
 

1 

Force Reconstruction for Nonlinear Structures in Time Domain 

Jie Liu1, Bing Li2, Meng Li3, and Huihui Miao4 

1,2,3,4State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049, P. R. China  

Jieliu2013@stu.xjtu.edu.cn 
bli@mail.xjtu.edu.cn 

lm907252849@gmail.com 
mhh1989@stu.xjtu.edu.cn 

 ABSTRACT 

With growing complexity of mechanical structure, nonlinear 
factors existing in the structure have drawn much attention in 
recent years. Meanwhile, accurate information of dynamic 
force is an important index for analyzing nonlinear 
mechanical structure. However, these data are always 
difficult and even impossible to be measured directly. 
Therefore, in this paper, a novel reconstruction strategy is 
proposed to calculate the external force of the nonlinear 
structure on the basis of measured response at the reference 
position. For the reconstruction strategy, the force 
reconstruction equation of nonlinear structure is established 
by the nonlinear state-space model, and nonlinear subspace 
identification (NSI) algorithm is utilized to estimate 
coefficient matrices of the nonlinear state-space model to 
form the transfer matrix. And then, considering the ill-
condition of the transfer matrix, the regularization method 
combined with the generalized cross-validation criterion is 
utilized to solve the ill-posed reconstruction equation to 
obtain the unknown external force. Numerical study is 
conducted to illustrate the feasibility of the reconstruction 
strategy. The results demonstrate that the proposed 
reconstruction strategy can be utilized to accurately obtain 
the external force of the nonlinear structure. 

1. INTRODUCTION 

Dynamic force on the mechanical structure is essential for 
dynamic optimal design, vibration control and structural 
health monitoring (Law, Bu, Zhu & Chan, 2007). For 
instance, for the ship power equipment, dynamic force 
between the actuator and main engine should be obtained to 
provide the basis for active vibration isolation control of the 
equipment (Daley, Johnson, Pearson & Dixon, 2004). 
Unfortunately, in most engineering practices, direct 
measurement of dynamic force is always difficult and even 

impossible. However, dynamic responses are relatively easy 
to be measured by appropriate sensors. For these reasons, it 
is essential to develop force reconstruction technique to 
reconstruct the force by measured dynamic responses and 
structural characteristics.  

Because that condition number of the transfer matrix in the 
reconstruction equation is usually large in the engineering 
practice, force reconstruction is a typical ill-posed inverse 
problem. For such problem, classical numerical algorithms 
based on the least squares (LS) or direct matrix inversion 
(DMI) scheme turn out to be useless.  Consequently, special 
regularization techniques such as Tikhonov regularization, 
iterative method and truncated singular value decomposition 
(TSVD) method, have been developed to obtain the 
numerically stable approximation to unknown solution of the 
ill-posed problem, see, e.g. Inoue, Harrigan and Reid (2001), 
Sanchez and Benaroya (2014) for an overview. Liu and 
Shepard Jr (2005) proposed an enhanced least square scheme 
which contains the regularization filter (TSVD filter or 
Tikhonov filter) and LS scheme (conventional LS scheme or 
total LS scheme) to conduct force reconstruction in frequency 
domain. Lourens, Reynders, De Roeck, Degrande and 
Lombaert (2012) proposed an augmented Kalman filter 
algorithm to reconstruct the exciting force, and experimental 
results illustrate that the proposed method is superior to 
traditional deterministic least square method. Jia, Yang and 
Song (2015) proposed a weighted regularization approach 
based on the proper orthogonal decomposition (POD) to 
improve the accuracy of random loads reconstruction. Zhang, 
Huang, Zhang and Hua (2016) combined linear subspace 
identification algorithm and homotopy to experimentally 
estimate the exciting force on a scale model of a civil ship.  

It can be noted from reviewing the literature that various 
methods have been proposed to conduct the force 
reconstruction. However, most of these studies focus on the 
linear structure. Due to nonlinearities in the components and 
material properties, Engineering structures are always 
nonlinear. Moreover, in recent years, nonlinear factors 
existing in engineering structures have drawn much attention, 
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and considering these nonlinear factor can improve the 
accuracy of dynamic analysis (Yang, Ren, Qin, Wu & Zhi, 
2010, Zhang & Du, 2015). Therefore, a novel force 
reconstruction strategy of nonlinear structure is proposed in 
this paper. The reconstruction equation is based on the 
nonlinear state-space model, and the transfer matrix is 
composed of coefficient matrices of this model. Nonlinear 
subspace identification (NSI) algorithm (Marchesiello & 
Garibaldi, 2008) which is one kind of nonlinear system 
identification method is utilized to estimate these coefficient 
matrices to form the transfer matrix. When obtaining transfer 
matrix and dynamic response, Tikhonov regularization 
method is employed to solve the ill-posed reconstruction 
equation, and regularization parameter is determined by the 
generalized cross-validation (GCV) criterion.  

