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ABSTRACT 

Condition based maintenance with prognostics (CBM+) is 

an area of research that interests many in the industrial, 

energy, and defense sectors.  Interest in this concept is 

focused on lowering overall cost of operations, while also 

increasing equipment availability and mission readiness.  

Many applications, however, include power constraints and 

extensive lifecycle requirements that pose a challenge for 

existing embedded sensing systems.  In some cases these 

systems can be expected to operate for years to decades 

without access to wired electricity or reliable energy 

harvesting sources.  In this study a battery powered sensor 

node is presented that collects operational (pressure, 

acceleration, position) and environmental (temperature) 

information to identify and track faults seeded into an 

instrumented hydraulic test stand.  The experimental setup is 

described in this paper, along with the range of baseline, 

damage cases, and severities imposed upon the system.  

Machine learning algorithms are developed specifically to 

leverage features that can be processed at the sensor node, 

then applied using low-power, computationally-limited 

microcontrollers.  Several classifiers are considered in this 

analysis, including random forest and classification trees.  

The results discussed include prediction accuracies, training 

and testing requirements, as well as physical power 

consumption measured using actual hardware.  Findings 

indicate that small sized random forest algorithms (up to 5 

trees) can be implemented at the node and provide lower 

error rates; however they operate with the higher computing 

times and power requirements when compared to other 

machine learning techniques.  Conversely, classification 

trees provide a good trade-off in accuracy and computing 

time, prolonging the operational life of the sensor node 

given a finite capacity battery as the power source.  

1. INTRODUCTION 

Prognostics and health management (PHM) is an 

engineering discipline that uses health information about a 

system to support maintenance and operational decisions 

(Kalgren, Byington, & Roemer, 2006), (Uckun, Goebel, & 

Lucas, 2008).  Embedded systems are often used to collect 

and process data with the intention of estimating the current 

health state of the system and predicting the future health 

state.  PHM is being incorporated into numerous industries 

including aerospace (Batzel & Swanson 2009), automotive 

(Holland, Barajas, Salman, & Zhang, 2010), and 

manufacturing (Vogl, Weiss, & Helu, 2016).  These 

industries all have large-scale systems-of-systems 

operations, and monitoring can be required for hundreds or 

thousands of components. The embedded monitoring 

system for each component could require multiple sensors 

and processors. As the number of monitored components 

grows, the energy efficiency of PHM systems becomes a 

paramount concern. In this paper, we outline our approach 

to creating energy efficient stand-alone CBM nodes to 

enable the use of PHM principles. The systems described 

are designed to run for several years on a limited power 

supply such as a battery. This is a goal because there are 

numerous applications where health monitoring hardware 

must operate in constrained, isolated, or harsh environments 

where external power is inaccessible.  In other applications, 
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power may be nearby, but installation constraints introduce 

constraints that make it unfeasible to connect the monitoring 

systems to line-powered supplies. For example, one of our 

applications is monitoring hydraulic actuators on naval 

vessels. Ships may rely on hundreds of actuators to perform 

normal operating tasks and each could require several 

sensors for collecting data. While these ships have an 

abundant power supply, there are space and access concerns 

in some locations that limit wiring access to the hardware.  

From research across several projects, we have identified 

three specific areas in the system design process where the 

tradeoff between performance and energy consumption 

should be evaluated: (1) data collection; (2) data processing 

and feature extraction; and (3) model training and 

implementation. We characterize the overall problem of 

constructing energy efficient PHM systems as a combined 

objective function where we minimize energy consumption 

and maximize performance. This multi-objective 

optimization problem often does not have a single solution 

but a Pareto optimal frontier on which any solution is 

feasible given stakeholder preference of energy 

consumption or performance. We consider both hardware-

specific and software-specific solutions to this problem. 

2. OVERVIEW OF METHOD 

In each of our research projects targeting energy efficient 

machine learning techniques, the goal is to solve a multi-

objective optimization problem that minimizes energy 

consumption E, while maximizing performance P.  

Mathematically, we can write this problem as, 

 max(P , −E). (1) 

Constraints can be added to this optimization problem if 

necessary. We define three areas where energy consumption 

must be considered for a distributed system using a machine 

learning algorithm.  

