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ABSTRACT

Condition-based maintenance involves monitoring the de-
grading health of machines in a manufacturing system and
scheduling maintenance to avoid costly unplanned failures.
As compared with preventive maintenance, which maintains
machines on a set schedule based on time or run time of
a machine, condition-based maintenance attempts to mini-
mize the number of times maintenance is performed on a
machine while still attaining a prescribed level of availabil-
ity. Condition-based methods save on maintenance costs
and reduce unwanted downtime over its lifetime. Find-
ing an analytically-optimal condition-based maintenance pol-
icy is difficult when the target system has non-uniform ma-
chines, stochastic maintenance time and capacity constraints
on maintenance resources. In this work, we find an opti-
mal condition-based maintenance policy for a serial manu-
facturing line using a genetic algorithm and the Gaussian
Markov Improvement Algorithm, an optimization via simula-
tion method for a stochastic problem with a discrete solution
space. The effectiveness of these two algorithms will be com-
pared. When a maintenance job (i.e., machine) is scheduled,
it is placed in a queue that is serviced with either a first-in-
first-out discipline or based on a priority. In the latter, we
apply the concept of opportunistic window to identify a ma-
chine that has the largest potential to disrupt the production
of the system and assign a high priority to the machine. A test
case is presented to demonstrate this method and its improve-
ment over traditional maintenance methods.

Michael Hoffman et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

The importance of maintenance in manufacturing is often
overlooked as it is considered a non-value added activity in
the manufacturing process. However, it is critical for sup-
porting the availability and productivity of machines in the
system. A maintenance policy defines how decisions are
made regarding when and where to perform maintenance. In
this work, we focus on the development of a condition-based
maintenance policy for continuously monitored deteriorating
machines. Since it is assumed that the health of each machine
is known at all times, we can use this information to decide
when maintenance should be performed.

In the work presented here, we consider non-uniform ma-
chines, a capacity for maintenance resources (a maximum
number of concurrent maintenance jobs), and non-instant re-
pair times. Much of the previous related work makes simpli-
fying assumptions and does not consider all of these factors in
combination. A capacity for maintenance resources and non-
instant repairs results in frequent occurrences of conflicting
maintenance jobs. This makes the development of a mainte-
nance policy more difficult because, in addition to deciding
when to repair each machine, we must decide how to recon-
cile maintenance scheduling conflicts. The objective when
optimizing the maintenance policy is minimizing the cost of
maintenance activities over some time horizon.

The rest of the paper is organized as follows: Section 2 de-
scribes some of the previous work related to maintenance pol-
icy optimization. Section 3 presents the system being consid-
ered. This includes the notation used, the machine deterio-
ration model, the maintenance job queue, and the cost mea-
surement model. The algorithms used to optimize the main-
tenance policy are described in Section 4. In Section 5 the
results from an example are shown. Lastly, conclusions and
future work are given in Section 6.
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2. BACKGROUND

Maintenance in manufacturing plays a pivotal role in ensuring
efficiency in production. Maintenance includes all activities
related to maintaining a specific level of availability of the
system and components to perform at a certain level of qual-
ity and productivity (Al-Turki et al., 2014). One important
aspect of maintenance is scheduling maintenance resources
to ensure machine availability without sacrificing production
throughput and quality. Scheduling maintenance resources
requires determining when to send a technician, to what ma-
chine should the technician be sent, how often to schedule
maintenance, and in what order, among other factors. For
example, if two machines break down and a third machine is
scheduled for preventive maintenance, which machine do you
maintain first to avoid throughput loss and minimize cost?

Multiple maintenance scheduling policies exist that address
this type of question. Jin et al. (2016) found that the major-
ity of manufacturers still employ a mixture of reactive and
preventive maintenance strategies. Reactive maintenance in-
volves performing maintenance after an unanticipated failure
of a piece of equipment. Preventive maintenance strategies
involve performing maintenance after a set amount of time
or after a piece of equipment is run for a certain number of
cycles. These strategies are employed due to their low ini-
tial cost and low data requirements, however, they can lead
to large productivity losses, equipment downtime, and can
lead to over maintaining if the preventive maintenance is per-
formed too frequently. To avoid over maintaining, condition-
based maintenance (CBM) analyzes the current state of the
machine and sets a predetermined level of health to maintain
the machine (Jin et al., 2016). CBM requires large training
data sets to build models for prediction, which requires con-
siderable upfront cost and knowledge.

