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ABSTRACT

The safety of the air transportation system is affected by a
variety of uncertainties arising from multiple sources. This
paper investigates a diagnosis and prognosis approach to de-
tect anomalies in the flight trajectory, diagnose root causes,
and then perform prognosis regarding the risk of occurrence
of adverse events, in the presence of various sources of uncer-
tainty. The proposed method is illustrated using a three-step
procedure. First, using flight trajectory data, we evaluate the
probabilities of system states corresponding to each failure
case, from which we formulate a state-space model. Next,
we perform anomaly detection for a specific flight trajec-
tory by developing a Bayesian state estimation-based method,
and subsequently identify the cause of the detected anomaly.
Once the root cause is identified, prognosis is performed to
predict the future state in a probabilistic manner. The pro-
posed method is illustrated using near-ground landing data
synthetically generated from an open source air traffic sim-
ulator — BlueSky. The simulation data mimicking the near-
ground landing process with different initial states (e.g., air-
craft altitude and speed, response delay, and brake perfor-
mance) and other factors (such as wind direction) are used
to demonstrate the procedures of diagnosis and prognosis.

1. INTRODUCTION

As reported by the Federal Aviation Administration (FAA),
in 2016, 2.6 million passengers flew every day in and out of
U.S. airports, and 39.9 billion pounds of freight were shipped
by air (Federal Aviation Administration, 2017). The increas-
ing air travel demand, which is expected to double in two
decades, will make the system overloaded and congested;
therefore, the safety of the air transportation system has re-
ceived considerable attention in recent years (Sankararaman,
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Roychoudhury, Zhang, & Goebel, 2017; X. Zhang & Ma-
hadevan, 2017, 2018), along with other issues related to traf-
fic management (Guimera, Mossa, Turtschi, & Amaral, 2005;
Di Gravio, Mancini, Patriarca, & Costantino, 2015).

In the current en route air traffic control system, the aircraft is
required to fly along a predesigned route (or trajectory) com-
prised of a sequence of fixed waypoints that connect the ori-
gin and destination airports. One commonly encountered sit-
uation in assessing the safety of the air transportation system
is the flight trajectory deviating from its filed flight plan. Un-
der this circumstance, it is important to find out what causes
the flight trajectory to deviate from its filed flight plan, when
the flight trajectory starts to deviate, how the anomalous flight
trajectory is going to evolve over the subsequent waypoints,
and whether the anomalous flight trajectory will progress to a
state that endangers the safety of the current flight and other
nearby flights. To answer these questions, it is crucial to de-
velop a real-time fault detection and identification (FDI) al-
gorithm to perform anomaly detection, fault diagnosis, and
system state prognosis. Over the past few years, numerous
methods have been developed for fault detection and isolation
based on state estimation theory (Zhao, Skjetne, Blanke, &
Dukan, 2014; Kadirkamanathan, Li, Jaward, & Fabri, 2002),
generalized likelihood ratio tests (Kadirkamanathan et al.,
2002), model-based approach (Yin & Zhu, 2015), among oth-
ers (B. Zhang et al., 2011). For example, Li & Kadirka-
manathan (Li & Kadirkamanathan, 2001) combined likeli-
hood ratio with particle filter for fault detection and isolation
in stochastic nonlinear systems; Yin and Zhu (Yin & Zhu,
2015) integrated the features in genetic algorithm with parti-
cle filter to implement an intelligent algorithm for detecting
the system faults in real time for a nonlinear system.

In the context of the air transportation system, few stud-
ies have been conducted related to near-ground flight trajec-
tory anomaly detection, diagnosis, and prognosis. A recent
study by Di Ciccio et al. (Di Ciccio, Van der Aa, Cabanillas,
Mendling, & Prescher, 2016) trained a one-class support vec-
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tor machine-based classification model to detect flight trajec-
tory anomalies based on several features extracted from flight
track events data. However, they only address the anomaly
detection problem while several other important issues re-
main to be answered, such as why the flight trajectory de-
viates from its flight plan, and how the anomalous flight tra-
jectory will evolve given the diagnosed system malfunction or
other causes. In this paper, we are motivated to fill this gap by
developing a diagnosis and prognosis framework. To accom-
plish this goal, we utilize an open source air traffic simulator
— BlueSky (Hoekstra & Ellerbroek, 2016)— to mimic the near-
ground landing process, in which different types of anomalies
and their combined effects are simulated. The abnormal be-
havior during landing could be caused by many different rea-
sons, such as initial approach characteristics, communication
and response delay, brake failure, tailwind, crosswind, etc.