Data collection encompasses all of the energy consumed 

while acquiring the data set used to make a prediction. Let 

E1 represent this quantity. There are numerous aspects of 

data collection that can affect energy consumption and 

overall performance of the system.  Sensor selection is of 

primary concern as different sensor types can have wildly 

varying consumption costs.  Signal conditioning and 

sampling rate also impact energy requirements throughout 

the collection process, particularly in applications where 

analog sensors are used.  These three sources comprise the 

instances considered in this research; however future work 

could extend to channel resolution and other parameters for 

a more exhaustive investigation of methods to minimize 

energy consumption in the data collection process. 

Data processing and feature extraction is the next area to 

consider. We represent the energy consumed during this 

stage as E2. This area includes all functions that must be 

executed to format the data and extract features used as 

inputs into a machine learning algorithm. The processing 

part could include removing outliers and aligning data from 

various sensors. Feature extraction is the process of deriving 

values from collected data that are useful for training a 

machine learning algorithm or prediction. A feature can be 

extracted from a single data stream, or from multiple data 

streams. Further, features can be extracted from a single 

point in time or a time series of data. Often, when evaluating 

this stage of the machine learning process, we also evaluate 

the storage cost of features and data. This includes what 

information we choose to store, and how to store the 

information for easy, energy-efficient access. 

Often, we combine the evaluation of these first two areas 

into a single process, and frame this task as a feature 

selection with cost problem. Feature selection is the process 

of selecting a relevant subset of features from the larger 

group of collected features (Dash & Liu, 1997), (Guyon & 

Elisseef, 2003). Generally, feature selection methods only 

select features based on performance or intrinsic traits of the 

data, and they basically assume that each feature has the 

same cost. Cost-based feature selection methods can 

account for features with varying costs and weigh the 

tradeoffs between the cost of each feature and its 

performance benefit (Bolon-Canedo, Porto-Diaz, Sanchez- 

Maroño, & Alfonso-Betanzos, 2014), (Iswandy & Koenig, 

2006). We recommend utilizing a cost-based feature 

selection method to help make decisions about data 

collection, data processing, and feature extraction. 

The energy consumption can be directly used as the cost in 

these methods. When performing sensor selection, features 

from the same sensor can be linked and treated as grouped 

features, i.e. if you want a feature from a sensor you can get 

the rest of the features from that sensor for no cost or at a 

reduced cost. 

The final area we consider is the machine learning algorithm 

itself. Different algorithms can consume varying amounts of 

energy, and we represent the energy consumption of the 

algorithm as E3. Simple algorithms, such as linear 

regression or classification trees, often have very simple 

processes for calculating a prediction while more complex 

algorithms, such as deep neural networks or ensemble 

methods, can consume significantly more energy. There are 

two aspects of the algorithm that need to be considered: 

training and testing. The training energy consumption is the 

amount of energy required to learn a model from the data. 

The testing energy consumption is the amount of energy 

required to make a prediction on provided data. In most 

cases, the testing energy consumption is the primary 

concern because a model has been pre-trained before being 

deployed on the distributed hardware. However, in some 

cases, once data has been collected using the distributed 

hardware, the model needs to be updated. The model can 

either be retrained from scratch, or updated using online 

learning (Smale & Yao, 2006). 
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Each of the three areas described above can be evaluated 

separately, but in most cases the total amount of energy 

consumed by the system is evaluated. The total energy 

consumed by the system can be written as 

 E = E1 + E2 + E3.  (2) 

There is a tradeoff between performance and total energy 

consumption and each area of energy consumption can have 

a different impact on the performance. If there is an energy 

budget E∗, or the maximum amount of energy that can be 

consumed by the system, the optimization problem can be 

rewritten as 

 max P, 

 s.t. E < E∗ . (3) 

In this problem, the energy consumed in one area will take 

away from the energy that can be consumed by another area, 

i.e. selecting an expensive or high energy consumption 

sensor could limit the types of feature extraction methods or 

algorithms that could be used. 

