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ABSTRACT 

Semi-blind source separation algorithm is widely concerned 

for its advantages over classical blind source separation 

algorithm. However, in practical applications, it is often a 

difficult problem to design reference signals, which should 

be closely related to the desired source signals. Therefore 

the algorithm of constrained blind source separation by 

morphological characteristics is proposed in this paper, 

including three steps: the establishment of the enhanced 

contrast function, the optimization calculation and the 

extraction of multiple source signals. Firstly, the indexes 

measuring the morphological characteristics of a source 

signal are constructed based on the known prior information 

and introduced into the traditional contrast function to 

establish an enhanced contrast function, extending the use of 

prior information. Then, the optimization calculation is 

accomplished by genetic algorithm, obtaining a single 

source signal. Finally, the extraction of multiple source 

signals is realized by cluster analysis. The proposed 

algorithm is applied to the modal analysis under random 

excitation. The spectrum symmetry index is constructed and 

introduced into the kurtosis contrast function to establish the 

enhanced contrast function, thus realizing the extraction of 

each signal modal response. The extraction results show the 

effectiveness and superiority of the algorithm. 

1. INTRODUCTION 

The blind source separation (BSS) method proposed at the 

end of the twentieth century can separate and extract each 

source signal from mixed observation signals without or 

only a small amount of prior knowledge. In recent years, 

BSS technology has been widely used in the field of 

engineering. Some progress has been made in structural 

vibration signal analysis (He, Chen, Zhang, Sun & Hu, 

2018), structural damage identification (Sadhu, Narasimhan 

& Antoni, 2017) and modal analysis (Chang, Liu, Hu & 

Nagarajaiah, 2016). In the field of Prognostics and Health 

Management (PHM), the application of blind source 

separation technology has also achieved remarkable effects. 

Benkedjouh, Zerhouni, and Rechak (2018) proposed a new 

intelligent method for tool wear condition monitoring based 

on continuous wavelet transform (CWT) and BSS 

techniques. Zhang, Gao, Liu, Farzadpour, Grebe, and Tian 

(2017) propose an adaptive parameter BSS approach based 

on the adaptive time-frequency distributions theory in order 

to deal with the non-stationary blind separation problem and 

apply it to wheel defect monitoring. 

Constrained BSS (Zhao, Kong, Jiang & Qu, 2014), also 

known as semi-BSS, has received extensive attention 

because of the improvement of the accuracy of separation 

by exploiting the prior information, and has made 

significant progress (Zhang, Zhang, Cheng, Zhu & He, 

2015). In the constrained BSS algorithm, the reference 

signal similar to the source signal is constructed by using 

the prior information of the source signal, and it is 

introduced into the algorithm in the form of additional 

constraints. In practical applications, the construction of 

reference signals is a difficult problem. On the one hand, the 

construction of reference signals has higher requirements for 

prior knowledge so as to construct complete sequences of 

reference signals. On the other hand, the inaccuracy of the 

reference signals will have an adverse effect on the 

extraction of source signals. These greatly limit the 

application of reference signals. The known priori 

information is often less, so it is necessary to use a small 

amount of prior information to improve the separation 

performance. Therefore, this paper proposes constrained 

blind source separation by morphological characteristics. 

The morphological characteristics indexes are constructed 

according to a small amount of prior information and then 

introduced into the blind source separation algorithm as a 
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constraint to enhance the separation performance of the 

algorithm. 

The application of blind source separation in modal analysis 

has made some achievements. However, there are few 

applications of BSS in structural modal analysis under 

random excitation. In this paper, the algorithm is applied to 

modal analysis under random excitation to verify the 

effectiveness and superiority of the proposed algorithm. 

2. CONSTRAINED BLIND SOURCE SEPARATION BY 

MORPHOLOGICAL CHARACTERISTICS 

2.1. BSS Model 

The linear instantaneous BSS model could be described as 

follows:  

 
1

1,2, , , 1,2,
n

i ij j

i

x a s i m j n


      (1) 

It can also be written in the form of a matrix:  

 x As  (2) 

where  
T

1 2, , , mx x x x denotes the m-dimensional mixed 

signals which can be observed;  
T

1 2, , , ns s s s  denotes 

the  n-dimensional source signals; A is a constant mn 

mixing matrix. 