While the above strategies determine the frequency of main-
tenance, they do not address the priority rules for the order
in which to perform the maintenance. This priority determi-
nation is especially challenging when maintenance resources
are limited and several maintenance jobs are scheduled con-
currently. The decision must be made as to which jobs should
be carried out first. Opportunistic maintenance addresses this
issue by analyzing trade-offs between production and main-
tenance to reduce production losses (Zhou, Xi, & Lee, 2009;
Chang, Ni, Bandyopadhyay, Biller, & Xiao, 2007). This
paper describes a CBM schedule with opportunistic priority
rules minimizing both cost and production loss.

CBM optimization policies can be classified in several ways.
Such classifications are based on maintenance policy parame-
ters, system configuration, deterioration model, maintenance
resource configuration, and optimization objectives (Khazraei
& Deuse, 2011). This section provides examples of previous
work in each classification scheme.

Two main categories of decision variables are considered
when defining a CBM policy. One is the interval between
inspections of components in the system. When continuous
monitoring is not available, the health of components can
only be known by performing an inspection that typically
incurs some fixed cost. Upon inspection, the decision must
be made as to whether or not maintenance should be per-
formed. Such models are thoroughly described by Kallen &
van Noortwijk (2006). The alternative, and the approach that
is used here, is a continuously monitored system where the
health of components is known at each discrete time step. In
this case, the decision is related to at what health level should
maintenance be scheduled.

The configuration of the system of interest will influence the
optimal policy as well. Yang, Ma, & Zhao (2017) consider
CBM of a single-unit system with multiple failure modes and
determine the optimal policy given the state of the compo-
nent. Maintenance policy optimization for multiple machines
in series is studied by Bartholomew-Biggs, Zuo, & Li (2009).
A series-parallel system is considered by Marseguerra, Zio, &
Podofillini (2002), in which serial subsystems are comprised
of identical machines in parallel. A policy is developed for a
single machine type and then used for all machines within a
subsystem.

A discrete-time Markov model is often used to represent the
health of deteriorating machines. Each machine is assumed
to be at a discrete level of health, known as the health in-
dex, at any point in time. The machine then transitions to an-
other health index at the next time step with some probability.
One variation of this model is the addition of random shocks,
where a machine may transition into a complete failure state
at any time, as examined by Yang et al. (2017). Some work
has considered dependence among multiple machines, which
can have a significant impact on the optimal maintenance pol-
icy. Rasmekomen & Parlikad (2016) develop a CBM policy
for a system of components with stochastic dependence in
which the degradation rate of a machine depends on that of
others in the system.

While the minimization of cost is a typical objective in the de-
sign of maintenance policies, other competing objectives are
also considered. In addition to minimizing cost, Marseguerra
et al. (2002) aim to maximize the availability of the sys-
tem. Lei, Liu, Ni, & Lee (2010) attempt also to maximize
the throughput of the system by scheduling maintenance so
that downtime does not hinder production. Many of these
objectives can be combined into a single cost objective. For
example, production that is lost due to downtime for mainte-
nance can be assigned a cost that worsens the objective func-
tion value. By including such measures in the cost objective
function, only one objective needs be considered.
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3. SYSTEM DESCRIPTION

In this section, we define the notation that is used throughout
the remainder of the paper and the underlying assumptions
of the system of interest. The system considered is a serial
production line with M machines each with buffer size B
and deterministic processing time tm as depicted in Figure 1.
Each machine will produce at its maximum rate while it is
functional, so long as it is not starved or blocked. The first
machine in the series is never starved and the last machine is
never blocked.

3.1. Notation

• T - observed time horizon

• M - number of machines in series

• B - buffer capacity

• bm(t) - input buffer level of machine m at time t

• tm - process time of a single part for machine m

• tm∗ - bottleneck process time (process time of bottleneck
machine m∗)

• qm - degradation rate of machine m

• Hm(t) - health index of machine m at time t. Hm(t) = 0
indicates a machine is in perfect health, and the health
index increases over time as the machine health deterio-
rates.