3. BACKGROUND AND PRIOR WORK 

The focus of this research is on designing power constrained 

PHM systems for a variety of use cases, including: 

mechanical and hydraulic equipment, composite structures, 

as well as shipping and transportation applications. In each 

of these cases, the goal is to produce an energy efficient, 

rugged, and robust electronics system and reliable software 

to diagnose a system’s health and use this information to 

inform operation and maintenance practices through 

efficient PHM solutions. This includes optimizing the 

embedded system’s sensors, sensor locations, data 

collection methods, features extracted from data, machine 

learning algorithms, storage and processing hardware, and 

power management strategies. Many of the design strategies 

have been application specific; however a portion of this 

work has led to more generic research in feature selection 

methods that encompass aspects of cost in a manner that can 

be extended across a wide variety of applications. 

The results presented in this paper focus on PHM strategies 

for monitoring industrial hydraulic rotary actuators, and 

evolve from previous studies on the effects of the machine 

learning algorithms on the training and testing power 

consumption and the error rate in Adams, Beling, Farinholt, 

Brown, Polter, and Dong (2016). In this prior work, 

computation time was used as a surrogate for power 

consumption, an assumption that has been verified through 

experimental data using physical hardware in Sections 5.2 

and 5.3 of the present research study. Based upon our 

findings in Adams et al. (2016), we concluded that the 

random forest (RF) algorithm was always on the Pareto 

frontier with the lowest error rate and the highest power 

consumption of the eight machine learning algorithms 

considered in that study. Similarly, the classification tree 

algorithm was always on the Pareto frontier with a tradeoff 

between error rate and power consumption (Meekins, 2018), 

while the k-nearest neighbor (KNN) algorithm was not 

always on the Pareto frontier. Further, our research team has 

evaluated various feature selection and feature extraction 

techniques on optimizing power consumption and total 

computation time in Adams, Meekins, Beling, Farinholt, 

Brown, Polter, and Dong (2017). We are currently working 

on automated solutions for selecting classification 

algorithms under resource constrained environments. 

Embedding cost into the feature selection process has been a 

primary focus of our research as this is expected to be one 

of the most straightforward ways to limit energy 

consumption. We have developed a feature selection 

method for hidden Markov models where the cost of each 

feature can be conveyed to the algorithm through the use of 

informative prior distributions in Adams, Beling, and Cogill 

(2016). We have also conducted a study using the general 

cost-based feature selection framework presented in Bolon-

Canedo et al. (2014). In this investigation we confirmed the 

results of the original study and expanded on the numerical 

experiments in Adams, Meekins, and Beling (2017). One 

limitation of the general cost-based feature selection 

framework is that it is limited to filtering feature selection 

techniques. We are currently performing numerical 

experiments on wrapper feature selection methods and 

embedding the cost of features into training algorithms.  

4. EXPERIMENTAL HARDWARE  /  MEASUREMENTS 

An extensive amount of data has been collected for this 

application using a multichannel embedded sensor node that 

is configured to monitor pressure, temperature, angular 

position, and acceleration for an industrial hydraulic rotary 

actuator, such as the one shown in Figure 1. The system 

relies on commercial transducers (detailed in Table 1) to 

instrument the test stand and monitor both process-related 

and dynamic responses using the low power data acquisition 

hardware developed by Luna Innovations, Inc. (Figure 2).   

 

 

 
Figure 1. Hydraulic actuator testbed used in experiments 
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Table 1. Sensor Array 

Function Model / Type Qty 

Pressure Omega PX319-3KGV 2 

Temperature Minco S202PD 2 

Angular Position Vishay 132B20103 1 

Acceleration ADXL1002 3 

Trigger APC 25.4 x 0.5mm PZT 2 

 

The sensor node is built around Texas Instruments’ MSP432 

microcontroller and provides onboard signal conditioning, 

data storage, signal processing, analysis, and data 

transmission through wired or wireless interfaces. The 

sensor node can be powered from a variety of sources, 

including: 1) internal primary or rechargeable battery, 2) 

external DC power supply, or 3) external multi-source 

energy harvesting system; with acceptable supply voltages 

between 3.3V and 5.5V DC. Current and power 

consumption studies were performed using a constant 4.0V 

supply, with current levels being monitored using National 

Instruments’ PXI-4130 Source Measure Unit. Power is 

calculated as the product of the 4.0V supply voltage and the 

measured current.  