2. THEORETICAL BACKGROUND 

2.1. Force reconstruction equation of nonlinear 
structures 

For the general n degree-of-freedoms structure with local 
nonlinearities, the equation of motion can be represented as 

 _
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where M , C  and K  are the mass, damping and stiffness 

matrices, respectively. p denotes the number of nonlinearities. 

j  is the nonlinear parameter of the j-th nonlinearity, and it 

represents the nonlinear strength. ( )jg t  is the corresponding 

nonlinear describing function. fL  and _nl jL denote the 

exciting location and nonlinear location. Additionally, the 
product of j  and ( )jg t  denotes the nonlinear force. 

Based on the output feedback principle (Adams & Allemang, 
1999), nonlinear force can be viewed as the internal feedback 
force, and nonlinear term in Eq. (1) is moved to the right side 
of the equation. And then, by defining the state variable 
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where subscript c  denotes that coefficient matrices are for 

the continuous-time state-space model.
T

1 2( ) ( ) ( ) ( )nl pt g t g t g t   g   denotes a vector made 

up of nonlinear describing function, and nlμL are formed by 

the product of corresponding nonlinear parameter and 

location vector. Additionally, the output vector of state-space 
model is given by 

 ( ) ( ) ( )c ct t t y C z D u  (3) 

Eqs. (2) and (3) are the continuous-time state-space model of 
the nonlinear structure, and according to Zero-Order-Hold 
(ZOH) discretization method, these two equations can be 
rewritten as 

 ( 1) ( ) ( )d dk k k  z A z B u  (4) 

 ( ) ( ) ( )d dk k k y C z D u  (5) 

where subscript d  denotes that coefficient matrices are for 

the discrete-time state-space model. k  represents the 

discrete time k t , and t  is the sampling interval. The 
relationship between two kinds of coefficient matrices is 
given by  
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Substituting Eq. (4) into Eq. (5) at different discrete time, and 

based on the zero initial condition (0) (0) 0 z u , output 

vector can be expressed as 
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The compact form of Eq. (7) is given by  

 Y = HF  (8) 

where F  denotes generalized force vector of nonlinear 
structure, including exciting force and nonlinear describing 
function. Eq. (8) relates generalized force vector F  to output 
response vector Y  by the transfer matrix H . If Y  and H are 
known, unknown F  can be obtained by solving Eq. (8). 
Therefore, Eq. (8) is regarded as the force reconstruction 
equation of nonlinear structure. 

2.2. Nonlinear identification by nonlinear subspace 
identification algorithm 

In order to conduct force reconstruction of nonlinear structure, 
transfer matrix in Eq. (8) should be obtained first. It can be 
observed from Eq. (7) that the transfer matrix H is formed by 
coefficient matrices of nonlinear state-space model, and these 
coefficient matrices can be estimated by nonlinear subspace 
identification (NSI) algorithm. 

NSI algorithm is essentially developed from linear subspace 
identification (SI) algorithm (Overchee & Moor, 1996, 
Verhaegen,  1994), and identifying nonlinear system by NSI 
algorithm means that SI algorithm is applied to estimate 
coefficient matrices of nonlinear state-space model 
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(nonlinear parameters are included in coefficient matrix B ). 
It means that the core of these above-mentioned two 
algorithms are the same, only the state-space model to be 
solved is different. For linear state-space model, input vector 
only includes exciting force, and coefficient matrix B  does 
not include nonlinear parameter.  

In order to estimate coefficient matrices of nonlinear state-
space model, an input block Hankel matrix is defined as 
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where h  is a user-defined index, and it should satisfy h r  

( r  denotes the order of state-space model). l  is equal to 

2 1N h  , and N  represents the number of sampling points. 