• hm - health index threshold at which condition-based
maintenance is scheduled for machine m

• Hm(t) = hmax - the health index at which a machine
experiences total failure

• P = {h1, h2, · · · , hM} - CBM maintenance policy of
the system

• r - maintenance capacity

• CP - cost of a planned maintenance job

• CU - cost of an unplanned maintenance job

• CLP - cost per unit of lost production

• xP - the number of planned maintenance jobs performed
over the time horizon

• xU - the number of unplanned maintenance jobs per-
formed over the time horizon

• u - the actual number of units produced over the time
horizon

• CT - total policy cost

3.2. Deterioration Model

As described in Section 2, many condition-based mainte-
nance processes assume that component deterioration can be
modeled as a discrete Markov process. In this work, we as-
sume that a machine m is in perfect working condition when
its health index Hm(t) = 0 and that it degrades at each time
step with a known probability. As the machine degrades,
its health index increases until it is repaired or experiences
a complete failure. The degradation rate of a machine can
depend on many factors including age of the machine, stress
on the machine, utilization, or the degradation state of other
components in the system (Nicolai & Dekker, 2008). When
a random failure occurs the machine stops functioning com-
pletely until it is repaired. When maintenance is completed on
a component, whether preventive or in response to a complete
failure, its health index is restored to zero and degradation re-
sumes. The transition matrix Qm of the degradation process
of machine m is:

Qm =


1− qm qm

1− qm qm
. . .

1− qm qm
1

 (1)

Note that Qm is upper bidiagonal.

Figure 2 shows the health index of a single machine over time.
At time t = 3, the health index reaches the threshold for
maintenance and is repaired at time t = 4. The machine is
then restored to perfect health and degradation resumes. At
time t = 10, the machine incurs a complete failure.

3.3. Maintenance Queue

Since we impose maintenance capacity on the system consid-
ered in this work, multiple maintenance jobs will simultane-
ously compete for limited maintenance resources. To handle
these situations, we queue arriving maintenance jobs. When
a maintenance job is placed in the queue (i.e. when the health
index of a machine exceeds the threshold for CBM), it is ser-
viced if there are sufficient maintenance resources available.
Otherwise, it must wait for some time to be serviced. While
waiting in the queue for maintenance, machines continue to
degrade until their health index reaches hmax.

b1 Machine 1 b2 Machine 2 bM Machine M . . . 

Figure 1. Series production system
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Figure 2. Degradation over time of a single machine, a repair
is completed at time t = 4, and a complete failure occurs at

time t = 10

We consider two queueing disciplines: first in, first out
(FIFO) and priority queues. Under the FIFO rule, mainte-
nance jobs are serviced in the order that they arrive in the
queue by available maintenance resources. While this policy
is simple to implement, it ignores the fact that high-risk ma-
chines with a greater potential to disrupt system throughput
(e.g., the bottleneck machine) will be ignored if they are not
in the front of the queue.

An alternative approach is to assign each maintenance job a
priority measure and always service the job in the queue with
the highest priority. To minimize lost production due to ma-
chine down time, maintenance jobs are assigned a priority
that is related to the size of each machine's maintenance op-
portunity window. This concept is explained further in the
following section.

3.3.1. Maintenance Opportunity Window

The maintenance opportunity window is the length of time
a machine can stop production without hindering the overall
system throughput. Throughput loss is avoided through the
use of buffers in the system and by making sure the bottleneck
machine is not blocked or starved. If a machine m in a serial
line is upstream from the bottleneck machine m∗ (m < m∗),
the opportunity window for machine m is the time it takes for
all buffers between m and m∗ to become empty. At this point,
the bottleneck machine is starved and throughput is hindered.
If m is downstream from m∗ (m > m∗), the opportunity
window for m is the time for all buffers between m∗ and m
to become full. The bottleneck machine will then be blocked.
This concept is described thoroughly by (Chang, Xiao, Biller,
& Li, 2013) and summarized by Eq. (2):

Wm(t) =

tm∗
∑m∗

k=m+1 bk(t), m < m∗

0, m = m∗

tm∗
∑m

k=m∗+1(B − bk(t)), m > m∗,

(2)

where Wm(t) is the duration of the opportunity window for
machine m at time t. This equation assumes that machine m
is the only machine that is broken down over the duration of
the opportunity window; however, work has shown how this
equation also provides a rough estimate of opportunity win-
dow of each machine with simultaneous failures (Brundage,
Chang, Li, Arinez, & Xiao, 2016). Future work will further
refine the opportunity window equation for this purpose.