The target of BSS algorithm is to estimate the separating 

matrix, which satisfies the following equations: 

  
T

1 2, , , ny y y y Wx  (3) 

where y is the n-dimensional separated signals, that is, the 

estimation of source signals. 

Relying solely on the assumption of statistical independence 

of source signals, it is impossible to identify the mixed 

matrix completely or recover the source signals completely, 

so there are two ambiguities in the blind source separation 

method: order ambiguities and scale ambiguities of the 

separated signals (Hyvärinen, 2012).  

2.2. New Contrast Function 

Blind source separation is actually an optimization problem, 

and the optimization goal is the maximization of non-

Gaussianity. Kurtosis or its absolute value has been widely 

used in BSS and related fields as a measure of non-

Gaussianity, called contrast function, mainly for its 

simplicity in both computation and theory. This paper will 

take kurtosis as an example to describe the algorithm. In 

practical applications, we can also use other contrast 

functions such as negative entropy and mutual information. 

The kurtosis can be defined as： 

       
2

4 2kurt E 3 Ey y y   (4) 

It should be noted that the variable y in Eq. (4) is zero mean. 

To simplify the problem, it can be further assumed that y 

has been normalized, that is,  2E 1y   (Naik & Kumar, 

2011). Then the contrast function of the absolute value of 

the kurtosis can be simplified as: 

      4kurt E 3J y y y    (5) 

According to the known prior information, we construct the 

indexes that can reflect the morphological characteristics of 

the source signals, such as symmetry, stability, periodicity, 

skewness and so on, which are then introduced into the 

kurtosis contrast function. Actually, the similarity between 

the separated signal and the reference signal used in the 

traditional constrained BSS algorithm can also be regarded 

as a special case of the morphological characteristic index. 

Then the contrast function Eq. (5) is modified to: 

 1 1 2 2( ) ( ) ( ) ( )J y kurt y y y       (6) 

where 
i ( )y  denotes the morphological characteristic 

indexes; 
i  is a factor to adjust the impact of i ( )y

 to the 

contrast function. 

It should be noted that the optimization target is the 

maximization of the contrast function. Therefore, the 

morphological characteristic index of the source signal 

needs to meet the maximum requirement.  

2.3. Optimization Calculation by Genetic Simulated 

Annealing Algorithm 

After establishing the new contrast function, the 

optimization calculation can be carried out to find the 

separation matrix W  which maximize 
 J y

. Due to the 

lack of explicit function expression, it is difficult to deduce 

the iterative formula. In this paper, optimization calculation 

is carried out by genetic simulated annealing algorithm 

(GSAA) (Wang, Wong & Rahman, 2005), which combines 

the advantages of genetic algorithm and simulated annealing 

algorithm. 

The result of algorithm operation is one row of the 

separating matrix pw , which satisfies： 

  1= , ,p p p pmy w w w x x  (7) 

Each element 1, ,p pmw w  in vector pw  is the variable to be 

calculated by GSAA, so the number of variables needed to 

be calculated is the number of mixed signals m. Because of 
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the scale ambiguities, 1pw  can be set to 1, reducing the 

number of variables to m-1 .  

The fitness function of GSAA is the new contrast function 

Eq. (6) introduced in section 2.2:  

 1 1 2 2( ) ( ) ( ) ( )fitF J y kurt y y y        (8) 

After obtaining the pw , the separated signal py  is obtained 

through Eq. (7). 

2.4. Extraction of Multiple Source Signals by Clustering 

One separated signal can be obtained every time the GSAA 

runs. To guarantee the separated signal to extract is different 

from the ones before，the Gram-Schmidt method is usually 

used to conduct deflationary orthogonalization so that the 

separated sources are uncorrelated to each other (Hyvarinen, 

1999). However, in the mechanical system, the 

independence between the source signals is difficult to 

guarantee, which leads to the orthogonalization method no 

longer applicable. Therefore, a method of extracting 

multiple source signals by clustering is proposed.  