As the similar manner, output block Hankel matrices 0|2 1hY , 

pastY  and futureY   can also be obtained. Additionally, a 

combinatorial block Hankel matrix is given by 

 0| 1=
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SI algorithm is based on the geometric manipulation of the 
above block Hankel matrices, and an oblique projection 
operator is expressed as 

 h future past
future

  UY Q  (11) 

where h represents the oblique projection of the row space 

of futureY  along the row space of futureU  on the row space of 

pastQ . And then, the singular value decomposition (SVD) of 

weighted oblique projection operator is given by 
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where 
future
U  denotes projection on the orthogonal 

complement of the row space of futureU . According to SVD 

results shown in Eq. (12), extended observability matrix can 
be calculated by  

  1/2
1 1= s sΓ W S  (13) 

Furthermore, the definition of Γ  is shown as 
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When extended observability matrix Γ  has been obtained by 
Eq. (13), coefficient matrices dA  and dC  can be estimated 

by Eq. (14). Finally, two estimated coefficient matrices are 
substituted into nonlinear state-space model, and linear 
regression analysis is applied to estimate the remaining 

coefficient matrices dB  and dD . 

In conclusion, before force reconstruction of nonlinear 
structure, a known exciting force is applied to conduct 
vibration test. Based on the exciting force and measured 
output response, NSI algorithm can be utilized to estimate 
coefficient matrices of nonlinear state-space model to form 
the transfer matrix in Eq. (8).   

2.3. Force reconstruction with regularization method 

After obtaining output response and transfer matrix, 
unknown exciting force of nonlinear structure can be 
reconstructed by solving Eq. (8). Intuitively, it seems easy to 
solve reconstruction equation by DMI method, and the result 
is given by 

  
1† T T

DMI =


F H Y H H H Y  (14) 

where  
†  represents pseudo inverse operation, and when H

is a square matrix, † 1( )H H . However, in engineering 

practice, the condition number of transfer matrix is always 
large, it is an ill-conditioned matrix. For DMI method, errors 
contained in output responses may be amplified by the ill-
conditioned transfer matrix to result in worthless results. It 
means that force reconstruction is an ill-posed inverse 
problem. 

In this paper, Tikhonov regularization method is applied to 
obtain the stable solution of ill-posed inverse problem. The 
objective function is given by 

  2 2

2 2
minimize  

F
HF Y F  (15) 

where 0   is Tikhonov regularization parameter. Based on 
the derivative of Eq. (15) on unknown variable F , Tikhonov 

regularization solution TikF  is as follow 

  
1T T

Tik + n n


F H H I H Y  (16) 

Compared to DMI solution in Eq. (14),   is utilized to 
improve the stable of regularization solution, and selecting an 
appropriate   is a key step. In this paper, the generalized 
cross-validation (GCV) criterion is utilized to determine an 
optimal Tikhonov regularization parameter by minimizing 
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GCV function, and specific calculation process is fully 
discussed in reference (Overchee & Moor, 1996). 

In conclusion, the proposed force reconstruction strategy of 
nonlinear structure includes two step. At first, a known 
exciting force is utilized to conduct vibration test, and 
coefficient matrices of nonlinear state-space model which are 
estimated by NSI algorithm is utilized to form the transfer 
matrix H . And then, measuring dynamic response can be 
applied to reconstruct the unknown exciting force of 
nonlinear structure by using Tikhonov regularization method 
to solving ill-posed reconstruction equation.  

3. NUMERICAL EXPERIMENT  

In this section, a two degree-of-freedom (DOF) structure with 
clearance nonlinearity shown in Fig. 1 is used to verify the 
effectiveness of proposed force reconstruction strategy of 
nonlinear structure. The figure shows that clearance 
nonlinearity is located between first DOF and second DOF, 
and clearance-nonlinearity force is described by 

( ) ( ) 0

c c

nl c c c c c

c c

x d x d

f t k g t k d x d
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where 2 1( ) ( )x x t x t   , 1( )x t  and 2 ( )x t are respectively 

the displacement responses at first DOF and second DOF. cd

is the clearance value. ck  is the clearance stiffness. 
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Figure 1 Two DOF simulation model with clearance 
nonlinearity. 

In the simulation, parameters of the nonlinear structure are 
set as: 1 2 1kgm m  , linear stiffness 

1 2 3 1000N/mk k k   , damping coefficient

1 2 3 2N s/mc c c    , clearance value 1mmcd  , and 

clearance stiffness 42 10 N/mck   . Sampling frequency is 

1024Hz, exciting force is  ( ) 50sin 2 5f t t  , and 

duration is 2s. Additionally, all simulated output responses 
are added by an additive white noise with SNR=40dB (Signal 
Noise Ratio, SNR). 

