided by the scatter within 
classes. While simple, hard decision boundaries can be 
formed based on these transformations, a Naïve Bayes model 
was fit to the subspace features to further improve the model 
and to provide more information about how likely each class 
is for a given observation. The Naïve Bayes classifier 
estimates the most likely normal distribution for each input 
dimension for each classification level. New data is classified 
by calculating the likelihood that each different observation 
belongs to each different classification level, variable by 
variable – the class with the highest combined likelihood is 
then the predicted class.   

Used in combination, LDA maximizes the separation 
between classes in an optimized subspace, and Naïve Bayes 
then learns the details of where each different degredation 
class is most likely to be found within this subspace. New 
observations are first transformed into the subspace learned 
by the LDA model, and then the likelihood of membership to 
each class is calculated based upon the distributions 
estimated by the Naïve Bayes model. 

3. EXAMPLE: INJECTOR PUMP FAULTS 

To test the approach and associated framework, a UME list 
was generated focusing on Fuel Injector Pump faults.  A list 
of 7 UMEs was used for this testing.  Several ML classifiers 
were evaluated.  Details of the UMEs used in this example 
can be seen in Table 1. 

 
Table 1: Maintenance Events Used for Section 3 Example 

UME Total 
Observations 

Class 1 
Obs 

Class 2 
Obs 

Class 3 
Obs 

Class 4 
Obs 

1 178 0 0 63 115 

3 802 267 224 192 119 

4 650 100 264 130 156 

5 806 141 240 186 239 

6 580 18 23 152 387 

7 956 213 334 201 208 

8 927 96 290 265 276 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 
 

6 
 

3.1. Grid-search of learning algorithms 

Following identification of the UMEs to be used, 
configuration scripts defining a grid search of ML techniques 
were developed and executed by the Framework.  Two 
holdout methods were used for testing, one where a 
percentage of each UME’s data was held out to form a testing 
set, and one where entire UMEs were held out to form a 
testing set. The combined LDA-naïve bayes classifier was 
compared to both a Random Forest Classifier and a Support 
Vector Machine (SVM) classifier. After extensive 
experimentation, a third order polynomial kernel function 
was found to provide the best results during use of the SVM.  
The results are shown in Table 2 and Table 3. 

Table 2: Prediction Accuracy of testing data by various 
algorithms when randomly selecting 25% of data as testing 
data, 20 replications.  

Prediction 
Accuracy 
Mean 

Prediction 
Accuracy 
Standard 
Deviation 

LDA-Naïve Bayes 0.687498 0.006862 

Random Forest 0.95582 0.002835 

SVM 0.913857 0.002695 

Since the deployment of the model will require accurate 
prediction of degredation classes on new maintenance events 
rather than assigning the correct class when filling in the gaps 
of a maintenance event, a different strategy for creating 
training and testing datasets was required.  

Table 3: Prediciton accuracy of various algorithms when 
randomly assigning 2 of 7 maintenance events  as testing 
data, 20 replications.  

Prediction 
Accuracy 
Mean 

Prediction Accuracy 
Standard Deviation 

LDA-Naïve Bayes 0.251868 0.118754 

Random Forest 0.311276 0.086861 

SVM 0.165678 0.068346 

 

The significant dropoff in scores for all three modeling 
algorithms suggests that overfitting to specific failure events 
is a significant concern for all modeling architectures used.  

The decision was made to move forward with the LDA-Naïve 
Bayes model despite it’s lower mean predictive accuracy 
after significant, manual examination of predictions made by 
all three models. For certain combinations of maintenance 
events, LDA-Naïve Bayes models demonstrate significantly 
more predictive power than similarly trained SVMs and 
random forests, while remaining robust to overfitting and 
easily interpretable.  

3.2. Analysis GUI tool in R/Shiny 

The way in which fuel history is split into degradation classes 
is a crucial part of the algorithm tuning process. To improve 
the efficiency of this process, a Shiny web application was 
developed using the R statistical computing language, which 
provides users with an easy, graphical interface to upload 
different datasets, experiment with different class labeling 
schemes, and receive immediate feedback (Chang et al., 
2018). Available tuning parameters within the app are: 

 Number of Classes (integer, 2-10) 

 Class Division Units (gallons until failure and days 
until failure) 

 Individual Class starting point (individual slider 
inputs for classes 2 and up) 

 Maintenance events to include in training data 
(checkboxes which set inclusion in training set) 

 Maintenance events to include in the testing data 
(Checkboxes which set inclusion in testing set) 

The application responds to user input by altering the class 
label vector based upon the users chosen number of different 
classes, class label division units, and specific class label 
parameters. Having generated a class label vector, the 
application partitions the data into training and testing data 
per the user’s choices, and performs linear discriminant 
analysis on the selected training data. Using the 
transformation matrix generated from the training data, the 
training data and the testing data are plotted in the feature 
space (up to the first three features), with color determined by 
the actual class label of the data point. A confusion matrix is 
also calculated and displayed, as well as the percentages of 
correctly and incorrectly predicted values in the testing 
dataset. Several figures demonstrating this application (with 
discussion) as applied to the degraded fuel pump example, 
will follow.  