The process of the method is as follows. Firstly, running 

GSAA repeatedly, all the source signals can be separated as 

long as the number of running times is enough. Then, all the 

separated source signals are clustered so that the separated 

signals corresponding to the same source can be classified 

into one cluster. Finally, the optimal separated signal is 

selected from each cluster respectively as the optimal 

estimation of each source signal. 

In this paper, clustering is carried out by agglomerative 

clustering with average-linkage criterion (Himberg, 

Hyvärinen & Esposito, 2004). The similarity between 

separated signals is usually measured by the absolute value 

of cross correlation coefficient ijr .In fact, each correlation 

coefficient can be directly obtained by matrix operation: 

 ˆ ˆR WCW  (9) 

where the element in the ith row and jth column of matrix R 

is the cross correlation coefficient between the ith separated 

signal and the jth separated signal, that is ijr ; C is the 

covariance matrix of the mixed signals ;

1 2
ˆ ˆ ˆ ˆ=

T
T T T

M
 
 

W W W W  is the matrix formed by the 

separating vector ˆ
iW , from each run 1,2,i M . 

The final similarity matrix has the elements 
ij  defined as: 

 ij ijr   (10) 

Dissimilarity index is needed in clustering methods. 

Therefore, it is necessary to transform the similarity matrix 

into a dissimilarity matrix with elements 
ijd . A common 

transformation is given by: 

 1ij ijd    (11) 

The cluster quality index is defined as: 

 
1

1
inL
m

R ex
m m

S
I

L S

   (12) 

where 

2
,

1

m

in

m ij

i j Cm

S d
C 

   

'
'

1
min

'
m m

ex

m ij
m m

i C j Cm m

S d
C C

 

    

where 
mC  denotes the set of indices that belong to the mth 

cluster; mC  denotes the size of the mth cluster; 'mC  

denotes the set of indices that do not belong to the mth 

cluster; 'mC  denotes its size; L denotes the number of 

clusters. in

mS  reflects the tightness within a cluster while ex

mS  

reflects the tightness between different clusters. Therefore, 

the index RI  is an effective reflection of clustering tightness 

and the minimum of 
RI  suggests the best partition. 

The separated signals corresponding to the same source 

signal are clustered into one cluster. One with the largest 

contrast function value calculated by Eq. (6) can be 

considered as the optimal separated signal of each cluster. 

Through this process, all source signals can be extracted. 

2.5. Algorithm Steps 

To sum up, the steps of constrained blind source separation 

by morphological characteristics are as follows:  

1. Set the parameters of GSAA. 

2. Choose M, the number of times GSAA to run. Set i=1. 

3. Run GSAA introduced in section 2.3 to obtain the 

separating vector ˆ
iW .  

4. Set i=i+1. if i is not greater than M , go back to step 3.  

5. The separating vector ˆ
iW  from each run 1,2,i M  

are collected into a single matrix 1 2
ˆ ˆ ˆ ˆ=

T
T T T

M
 
 

W W W W . 

6. Choose L, the number of clusters. Run the clustering 

method introduced in section 2.4 and cluster ˆ
iW  

1,2,i M  into L clusters. Set j=1. 

7. Calculate the contrast function value of each separating 

vector in jth cluster. The separating vector with the 

largest contrast function value is set to 
jw . 
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8. Set j=j+1. if j is not greater than L , go back to step 7.  

9. The matrix 1 2=
T

T T T

L
  W w w w  is the final separating 

matrix and the source signals is finally obtained by 

y Wx . 

3. APPLICATION IN MODAL ANALYSIS 

3.1. BSS in Modal Analysis 

Modal analysis can be divided into two steps: decomposing 

the response signal into single modal responses and modal 

parameter identification by the single modal identification 

technique. BSS can be applied to the decomposition of 

single modal responses, which is the basis for accurate 

identification of modal parameters. 