In order to evaluate the closeness between the true force trueF  

and reconstruction result recF , relative error e  is defined as 

 true rec 2

true 2

|| ||
100%

|| ||
e


 

F F

F
 (18) 

According to the proposed force reconstruction strategy, 
coefficient matrices should be calculated by NSI algorithm at 
first, and in this step, clearance-nonlinearity describing 
function can be obtained by Eq. (17) to form the input vector 
of nonlinear stat-space model (clearance value is known as 
prior information). Based on transfer matrix and measured 
dynamic response, reconstruction result by DMI method is 
shown in Fig. 2. Fig.2(a) shows that, under the noise-free case, 
DMI method can be applied to precisely reconstruct the 
unknown force. It means that the proposed force 
reconstruction equation of nonlinear structure based on 
nonlinear state-space model is reasonable, and using the 
estimated coefficient matrices by NSI algorithm to form the 
transfer matrix is effective and feasible. However, with 
SNR=40dB, Fig. 2(b) shows that DMI reconstruction result 
is seriously deviated from the true value. In this simulation 
case, the condition number of transfer matrix 

1 16
2 2cond( ) || || || || 1.32 10  H H H , it means that the 

transfer matrix is ill-conditioned, and force reconstruction 
problem of the nonlinear simulation model  is ill-posed. The 
measurement errors are amplified by the matrix inversion, 
and DMI solution turns out to be useless. 

 
      (a) 

 
       (b) 

Figure 2 DMI reconstruction results for nonlinear simulation 
model: (a) noise-free case; (b) SNR=40dB. 
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o
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e
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Tikhonov regularization method is adopted to improve the 
numerical stability to solve ill-posed force reconstruction 
equation of nonlinear structure, and reconstruction result is 
shown in Fig. 3. For GCV criterion, Tikhonov regularization 
parameter which corresponds to the minimum value of the 
GCV function can be determined from Fig. 3(a). As shown in 
Fig. 3(b), with SNR=40dB, the reconstructed force curve is 
coincident with the true force curve, and relative error is 
3.70%. It shows that, under noise interference, proposed 
reconstruction strategy can precisely reconstruct the 
unknown exciting force of nonlinear structure by measured 
dynamic response. 

 
        (a) 

 
       (b) 

Figure 3 Tikhonov regularization reconstruction results for 
nonlinear simulation model: (a) GCV criterion; (b) 
reconstruction results with SNR=40dB. 

In order to further illustrate the validity of the proposed 
reconstruction strategy, the nonlinear simulation model is 
regarded as a linear structure, and the influence of nonlinear 
factor on structural characteristics is ignored. It means that 
coefficient matrices of the linear state-space model (input 
vector only includes exciting force) are used to form the 
transfer matrix. Force reconstruction equation based on linear 
state-space model is also solved by Tikhonov regularization 
method. Under the same simulation conditions, the 
reconstruction result is shown in Fig. 4. Compared to Fig. 3, 
there is an obvious difference between the reconstructed 
force curve by ignoring nonlinear factor and true force curve, 

especially in the areas where the amplitude is largest. The 
relative error is 28.14%. Therefore, when reconstructing the 
unknown exciting force of nonlinear structure, nonlinear 
factor cannot be ignored.  In conclusion, the proposed force 
reconstruction strategy of nonlinear structure is feasible and 
effective. 

 
Figure 4 Tikhonov regularization reconstruction results by 
ignoring nonlinear factor. 

4. CONCLUSION 

This paper proposed a novel force reconstruction strategy of 
nonlinear structure which is based on time-domain NSI 
algorithm and Tikhonov regularization method. NSI 
algorithm is used to estimate coefficient matrices of the 
nonlinear state-space model. The transfer matrix in 
reconstruction equation can be obtained by these coefficient 
matrices. And then, Tikhonov regularization method is 
applied to solve the ill-posed force reconstruction equation to 
obtain the unknown external force of the nonlinear structure. 
A simulation model with clearance nonlinearity is set in 
MATLAB to verify the performance of the proposed 
reconstruction strategy. The simulation results show that the 
nonlinear factor cannot be ignored, and the reconstruction 
strategy has a good reconstruction performance. However, 
one fact is that there is a lack of experimental verification. In 
a future work, we will conduct nonlinear experiments to 
verify the effectiveness of the proposed reconstruction 
strategy in actual experiment environment. 
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