For the sake of illustration, we simulate three different system
fault modes, namely response delay, brake failure, and high-
speed approach, which result in the different failure scenarios
of aircraft landing. By using the simulation data collected
from BlueSky, we develop a systematic data-driven diagnosis
and prognosis framework with the following features:

e Fault detection and fault diagnosis: A Bayesian state
estimation-based approach is developed to detect faults,
where the system state is modeled as the aircraft position
represented by latitude and longitude at a specific alti-
tude. With flight landing data, a probabilistic approach
is developed to estimate the conditional probability of
anomaly occurrence at a given altitude under each pos-
sible fault mode. When the anomaly in terms of aircraft
position is detected (based on a specified threshold), then
the fault mode is determined based on the conditional
probability information.

e Flight trajectory prognosis: Given the diagnosed root
cause, prognosis is performed to make prediction of air-
craft position along the subsequent altitudes. The early
estimation of flight trajectory evolution over time enables
the assessment of system safety in advance before it pro-
gresses to a state that impacts system safety.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the necessary background information
and formulate the problem of interest. In Section 3, we in-
troduce the methods that are used to perform diagnosis and
prognosis. In Section 4, we present the numerical results and
demonstrate the performance of the developed method. In
Section 5, we provide concluding remarks.

2. PROBLEM STATEMENT

The problem of anomaly detection consists of making deci-
sion on the presence or absence of anomaly in the monitored
system, while fault diagnosis refers to identifying the active
fault mode among a number of possible modes. In this paper,

we assume that the data supplied by the flight system is the
periodic update on the location of the aircraft during landing.
When the flight reaches each target altitude, its position infor-
mation is reported to the ground traffic controller, from which
we determine whether anomalous behavior is present, and if
so, what causes the anomaly, and how the diagnosed cause
will influence the flight position over the subsequent target
altitudes, and whether the aircraft will land safely on the run-
way. Throughout the paper, we assume that normal behavior
and all possible faulty behaviors of the flight system can be
described by a given finite set of state-space models indexed
bym=20,1---,M:

zp = ) (g, w)  k=1,2, - (1)
Zk:hk(xk,’l)k);k:].,Q,"' (2)

where £ is an index representing the aircraft’s altitude, x is
the 2 x 1 state vector consisting of the latitude and longitude
of the aircraft position, w is the vector of random parame-
ters (namely the initial speed, response delay, and wind di-
rection), f (m) is the state transition function associated with
fault mode m = 0,1--- M, z represents the vector of mea-
surement data, and v is the measurement noise vector.

Definition 2.1. Anomaly detection refers to the detection of
a shift from the normal mode (m = 0) to a faulty mode (m =
1, M).

Definition 2.2. Fault diagnosis is deciding which of the M
faulty models the system has shifted to.

In this paper, we receive periodic measurement data on the
location (latitude and longitude) of the flight at each alti-
tude from the air traffic simulator BlueSky. A data-driven
approach will be developed in the next section for anomaly
detection and fault identification.

3. PROPOSED METHOD

In this section, we demonstrate the proposed method for flight
behavior anomaly detection, fault diagnosis, and flight trajec-
tory prognosis.

3.1. Anomaly Detection

We present a Bayesian state estimation-based approach to
anomaly detection, using Eqs. 1 and 2 respectively as the
process and measurement models.