The vibration of a n-degree-of-freedom (n-DOF) structural 

system could be described by the following equation:   

  t  Mx Cx Kx F  (13) 

where M, C and K denote the mass matrix, damping matrix 

and stiffness matrix respectively; x , x  and x  denote the 

displacement vector, velocity vector and acceleration vector 

respectively;  tF  denote the external load vector. 

For general engineering structures with small damping, the 

displacement response can be expressed by: 

    
1

n

i i

i

t q t


x ψ  (14) 

where iψ  denote the ith mode shape vector; iq  denote the 

normal coordinates. 

The response of a system under random excitation is usually 

difficult to describe by time function. However, under wide-

band random excitation, such as white noise excitation, an 

undamped or less damped system responds mainly at 

frequencies equal to its natural frequencies, and the normal 

coordinates can be approximated by harmonic functions 

modulated by slowly varying envelopes (t)ie  (Kerschen, 

Poncelet & Golinval, 2007): 

  
1

( )sin( )
n

i i i i

i

t e t t 


 x φ  (15) 

Set ( ) ( )sin( )i i i iq t e t t   , which can be regarded as 

virtual source signals. It is not difficult to find that the Eq. 

(15) satisfies the mixing model of BSS problem. 

In summary, under a random excitation, the modal 

decomposition of the responses of an n-DOF system can be 

regarded as a BSS problem. 

3.2. Simulation Experiment 

To verify the effectiveness of the algorithm, a simulation 

experiment is carried out in this section. A 3-DOF spring-

mass vibration system is shown in Figure 1, where m1=1; 

m2=1; m3=1; k=(100π)
2
; k1=2k; k2=k; k3=k; k4=2k; kc=0.05; 

c1=c2=c3=c4=2kc×100π; the random excitation f(t) is 

applied to m1.  

1m
2m 3m

1k

1c

2k

2c

3k

3c

4k

4c

1( )x t 2 ( )x t 3( )x t

)(tf

 

Figure 1. the 3-DOF spring-mass vibration system diagram. 

Sampling frequency is 1000Hz. The displacement signals of 

the first 4 seconds are taken into account for the 

identification, as shown in Figure 2. The displacement 

signals are called the observed signals in the BSS problem, 

and also called the response signals in modal analysis. 

(a)                 

(b)                

Figure 2. Response signals. (a) Waveforms of the observed 

signals. (b) Fourier spectrums of the observed signals. 
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The fastICA algorithm is applied to the decomposition of 

the response signals. The waveform and spectrum of the 

separated signals y are shown in Figure 3.  

(a)  

(b)                

Figure 3. Results by the fastICA algorithm. (a) Waveforms 

of the separated signals y. (b) Fourier spectrums of the 

separated signals y.  

In order to evaluate the effectiveness of the algorithm, it is 

necessary to compare the separated signals with the true 

single modal responses. In simulation, the true single modal 

responses s can be obtained by calculation, as shown in 

Figure 4.  

The similar index SNRs is used to evaluate the performances 

of the algorithms (Zhang, Zhang, Cheng, Li, Chen , Yang & 

He, 2014):  

 
2

1010log ( / MSE)SNRs   (16) 

Where 
2 denotes the variance of the true single modal 

responses s; MSE denotes the mean square errors between 

the true single modal responses s and the separated signals y. 

It should be noted that, it is necessary to transform the 

signals into equal variance before calculating the MSE due 

to the scale ambiguities. When the separated signal is 

similar to the source signal, the MSE between them is small. 

So the algorithm with bigger SNRs gets a better result. 

 (a)              

(b)               

Figure 4. True single modal responses s. (a) Waveforms of 

the single modal responses. (b) Fourier spectrums of the 

single modal responses. 

 

Figure 5. Comparison between the second order modal 

response signal and the second separated signal by the 

fastICA algorithm in Fourier spectrum. 

The SNRs between each separated signal and each modal 

response signal is 24.07, 14.25, 25.77, respectively. The 

first and third order modal response signals are accurately 

extracted, while the extraction of the second one is not 

accurate enough. Comparing the second separated signal 

and the second order modal response signal, we can see that 
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the separated signal has obvious errors at 90~130Hz，as 

shown in Figure 5. 