When used to monitor the hydraulic test stand, the CBM 

node records data from each of the sensors installed on the 

rotary actuator. To examine the system under controlled 

baseline and damage states, the primary actuator shown in  

Figure 1 is paired with a matching load actuator of the same 

class (Moog Flo-Tork 15,000 in-lbf) through a mechanical 

coupling designed to transfer full torque loads without 

mechanical distortion.  A layout for the hydraulic actuator 

test stand is shown in Figure 3.  A 5 horsepower pump 

supplies up to 3000 psi of pressure at 2 gallons per minute 

flow rate to produce an actuation stroke time of 1 second (0-

90° rotation).  Temperature and pressure sensors are located 

at each inlet to the actuator to monitor conditions in the 

clockwise (CW) and counter-clockwise (CCW) direction.  A 

rotary position sensor tracks the angle of the actuator 

throughout its actuation stroke, while accelerometers 

monitor the x-, y- and z- axis vibration response.  An 

opposing torque from the load actuator is produced by the 

backpressure generated when forcing fluid through a flow 

restriction, and a friction brake can be applied to mimic 

binding of the mechanical coupling using a manual hand 

pump and brass brake shoes.   

  
Figure 2. Sensor node developed for embedded PHM. 

 

 

Figure 3.  Actuator test stand hydraulics layout, including 

instrumentation locations (Adams et al. (2016)) 

 

A range of baseline conditions are collected using this test 

stand, accounting for minor variations in supply pressure, as 

well as low level opposing load conditions using the 

matched load actuator.  A series of five damage cases have 

been imposed upon the system to simulate different 

scenarios that may be common for rotary actuators in 

different industrial or military applications.  These include 

1) excessive loss in supply pressure, 2) excessive external 

opposing load, 3) friction brake loading similar to a binding 

event, 4) external leak in hydraulic fluid from actuator seals, 

and 5) internal leak of fluid into the gear casing.  Each of 

these damage cases can be imposed at increasing levels of 

severity, providing a wide range of damage states for use in 

CBM studies.  At the highest level, the data can be binned in 

a binary fault versus no fault scenario.  At the next level this 

can be considered a 6-class damage detection problem, 

while at the lowest level, it can be framed as a 20-class 

severity determination problem using the test conditions 

collected thus far. 

In each of these cases, the sensor node is capable of 

acquiring data in either streaming or triggered data 

acquisition modes. Under normal operation, the actuator is 

energized for a short duration of time as it rotates between 

open and closed positions. Streaming mode is often used to 

acquire data over repeated cycles in high cycle count 

studies, capturing the full rotation cycle of the actuator in 

both CW and CCW directions. Figure 4 provides a time 

history of the angular position and pressure response for a 

typical clockwise rotation captured in streaming mode.  

The first event of the actuation cycle occurs when the 

hydraulic power unit energizes the system (1).  Local 

pressure builds within the hydraulic line until the actuator 

rack begins to move (2).  At this point the actuator shaft 

begins rotating and transitions from 0-90°, coming to rest at 

an internal mechanical stop at full rotation (3).   
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Figure 4. Angular position and pressure response measured 

for a normal clockwise rotation between 0° and 90°. 

 

The system continues to be energized at this point causing 

inlet pressure to build until an overpressure relief valve is 

engaged within the HPU’s fluid reservoir (4).  Following 

this, line pressure is regulated to the relief valve’s setting of 

1,800 psi until the system is de-energized (5), awaiting 

actuation in the opposite direction. 

In triggered acquisition mode, the response of the actuator 

remains the same; however the sensor node is kept in a low 

power sleep state until it receives an interrupt signal from 

piezoelectric transducers mounted to the actuator casing. 

This interrupt causes the microcontroller to direct power to 

the sensors before beginning to record. A latency period is 

observed during which the node does not capture the first 

25ms of data (Figure 5). The system also contains a short 

transient period where sensors stabilize before beginning to 

acquire data, after which it converges to what is collected in 

streaming mode.  For model training purposes, streaming 

data can be used to develop detection algorithms, however 

best results account for the latency and transient issues by 

excluding the first 100ms of data following the actuation 

signal.  This allows the channel measurements to converge 

to one another, accounting for signal differences between 

streaming and triggered modes.  