Machines with the smallest maintenance opportunity win-
dow will be assigned the highest priority. By minimizing the
downtime of high-risk machines, we can reduce the through-
put impact of performing maintenance. A comparison of the
performance of the FIFO and priority queue policies is de-
scribed in Section 5.

3.4. Cost Model

In general, minimizing the cost of the maintenance policy as
given by Eq. (3) will be the primary objective. The cost of a
policy over some time horizon consists of three components:
planned maintenance activities (CPxP ), unplanned mainte-
nance activities (CUxU ), and lost production due to down-
time in the system (CLP ). The cost of a planned maintenance
job is incurred when a machine is repaired before reaching the
complete failure state. The total cost of planned maintenance
is the product of the number of jobs that occur and the cost
of planned maintenance activities. Similarly, the total cost of
unplanned maintenance is the number of repairs completed
on a machine in a failed state multiplied by the cost of the ac-
tivity. The number of maintenance events over the observed
time horizon is represented by a random variable.

Cost is also measured in terms of lost production due to ma-
chine downtime. Lost production is defined as the difference
between the production requirement in units over the time
horizon and the actual number of units produced by the sys-
tem. The production requirement can be a fixed number of
units, or a fraction of the “ideal production” that is obtained
from a perfect system with no downtime events. The mainte-
nance policy cost function is

CT = CPxP + CUxU + CLP

( T

tm∗
− u
)
. (3)

Generally, planned maintenance is less costly than unplanned
maintenance because the machine avoids a complete failure
and downtime that results in system throughput disruption
(Chitra, 2003). Unplanned maintenance occurs when a ma-
chine's health index reaches the total failure state, hmax, and
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it is forced to stop production until repaired. Unplanned fail-
ures can occur when a machine that is waiting for planned
maintenance continues to degrade to the point of total failure
while waiting for maintenance resources to become available.
Since we consider the duration of maintenance activities in
the model, maintenance on a machine will disrupt the ma-
chine's production and possibly the overall throughput of the
system. Lost production is defined as the difference between
the production volume of the system if there was no degrada-
tion of machines and the actual production volume observed.
Each unit of lost production incurs some cost that contributes
to the cost of the maintenance policy.

4. METHODOLOGY

The goal of this work is to find an optimal CBM policy for
a serial manufacturing system. As described in Section 2, a
CBM policy is defined by the health index thresholds at which
CBM is scheduled for each machine. Since there are M ma-
chines in the system, a solution, or policy, P can be value
encoded by a set of M thresholds P = {h1, h2, · · · , hM}.
The minimum value of a threshold is 1, which would indicate
maintenance is scheduled on a machine as soon its health in-
dex deteriorates by one unit. The maximum value is hmax,
the health index that indicates a machine has experienced a
complete failure. A threshold at its maximum value is equiv-
alent to a corrective maintenance policy.

For the problem presented here, the primary objective is to
find the maintenance policy that minimizes expected cost per
unit time. Due to the stochasticity and complex interactions
that occur in the system under consideration, it is difficult
to analytically determine the cost of the policy as a function
of a set of CBM thresholds for each machine. Analytically
determining cost often requires simplifying assumptions that
reduce the accuracy of the cost measurement (Alrabghi & Ti-
wari, 2015). For this reason simulation will be used to evalu-
ate the solutions by estimating the expected cost of a policy.
We will compare the effectiveness of a genetic algorithm and
the Gaussian Markov Improvement Algorithm in finding a so-
lution to this problem In Section 4.3, details of the simulation
model used in the experiments are given.

4.1. Genetic Algorithm

Genetic algorithms (GAs) are a metaheuristic method of
problem solving that attempt to replicate evolutionary behav-
ior found in nature. A population of solutions (or individu-
als) evolves over time by selecting the best members of the
population to produce the succeeding generation. As in na-
ture, a population benefits from diversity, so the algorithm
begins with an initial set of random individuals. Starting with
this initial population, offspring solutions are generated and
added to the population. The best individuals from this group
are then chosen to produce the next generation, and the pro-

cess repeats until some termination criteria is met. There are
four main considerations when using a genetic algorithm: the
representation or encoding of the solutions within the con-
text of the problem, the fitness function by which candidate
solutions will be evaluated, the method of selecting individ-
uals for reproduction, and the method of reproduction used
(Deb et al., 2002). For this problem, a policy defined as
P = {h1, h2, · · · , hM} represents an individual in the ge-
netic algorithm.