The independence assumption of BSS makes the separated 

signals uncorrelated to each other. The covariance matrix of 

separated signals C
y
 is calculated:  

 

1 0 0

0 1 0

0 0 1

C

 
 


 
  

y  (17) 

However, the true signal modal response signals are not 

strictly uncorrelated. The covariance matrix of true signal 

modal response signals C
s
 is calculated:  

 

1 0.0105 0.0086

0.0105 1 0.1969

0.0086 0.1969 1

C

 
 

  
 
  

s  (18) 

Therefore, it is not applicable to use independence criterion 

as separation target in this case. That is the reason why the 

result by the classical BSS algorithm is inaccurate. 

Then, we use the algorithm proposed in this paper to 

decompose the responses signals into single modal 

responses. 

It can be seen that the modal response signal of each order is 

approximately symmetrical about the peak in the Fourier 

spectrum, so the spectrum symmetry index can be used as 

the morphological characteristic index of the problem. To 

construct the index, the time-domain signal is transformed 

into its frequency-domain signal firstly. Then taking the 

peak frequency as symmetric center, the signal is split into 

two parts, the normalized correlation coefficient of which 

can be taken as the spectrum symmetry index.  

 
   

   

1 2

1

1 22 2

( )

M
f

k

f

k k

y
k k

 
 Y Y

Y Y
 

(19) 

where 1Y  and 2Y  are the two parts split into with 

sequence M as the center; 
2

f
Y is the reverse of 2Y ;  

denotes the modulus of a vector; 
2

 denotes 2-norm. 

The value of the index is in the range of [0,1]. The larger 

the index, the stronger the spectrum symmetry of the signal. 

The contrast function is obtained by taking Eq. (19) into Eq. 

(6). The combination of the kurtosis and the symmetry 

index makes the separated signals tend to be non-Gauss and 

symmetric. 

Then, we can extract the single modal response signals from 

the observed signals according to the steps introduced in the 

section 2.5. The algorithm parameters are the scale 2.5  , 

the number of times GSAA to run M=30, the number of 

clusters L=3. The separated signals is shown in Figure 6.  

 (a)                 

(b)                 

Figure 6. Results by the proposed algorithm. (a) Waveforms 

of the separated signals. (b) Fourier spectrums of the 

separated signals.  

The SNRs between each separated signal and each modal 

response signal is 25.43, 31.09, 28.15, respectively. The 

separation results of both fastICA algorithm and proposed 

algorithm are listed in Table 1. From the table, we can find 

that the first and third order modal response signals are still 

accurately extracted, while the extraction accuracy of the 

second one is significantly improved.  

 

Table 1. Separation results. 

 

Method 
SNRs 

Signal1 Signal2 Signal3 

FastICA 24.07 14.25 25.77 

Proposed algorithm 25.43 31.09 28.15 
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Comparing the second separated signal and the second order 

modal response signal, we can see that the separated signal 

is basically coincided with the true modal response signal，
as shown in Figure 7. It can be seen that the proposed 

constrained blind source separation by morphological 

characteristics has a better separation performance. 

 

Figure 7. Comparison between the second order modal 

response signal and the second separated signal by the 

proposed algorithm in Fourier spectrum. 

4. CONCLUSION 

This paper proposes constrained BSS by morphological 

characteristics. The morphological characteristics indexes 

are constructed according to the prior information and then 

introduced into the BSS algorithm as a constraint to enhance 

the separation performance of the algorithm. The algorithm 

does not need to construct complete sequences of reference 

signals, so only a small amount of prior information is 

needed, which further extends the use of the prior 

knowledge in constrained BSS algorithm. 

The proposed algorithm is applied to modal analysis of a 3-

DOF spring-mass vibration system under random excitation. 

The single modal response signals is extracted accurately 

from the response signals. By comparison, we can see that 

the accuracy of extraction has been significantly improved, 

verifying the superiority of the algorithm. 
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