As each of the different algorithms from section 3.1 was 
tested using 4 evenly divided classes, this is the starting point 
for this tuning exercise. 

 

Figure 6: Screen shot from the algorithm tuning app showing  
Injector Pump Data, plotted in feature space. 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 
 

7 
 

Figure 6 demonstrates the bunching of all the various classes 
of data using the default settings. There is very little visible 
of the first class of degradation, as it appears to be very 
similar with class two. By changing the slider value of “Class 
2 start”, the user can choose to combine these two groups by 
covering roughly the first 150,000 gallons before failure 
together and further dividing the final 150,000 gallons of 
failure. Another option is to reduce the total number of fault 
classes from 4 to 3, or to select one or more maintenance 
records to remove from the training dataset. After some 
experimentation, the following settings were considered – 
maintenance events 3, 5, and 6 were used for training data, 
while the classes were set to the following start and stop 
points: 
 
Table 4: Intermediate step and experimentation, class 
definitions, Fuel Injector Pump Data example 

Class 1 2 3 4 
Start (gallons until failure) 299549 195000 90000 30000 
End (gallons until failure) 195000 90000 30000 0 

 
The class definitions in Table 4 produced the training data 
plot in Figure 7, which displays 4 fairly distinct clusters. This 
leaves maintenance events 1, 4, 7, and 8 as optional testing 
dataset components, and maintaining these settings shows 
poor results when predicting the failure progression of these 
maintenance events.  
 

 
Figure 7: Training data associated with intermediate 
experimentation step 
 
More interesting is how the fault mapping changes when 
removing one of the three events which currently make up the 
training data, and testing on this.  

 

 
 
 
Figure 8: Training (Events 5 and 6) and Testing (Event 3) 
mapping and results 
 
When event 3 is removed from the training set and added to 
the testing set, a new model is trained, and the data from UME 
3 is transformed and plotted according to the new LDA 
transformation (Figure 8). The predictive accuracy is very 
low (11% correct), but the failure progression follows a 
similar but shifted pattern through subspace. Investigating the 
confusion matrix shows that a large portion of the data which 
is actually class 1 has been misclassified as class 3, while a 
very large portion of data which is class 2 has been 
misclassified into class 4. Similar analysis can be done by 
separating events 5 and 6, drawing different conclusions 
regarding the similarity between different maintenance 
events. After some more tuning and experimentation, a 
training dataset is created from events 3 and 7, and a 
prediction is made on event 4 producing the results in Figure 
9Error! Reference source not found.. The model in Figure 
9 has a much higher overall prediction accuracy, mostly due 
to strong performance predicting class 2 (86% correct) and 4 
(72% correct). Most of the data for class 4 is separated by 
high values of feature 1 (LD1 in the graph).  
 

 
Figure 9: Training (Events 3 and 7) map and Testing (Event 
4) map and results 
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The user can decide to further tweak the number of classes, 
try to more effectively split classes 1-3 apart, or move onto a 
completely different selection of maintenance events if not a 
whole different failure mode. The application provides 
tremendous flexibility to experiment with the tuning 
parameters available to this machine learning technique.  
 

3.3. Sensitivity correlations of UMEs 

The analysis from section 3.2 should provide some sense of 
how complex the interactions between different maintenance 
events can be within the linear discriminant analysis 
framework, even in very similar fault groupings. One way to 
further explore these subtleties is to test the predictive power 
of a model trained on a single maintenance event on the 
dataset constructed for a different maintenance event within 
a specific failure mode, and to repeat this methodology for all 
given maintenance events. This procedure allows quick 
analysis of how similar the progression through feature space 
is between two or more different maintenance events. Results 
of this strategy are presented in  
Table 5. 
 

The bottom row is the average of all scores that are not the 
model scoring on itself, or the cross validated (CV) score for 
that model. The diagonal, where the model is scored only on 
the training data, is shaded grey as this is not a valid score for 
this methodology. Valid scores over 0.5 are highlighted green 
to make patterns visually clear. Looking at the averaged 
scores, models trained on maintenance events 1, 5, and 7 are 
marginally more accurate than others while models trained 
on event 8 are fairly weak. 