When monitoring power consumption for different data 

acquisition studies, the results correspond to data collected 

with the CBM sensor node in triggered acquisition mode.  

Data was acquired using the sensor node and then 

transmitted to a LabVIEW interface using RS-485 protocols 

for offline model training in Matlab. Once models were 

trained, they were then tested in both the Matlab 

environment on a laptop computer, as well as at the 

embedded sensor node using the MSP432 microcontroller.  

Data was acquired at two separate sampling rates, one at 

1,000 Hz, and the other at 100Hz.  

 
Figure 5. Comparison of the latency and transient issues 

observed between streaming and triggered acquisition. 

5. METHODS FOR CONSERVING ENERGY AT THE NODE 

In most applications involving hydraulic actuators, the 

equipment is only active for short durations of time while 

rotating between open and closed positions. In this scenario, 

the embedded sensors only need to monitor actuators while 

energized by the HPU.  To conserve power in the timeframe 

between actuation cycles, the sensor node can be placed in a 

low-power sleep state where current consumption is limited 

to levels at, or below, 10µA. Auxiliary components are 

powered off in this state, with only interrupt channels 

remaining open to conserve as much energy as possible.  

The following sections describe several techniques that have 

been used to characterize and reduce power consumption 

during the data collection, signal processing, and model 

implementation stages of the CBM process. 

5.1. Data Collection 

As the hydraulic actuator is energized, the sensor node 

receives a dynamic trigger from piezoelectric transducers 

bonded to the actuator casing. This signal initiates the data 

acquisition cycle, with a short surge in current as seen in 

Figure 6. This transient pulse in current is followed by a 2 

second acquisition window during which data is acquired 

and the current consumed by the sensor node remains 

relatively constant. The first measurements are collected 

without any sensors physically attached to the sensor node 

electronics. In this arrangement, the microprocessor, ADC 

and signal conditioning circuits consume 21mA of current.  

When physically connected to the full sensor array, current 

demand increases to 25.5mA, accounting for a budget of 

4.5mA to power the full array of sensors outlined in Table 1. 

Once the hardware acquires 2s of data, power is 

disconnected from the sensors and signal conditioning 

circuits, and the node transmits the entire dataset to a base 

station computer via RS-485 connection. In this 

configuration, the sensor node is used to collect data for 

model development and training, thus entire datasets are 

transmitted to the base station.   
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Figure 6. Current consumed by the PHM sensor node. 

 

In the final application, models would be compiled and run 

directly at the sensor node, with only features or statuses 

transmitted, significantly reducing the time spent in 

transmission mode.  When considering the use of wireless 

radios to send out data, minimizing the transmission time 

becomes important to conserve energy by the CBM node. 

When considering the demand of specific sensor types, it is 

possible to quantify their consumption levels through 

selective connection with the sensor node. Figure 7 presents 

results specific to the inlet / outlet pressure transducers, 

which are seen to consume 2mA of current in normal 

operation. At lower data acquisition rates (those below 

200Hz); the pressure transducer has a fast enough settling 

time to consider a modulated supply voltage strategy to 

power the sensor.  In this case, the microcontroller strobes 

power to the pressure transducers in an attempt to reduce 

overall power consumption. In this strobed technique, the 

sensor is powered for 2ms out of every 10s (when 

configured to acquire data at 100Hz).   

 

Figure 7. Current consumed by pressure transducers. 

 

 

Figure 8. Current consumption using constant- and strobed-

power approaches for pressure transducers. 

 

This produces a 20% duty cycle for operation, and has been 

seen to reduce energy consumption by 2-5% during the data 

acquisition window (Figure 8). One detractor from this 

approach is that the strobed power technique produces 

transient spikes in current during the ON cycle for the 

transducer (Figure 8-right), exceeding the mean current 

demand when configured to run under a constant voltage 

approach. 