The problem of optimizing a CBM policy is well-suited for
GAs as this approach is robust and effective for large, com-
plex manufacturing systems (Kobbacy, 2008).

4.2. Gaussian Markov Improvement Algorithm

Discrete optimization via simulation (DOvS) refers to finding
an optimal solution of a problem with discrete decision vari-
ables whose objective function does not have a closed-form
expression, but can be evaluated by stochastic simulation. Be-
cause of its flexibility, DOvS is a popular method for solving
a complex stochastic problem. For the problems with small-
to-medium feasible solution spaces where one can afford to
simulate all feasible solutions, ranking and selection (R&S)
has been successfully applied (Kim & Nelson, 2006); how-
ever, when the feasible solution space is large, it is practically
impossible and inefficient to simulate all solutions. For the
latter category of DOvS problems, several adaptive random
search (ARS) algorithms have been developed. In general, an
ARS algorithm initially simulates a small number of solutions
and iteratively selects the next solution to simulate based on
the simulation history. Since these initially sampled solutions
are often used to estimate the necessary parameters of the al-
gorithm, they are referred to as initial design points. A good
ARS algorithm uses statistical inference based on simulated
solutions to choose the next solution to simulate balancing
exploration and exploitation.

The Gaussian Markov Improvement Algorithm (GMIA) finds
the globally optimal solution of a DOvS problem with proba-
bility 1 when the simulation budget increases without a bound
(Salemi, Song, Nelson, & Staum, 2018). GMIA is an ARS
that draws statistical inference on the performance of feasible
solutions by fitting a metamodel of the objective function at
all feasible solutions based on the simulated solutions. The
particular metamodel GMIA employs is a Gaussian Markov
random field (GMRF), which models the unknown objective
function values at the solution as Gaussian random variables
with positive spatial correlations among solutions. From the
simulation results of the initial design points, parameters of
the GMRF model are estimated. Then, at each iteration, the
distribution of the GMRF is updated conditional on the cu-
mulative simulation results up to that iteration.

GMIA imposes the correlation such that nearby solutions
have stronger positive correlation in the objective function
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Table 1. Test case 1 description.

Machine 1 2 3
tm 3 4 5
qm 0.02 0.06 0.01

values. This works for DOvS as solutions that are close in
the feasible solution space often have similar objective func-
tion values. Therefore, even if a solution is not simulated yet,
we can infer the objective function value at the solution based
on simulated solutions and guide the search towards a more
promising region of the feasible solution space. We defer the
implementation details of GMIA in this paper; see (Salemi et
al., 2018).

4.3. Simulation

Simulation is used to evaluate the quality of a maintenance
policy solution. The system is simulated in its steady state for
some period of time and then the cost of the defined mainte-
nance policy is calculated using Eq. (3) described in Section
3.4. The system is considered to be in its steady state when
the production rate of each machine is relatively constant over
time. Once the steady state is achieved, the system is ob-
served for the specified time horizon, T .

5. NUMERICAL RESULTS

A three-machine serial production line is used to demonstrate
the methodology presented in the previous section. The sys-
tem will be evaluated under both FIFO and priority queue
disciplines. The machines in the system are described in Ta-
ble 1. Table 2 describes additional parameters of the system.

GA and GMIA can be compared by evaluating the perfor-
mance of each for a defined simulation budget. The simu-
lation budget will be a maximum number of fitness function
evaluations (NFE) that will occur. NFE for GMIA is given by

(2 ·max iterations + k) · r, (4)

where k is the initial number of design points and r is the
number of simulation replications of each sampled solution.
The NFE for GA depends on the population size, maximum
number of generations, and the number of replications. NFE
is given by

(2n+ 1) · population size · replications, (5)

where n is the number of generations. The parameters of both
algorithms will be defined such that NFE is the same for both.

For the GMIA example shown here, the maximum number of
iterations is 200, the number of initial design points is k = 10,
and the number of simulation replications for each sampled
solution is r = 10. This results in a total of 4100 fitness
function evaluations at the termination of the GMIA. The pa-
rameters for the GA are a population size of 20, a maximum
of 10 generations, and 10 simulation replications per solution.
4200 fitness function evaluations are used for GA.

For this system, the solution space is small enough that all
solutions can be exhausted in order to find the global opti-
mum. At 10,000 replications, the largest standard error ob-
served was 3.23. The algorithms can also be compared to see
if they converge to this solution.