Let the anomaly be represented by the variable y, which
can assume values 0,1, --- M, with O representing the nor-
mal mode, and 1,2, .- M representing the M fault modes.
Plxx=m], m = 1,2,--- M represents the probability
of anomalous behaviour of mode m at altitude index k,
and P [xj = 0] represents the probability of the absence of
anomaly. These probabilities, conditioned upon the measured
data, can be represented as
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P xr =m|yi] = /P Xk = m|zk, Y1) p (Tr|yax) dog

m=12,

3

In the above equation, p (zx|y1.x) can be evaluated using
Bayesian state estimation methods.

In the problem of anomaly detection, we are concerned with
the first occurrence of an anomaly, whose probability would
be givenby P[x1 =0,x2 =0, , xx—1 = 0, xx, = m], for
m = 1,2,---, M. If this probability exceeds a pre-specified
tolerance limit for a certain fault mode m at an altitude in-
dex k, we can conclude that an anomaly of type m has been
detected.

3.2. Fault Diagnosis

In the proposed methodology, fault diagnosis is performed
alongside anomaly detection. Using the relations presented
in the preceding section, we obtain the probability of oc-
currence of anomaly of type m at the altitude index k as
P [xr = m|y1.x]. In this study, a particle filtering approach
is adopted to evaluate these probabilities. We begin with a
data set composed of N, samples of flight trajectories cor-
responding to the m = 1,2,--- , M fault modes and the one
normal mode. These are treated as samples for the standard
particle filtering algorithm, and P [x; = m|y;.x] is evaluated
for each m as

P [xi = mlyii] = /P[ch = m|Tr, Y1) P (Tk|y1:x) do

N,, k ]
x> II» (vel2ti),)

i=1r=1
“

Here xS,?r represents the flight location corresponding to
the ¢ — th sample, at altitude index r, for the fault mode
m. Following the detection of an anomaly, the probabili-
ties P [xx = m|y1.k] are evaluated for m = 1,2,--- , M,
and if the source of the anomaly is identifiable using the
given data, the probability corresponding to one of the modes
m = 1,2,--- | M would be comparatively higher. This is
analogous to the problem of model selection.

3.3. Flight Trajectory Prognosis

After the fault mode is identified, we seek to predict the ef-
fect of the system fault on the future trajectory. If a flight
is diagnosed as having fault of mode m at altitude index £,
its position at subsequent altitudes can be estimated using the

equation:
T = xp + Az >k 5)

where Aac:’?k is estimated by resampling from the distribution
corresponding to the data set for the m — th fault mode based
on the updated state xy.

4. NUMERICAL EXAMPLE

We illustrate the proposed methodology for a near-ground
landing process in an airport. The runway’s angle of the di-
rection from north is 135.2 degrees. The position of the air-
craft at four respective altitudes (700 meters, 500 meters, 300
meters and 100 meters) above the airport is measured, and
analyzed for anomaly detection, fault diagnosis, and landing
prognosis.

The flight trajectory data is generated using BlueSky simu-
lations. In BlueSky, the wind can be modeled by defining
a wind vector (wind direction and magnitude) at a specific
position and altitude. Different wind vectors can be defined
at different locations. To simulate the impact of wind di-
rection on aircraft landing, we consider eight different wind
directions, and their angles of the direction from the north
are: -44.80, 0.20, 45.20, 90.20, 135.20, 180.20, 225.20, and
270.20 (unit: degree). In particular, the wind with the di-
rection of -44.80 degree is referred to as tail wind, while the
wind with the direction of 135.20 represents the head wind.
The second factor considered in this example is the delay in
communication and pilot response, which can significantly
affect the safety of landing. A quantitative measure of de-
lay in reducing the aircraft speed is used in BlueSky simula-
tion to represent this effect with three values: 10 seconds,
30 seconds and 50 seconds, and the normal case is when
there is no delay. Thirdly, the aircraft approach speed is also
taken into account, with two values for illustration: normal
approach speed (150 knots), and anomalous approach speed
(180 knots). The fourth factor relates to the brake perfor-
mance in reducing the aircraft speed once it touches down,
with three deceleration rates: 0.8 m/s2, 1.131 m/s?, and 2.2
m/s? (normal). The anomalous deceleration values may be
caused either by brake system failure or by slickness of the
runway under rainy or snowy conditions.