Lower data acquisition rates could benefit more from this 

approach as fewer transient spikes would occur, however 

the break-even point for our hardware appears to occur near 

100Hz.  When operating above this frequency, steady-state 

current requirements for the constant voltage approach equal 

those of the transient profile generated in the strobed power 

mode of operation.  

5.2. Data Processing 

In addition to using sampling rate and strobed power 

strategies to conserve energy in the data collection stage, 

feature selection and the manner with which data is 

processed impacts the overall efficiency of the embedded 

sensing system.  The first method for conserving power in 

this stage of the process is to minimize the number of 

features used in detection algorithms, and to focus on those 

that require the shortest computation time. For the CBM 

sensor node discussed in this paper, individual computations 

require 200 µA of current per operation when running on 

the MSP432 at 48MHz clock speeds.  A series of basic 

addition and multiplication operations were implemented on 

data collected by the sensor node in an effort to assign 

computation costs for signal processing operations, with 

results shown in Figure 9.  These findings support previous 

assertions that computation time can be used as a reliable 

surrogate for power consumption when comparing feature 

extraction techniques and model efficiencies.   
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Figure 9. Current consumed for basic computations using 

the MSP432 microcontroller. 

 

As this research has continued and more algorithms have 

been deployed at the sensor node, detailed power 

characterizations are validating the comparisons made in the 

earlier work by Adams et al. (2016).   

As data is acquired, several methods have been examined to 

generate features such as mean, standard deviation, and 

other statistical metrics.  The traditional approach that had 

been adopted at the outset of this program had been to 1) 

acquire data from the sensors, 2) post-process time histories 

to obtain features following the acquisition cycle, and 3) 

predict equipment status using algorithms deployed at the 

sensor node or base station.  The current profile for this 

approach is shown in Figure 10, where feature calculation 

relates to the current consumed between 3.0 and 3.1s.  In 

this example the mean, standard deviation, and variance 

were calculated for each of the sensor channels. 

For lower acquisition rates, one alternate technique that can 

be used to conserve energy is to perform rolling calculations 

while the microcontroller is active but not being used 

between each individual measurement. While this technique 

is not possible for all features that may be of interest, it can 

be done for many statistical parameters such as mean and 

standard deviation.  When applied using the CBM node in 

this study, there was no measurable increase in current 

consumption when features were calculated in this rolling 

approach throughout the data acquisition cycle. Thus, by 

interspersing feature calculations between measurements, it 

is possible to remove the 0.1s of additional time when post-

processed following the acquisition window.  Our work is 

currently compiling a list of features that are amenable to 

this process, and plans are to quantify the energy savings by 

interspersing calculations within the acquisition process as 

opposed to serially once all of the data has been collected. 

  

Figure 10. Current consumed to generate model features. 

5.3. Model Implementation 

When applying damage classification algorithms at the 

node, model complexity impacts energy consumption in 

much the same way that signal processing does. The results 

illustrated in Figure 9 indicate a current cost of 200 µA per 

computation, supporting the assertion made in Adams et al. 

(2016) that computation time could be serve as a surrogate 

for power consumption in their preliminary analysis. Early 

development was performed using models developed and 

tested in Matlab, focusing on larger feature populations (up 

to 120 features) for the sensors summarized in Table 1. As 

work has transitioned these models to ones that can be 

deployed on the MSP432 microcontroller, the number of 

features has reduced to between 18 and 32 features.  These 

have focused primarily on combinations of mean, standard 

deviation, variance, max / min, median, skewness, and 

kurtosis values.  Preference is weighed between the 

feature’s impact on model accuracy and complexity of 

computation required by the embedded microcontroller. 