5.1. FIFO Maintenance Queue

For this case, the overall best policy is P = {8, 7, 8} which
was found to have a cost of 382.07 when simulated for 10,000
replications. Under this policy, machines 1, 2, and 3 are
scheduled for repair when their health index reaches 8, 7 and
8, respectively. Figure 3 shows the convergence of each algo-
rithm to the optimal solution for the system under a FIFO
maintenance queueing discipline. The objective function
value at each stage is the average of ten simulation replica-
tions. The cost shown on the vertical axis is the true cost of
the best solution, as found by exhausting the solution space.
When evaluating a solution, the algorithms are not likely to
obtain an estimate that is equal to the true expected cost of
the policy due to the high variance in the simulation. This
results in the selection of “worse” solutions at some steps of
each algorithm. Both algorithms are able to improve the so-
lution over time, but on an average GMIA finds a policy with
a lower cost.

In many cases, the true cost of a policy is different than that
determined by the GA. As shown in Figure 4, the cost of the
best solution at each generation as predicted by the GA (re-
ferred to as the observed cost) is much lower than the true cost
of that solution. In fact, the observed cost of the best solution
at termination is lower than the true minimum cost. This is

Table 2. Parameters for both test cases.

Parameter Value
Buffer capacity (B) 2
Planned maintenance time to repair Uniform(5, 15)
Planned maintenance cost (CP ) 50
Unplanned maintenance time to repair Uniform(10, 20)
Unplanned maintenance cost (CU ) 300
Unit lost production cost (CLP ) 10
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Figure 3. True cost of best solution versus simulation
replications for a FIFO maintenance queue averaged over ten

runs of each algorithm.

due to the small number of simulation replications that are
made when the GA evaluates a solution. The high degree of
replication variability makes it difficult to accurately measure
the fitness of a solution with only a few replications.

5.2. Priority Maintenance Queue

Similar results can be examined for the system under a prior-
ity queue discipline for maintenance jobs. The true minimum
cost is obtained for the policy P = {8, 7, 8} which has an
average objective function value of 383.21 after 10,000 sim-
ulation replications, so the cost is not improved by a prior-
ity queue. Both algorithms are again compared using a pre-
scribed maximum number of fitness function evaluations. In
Figure 5 the convergence of each algorithm is shown. Again
it appears that on average the GMIA obtains a better solution
for a given NFE.

Just as in the FIFO maintenance queue case, the GA tends to
underestimate the cost of the best solution, as shown in Figure
6. This is again a result of the small number of replications
that are used to evaluate the candidate solutions. There is
a trade off between the accuracy of solution evaluations and
the number of unique solutions evaluated. Conversely, an-
other disadvantage of the GA is that favorable solutions may
be overlooked due to the variability in their evaluation. Just
as the fitness of some solutions is overestimated, it is likely
that fitness is frequently underestimated as well. This could
result in better solutions not being selected for reproduction,
resulting in a non-optimal population of solutions.

6. CONCLUSIONS

For the problem of optimizing a condition-based maintenance
policy for a series manufacturing system, both GA and GMIA
have shown to be effective search techniques. For a given
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Figure 4. True and observed cost versus simulation
replications for GA in a FIFO maintenance queue
(horizontal line represents the true minimum cost)
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Figure 5. True cost of best solution versus simulation
replications for a priority maintenance queue averaged over

ten runs of each algorithm.
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Figure 6. True and observed cost versus simulation
replications for GA in a priority maintenance queue
(horizontal line represents the true minimum cost)

simulation budget, GMIA is able to find a better optimal so-
lution on average. This is an important consideration as the
simulation of complex systems can be time-consuming and
computationally expensive.

The maintenance of the example system presented here did
not benefit from a priority maintenance job queueing disci-
pline. This could be due to fact that failures of other ma-
chines are ignored when finding the opportunity window of
a machine. Improving upon the opportunity window priority
measure is among the next steps of this work. It may also be
the case that there are not many instances of conflicting main-
tenance jobs, and so there is little need to decide the order
in which jobs should be performed. A priority queue would
likely be more effective for a system with a greater number
of machines or machines with higher rates of degradation. In
both cases, more maintenance jobs would occur over a given
time horizon, thus increasing the occurrence of scheduling
conflicts. This will be examined further in future work.
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