 
Table 5: UME sensitivity matrix, fuel injection pumps 

 
Model 
1.0 

Model 
3.0 

Model 
4.0 

Model 
5.0 

Model 
6.0 

Model 
7.0 

Model 
8.0 

data 1.0 0.98 0.05 0.40 0.56 0.13 0.43 0.12 

data 3.0 0.25 0.84 0.39 0.15 0.23 0.12 0.34 

data 4.0 0.24 0.41 0.94 0.13 0.22 0.53 0.11 

data 5.0 0.33 0.35 0.20 0.96 0.19 0.25 0.28 

data 6.0 0.66 0.05 0.67 0.66 0.98 0.66 0.03 

data 7.0 0.25 0.22 0.11 0.26 0.32 0.87 0.12 

data 8.0 0.43 0.28 0.26 0.38 0.19 0.21 0.93 

CV 
Score 0.36 0.23 0.34 0.36 0.21 0.37 0.17 

 

Most interestingly, event 6 is predicted either very strongly 
(nearly 66% correct) or very weakly by the other events 
grouped as degraded fuel injector pumps. Other combinations 
of model-data which scored well include model 5 on data 1 
and model 7 on data 4, indicating that each of these pairs of 

maintenance events has a similar path to failure and are worth 
further investigation.  

4. DISCUSSION 

4.1. Data Sparsity and Performance 

The datasets which formed the basis for the training data were 
extremely sparse throughout this project – for example, only 
12.9% of the dataset originally constructed for the example 
used throughout section 3 were real values - the remaining 
87.1% were missing when originally flattened for this 
analysis. After the final resampling and cleaning the final 
dataset contained 0.476% of the original entries, and 38% of 
the original sensor columns. Given this level of data density, 
a large part of the preprocessing is primarily concerned with 
creating a full dataset for the algorithm to work with.  

Much of this has to do with the fact that the database holding 
the parametric data was never intended to be flattened in this 
way or used for this purpose.  Adapting this data to 
algorithms that are sensitive to missing values makes the 
dataset cleaning, preparation, and selection even more critical 
than originally anticipated. Much of the strength of 
dimensionality reduction machine learning algorithms rests 
on the ability to combine different data channels, and this 
power is significantly inhibited when the data is this sparse. 
One possible option is to create an ensemble model, built on 
models reliant only on single data streams – this approach 
would disregard the data interactions, however, and would 
lose much of the power discussed above. Significant feature 
engineering is one other possible avenue to combat this issue. 

4.2.  Classifying Multiple failure modes 

Up until this point, all discussion has been focused on training 
a classifier to detect a specific failure mode.  In practice, it is 
useful to be able to discern multiple failure modes from each 
other, as well as a normal state from an abnormal state.  A 
proposed approach is shown in Figure 10, where a 
hierarchical classification structure is presented.  Raw sensor 
data is first classified into either normal or abnormal status.  
If it is abnormal, another classifier determines which fault is 
most probable to cause the abnormaility, at which point the 
degradation classifier can be used to assess level of 
degradation and subsequently remaining useable life 
(prognostics). 
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Figure 10: Processing flowchart for use with multiple failure 
modes 

5. CONCLUSION 

The results presented in this paper demonstrate the possibility 
for certain datasets and models to map similarly in feature 
space, and therefore perform well for both 
classification/diagnostics and prediction.  The techniques 
applied here to diesel engines are also applicable to other 
complex engineering systems, such as drive trains and 
transmissions, for which operational and sensor data are 
collected by control and monitoring systems.   

The classification results described in this paper show the 
effect of data sparsity in both the engine sensor data and the 
maintenance record data. The algorithm’s requirement of a 
fully dense data matrix leads to the removal of a substantial 
amount of sensor data. For the data used in this study, the data 
collection system was not designed with the intention of 
providing fully dense data tables, and many other prime 
mover systems with data collection systems designed before 
the advent of big data will present similar issues. This is 
common in many industrial plant and vehicle health 
monitoring and control systems. 

Future work will focus on investigating the possibility that 
more complete data, either through improved data collection 
processes or better data cleaning, will yield explainable, 
practical, and useful machine learning classifiers for failure 
prediction on large diesel engines. 

None of the progress or findings from this effort would be 
possible without subject matter expertise in the engines 
which are the topic of classification.  Understanding of the 
engine’s operation and associated maintenance practices is 
crucial to the construction of useful datasets when using 
maintenance records to label training data. This is in 

accordance with accepted best practice for machine learning 
team development, where subject matter experts in the topic 
of interest play a critical role in goal setting, feature 
extraction, dataset creation, and model validation. 
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