Models have also focused on three levels of classification 

for the damage prediction problem. The highest level model 

considers the binary classification scenario, in which the 

algorithm is simply tasked with differentiating fault 

conditions from the healthy, no fault test conditions.  The 

second level model  considers the 6-class detection problem, 

where the algorithm assigns a damage type to the 

measurement data, in the form of baseline (Class: 0), low 

supply pressure (1), excessive opposing load (2), binding 

from friction brake (3), external fluid leak (4), and internal 

fluid leak into gear casing (5).   The third and final level of 

model complexity provides an assessment of damage type 

and severity, with a total of 20-classes possible given the 

test conditions imposed in the laboratory.  A summary of 

the data collected, trained, and tested using Matlab and the 

MSP432 microcontroller is provided in Table 2. 
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Table 2. Summary of data labels for the binary, 6-class, and 

20 class damage detection models 

Description #Obs.  Binary 6-class 20-class 

Baseline 720 0 0 0 

Low Pressure 240 1 1 1-2 

Opposing Load 160 1 2 3-4 

Friction Brake 480 1 3 5-11 

External Leak 480 1 4 12-17 

Gear Case Leak 240 1 5 18-19 

 

In the binary detection problem classification trees provide 

near 100% prediction accuracies using 5-fold cross 

validation techniques.  In this case, models are trained using 

80% of the measurement data and then tested against the 

remaining 20% for validation purposes.  Earlier work by 

Adams et al. (2016) found that the classification tree model 

required much less computation time (by a factor of 10) 

than any of the random forest techniques, while providing 

higher prediction accuracies than techniques such as KNN 

models.   

Use of a hierarchical modeling approach is also being 

adopted in this research to simplify which algorithms are 

imposed early on in the life of a piece of equipment such as 

the hydraulic actuator.  In most applications, the actuator is 

received and installed in a healthy state, and the primary 

role of the CBM node is to identify the onset of damage.  

For most damage cases we discussed with original 

equipment manufacturers, these systems are subject to 

damage mechanisms that evolve over time, rather than ones 

that present themselves as catastrophic failures that manifest 

within 1 or 2 actuation cycles.  In this scenario, the CBM 

node can use a binary classifier to determine that a fault has 

arisen, after which more intensive 6-class or 20-class 

algorithms can provide more detailed assessments and input 

into recommendations for maintenance activities.  With 

actuators that are designed for fifty thousand to one million 

cycles of operation, the use of simple, binary classifiers 

early on while the actuator is healthy will translate into 

significant, cumulative energy savings for the sensor node.    

6. RESULTS 

When tested in the laboratory, the primary limitation in 

model complexity has been driven by the random access 

memory (RAM) allocation available on the MSP432P401R 

microcontroller.  Portions of this RAM need to be assigned 

to basic operation, acquisition, and data processing tasks, 

with the remaining kept available for model 

implementation.  For Luna’s current CBM sensor node, 

64kB RAM / 256kB Flash are available, with the underlying 

firmware to control data acquisition (DAQ) operation 

consuming 40kB RAM.  This leaves 24kB available for 

model implementation. This amount is sufficient for 

classification tree and some smaller random forest models.  

Earlier work in Adams et al. (2016) focused on RF models 

containing at least 25 trees; however this was found to 

exceed the available memory when compiled for execution 

on the MSP432P401R chip.  

To better address the limitations imposed by smaller RF 

models, a series of simulation studies were performed to 

investigate how model accuracy behaves as a function of 

model size given the 2240 observations summarized in 

Table 2.  The study focused on a 20-class detection problem 

with 18 features drawn from the data.  These features 

comprise the mean, standard deviation, and variance for a 2 

second time windows of each pressure, temperature, and 

angular position channel, as well as a summation of the 

acceleration channels (3 statistical values calculated over 6 

sets of data).  These results are presented in Figure 11, and 

include results for a fine decision tree implementation 

(99.2%), as well as several RF models ranging from 1 tree 

to 50 trees in size.  The RF approach begins to outperform 

the tree model for forests greater than 3 trees, and appear to 

converge to 99.8 – 99.9% accuracy with 15 trees.  

In this study, models are trained in Matlab and compiled to 

c-code using Mathworks’ Matlab Coder and Embedded 

Coder toolboxes.  Once in this form, the c-code is reviewed 

in Texas Instruments’ Code Composer software package to 

remove any portions of the code that are redundant or 

unnecessary for implementation on the CBM 

microcontroller.  From this point the software is combined 

with Luna’s base firmware developed for acquiring data 

using the MSP432. For initial comparison, the decision tree 

model was compiled, optimized, and ported to the sensor 

node.  Using features calculated from the dataset described 

in Table 2, model predictions were generated and are 

summarized in the confusion matrix shown in Figure 12. 

Most of the misclassifications seen within this data are 

attributed to varying severities of the external leak case 

(conditions 12-17), resulting in an overall cross-validation 

accuracy of 99.2 % for the sample population.   

 

Figure 11. 5-fold cross validation accuracy as a function of 

the number of trees within random forest models 
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Figure 12. True v. predicted comparison generated for a 

classification tree model designed to run on the MSP432.  

 

When extended to the random forest model, an iterative 

process was used to determine that a 5 tree model using 18 

features could reliably run on the CBM sensor node.   As 

predicted in the cross-validation study in Figure 11, the 5 

tree RF model provided 99.7% accuracy in its prediction 

capabilities, with the results shown graphically in the 

confusion matrix of Figure 13.  As in the previous case, 

most misclassifications for the RF model were observed to 

occur between severity levels within the external leak case. 

The data used to generate these predictions were acquired at 

1 kHz for each measurement channel.  As mention before, 

lower sampling rates provide the opportunity to reduce 

power consumption, and consequently tests were performed 

to assess how data sampled at 100 Hz would impact 

prediction accuracy. For the most direct comparison, the 

dataset used to generate the predictions in Figure 12 and 

Figure 13 was down-sampled to a rate of 100 Hz.  Models 

were then trained and tested with 5-fold cross validation 

accuracies of 99.2% calculated for a classification tree 

model, and 99.8% for the 5 tree RF model.  It is interesting 

to note that there is a minor small increase in RF model 

accuracy using the 100 Hz data.  More tests are planned to 

determine if this is a result of the natural variance in the 5 

tree RF model itself, or if this can be attributed to a 

smoothing effect to the data at slower acquisition rates. 

Future studies are scheduled that use a new variant of the 

MSP432 that quadruples available random access memory.  

This will allow the team to test more intensive algorithms 

with higher prediction accuracies, in an attempt to validate 

the power to performance tradeoffs discussed earlier.   

 
 

Figure 13. True v. predicted comparison generated for a 5 

tree random forest model designed to run on the MSP432.  

7. CONCLUSIONS 

In this paper, we presented a summary of our prior work on 

applications of machine learning in embedded PHM 

systems where energy efficiency is primary concern. These 

embedded and distributed systems are designed to monitor 

physical equipment and structures for degradation and 

failure. These embedded systems are designed to run on a 

limited power supply for many years, and may be used in 

harsh or remote environments where access to an unlimited 

power supply is an unreasonable assumption. We describe 

the challenges we have faced in developing these systems 

and the approaches we use to reduce the energy 

consumption of the system.  

Through these research projects, we have developed a 

method for characterizing and categorizing the power 

consumption of a system using machine learning 

algorithms. We outline three areas of the system that must 

be considered: (1) data collection; (2) data processing and 

feature extraction; and (3) model implementation. We frame 

this challenge as a multi-objective optimization problem 

where we wish to maximize performance and minimize 

energy consumption. If there is an energy budget, the multi-

objective problem can be reduced to an optimization 

problem with constraints.  

We discuss several methods for conserving energy in these 

power constrained applications.  These involve collection of 

data at lower acquisition rates where the use of intermittent 

power to sensors can conserve energy.  We also discuss the 

use hierarchical modeling techniques and algorithms that are 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

 

10 

developed for implementation at the node, were energy 

storage and memory allocations dictate the complexity of 

models that can be compiled and run using the embedded 

microcontroller selected for application.  Presently, the 

research team has identified a new variant microcontroller 

that increases memory allocations by a factor of 4, 

providing 256kB RAM / 2MB Flash.  Hardware upgrades 

are underway and upcoming experiments will focus on how 

this impacts model complexity and energy utilization by the 

CBM sensor node.  Reductions in sampling rate have also 

been shown to have no significant effect on prediction 

accuracy when dropping from 1 kHz to 100 Hz acquisition 

rates.   

Additional testing is underway to determine how slowly 

data can be acquired before impacting accuracy.  In this 

manner it may be more feasible to implement data collection 

techniques such as the strobed power method in efforts to 

reduce the energy costs associated with the data collection 

portion of the health management process.   
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