Table 1 summarizes the aforementioned variables and their
values during aircraft landing. The last column of Table 1 re-
ports the variable settings in the normal case. For example,
in the normal case, aircraft approaches the near terminal area
at a speed of 150 knots without any response delay. After
it touches down, the brake should be able to decelerate the
aircraft at a rate of 2.2 m/s?. The third column shows the
considered values, indicating individual fault mode pertinent
to each variable. When only single isolated fault modes are
considered, only the variable related to that fault mode has
abnormal value while all the remaining variables take nor-
mal values. To account for the variability of each individual
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Table 1. The basic configuration of BlueSky simulation

Variable Name Distribution Mean Standard Deviation Normal Value
Speed (unit: knot) Normal 150, 180 10 150
Response delay (unit: second) Normal 10, 30, 50 2 0
-44.8,0.20, 45.2
Wind direction (unit: degree) Normal 90.2, 135.2, 180.2 2 -
225.2,270.2
Brake (unit: m/s?) - -0.8,-1.131,-2.2 - -1.131
Table 2. Failure probability of each considered case
Fault Mode 1 2 3 4 5 6
speed: speed: response delay: response delay: response delay: wind direction:
150 knots 180 knots 10 seconds 30 seconds 50 seconds -44.8
Fault Mode 7 8 9 10 1 12
wind direction: wind direction: wind direction: wind direction: wind direction: wind direction:
1352 180.2 2252
Fault Mode 13 14 15 16

combined fault 1:
wind direction: 45.2
response delay: 10 secs

wind direction:

270.2 N
response di

combined fault 2:
wind direction: 45.2

combined fault 3:
wind direction: 45.2

elay: 30 secs  response delay: 50 secs

fault mode, we run 100 simulations for each considered fault
mode. In addition to single isolated fault modes, simulations
are also performed to analyze the combined effects of several
hybrid fault modes. Table 2 lists the fault configuration for all
the considered cases. The first configuration in Table 2 rep-
resents normal operation with no faults, with a speed of 150
knots, no wind, no delay in response, and no brake failure
(i.e., ground deceleration of 2.2 m/s?)

Fig. 1 displays the latitude distribution at different altitudes
across all the simulation cases, where the blue segment de-
notes the normal case, while yellow segments represent all
the other anomalous cases. It can be observed that each fault
mode results in a different latitude distribution. Comparison
of this distribution against the normal case is useful in the
subsequent diagnosis of the root cause by measuring the de-
gree of aircraft latitude deviation away from normal case.

Fig. 2 shows the touchdown locations of the aircraft on the
ground across all the simulation cases, and each color corre-
sponds to one fault mode. In Fig. 2, the black solid line de-
notes the runway that is selected for the simulation, with the
beginning and ending of the runway shown by two arrows.
As can be observed, in some configurations, the aircraft fails
to land safely on the runway. It is observed some of the flights
land ahead of the runway as shown in the right bottom of Fig.
2, while some flights have incorrect lineup with the runway
after landing, i.e., they land on either side of the runway.

Fig. 3 shows the distribution of final aircraft position among
the aircraft that correctly land on the runway under different
deceleration scenarios. Note that compared to Fig. 2 which
shows the touch down position of all aircraft, Fig. 3 only
contains the flight that touches down on the runway correctly,

i.e., the flights with incorrect lineup are ignored. This implies
that touch down outside the runway is considered a failure,
and among those flights that land on the runway, Fig. 3 is
analyzing for additional failure, namely runway over-run due
to failure of the braking system. Note that even there is no
brake failure, some aircraft might experience runway over-
run due to high touchdown speed, as observed in Fig. 3(c).

Following the method introduced in Section 3, we have tested
the performance of the proposed approach in correctly de-
tecting the system anomaly and diagnosing the root cause
by splitting the dataset into two parts: model generation and
performance test, and the same process is repeated for three
times as cross-validation. Table 3 presents the statistical re-
sults of the algorithm in anomaly detection and fault diag-
nosis given different amounts of observed data, i.e., the data
at different altitudes. At each altitude, we receive a new ob-
served flight position data, anomaly detection and diagnosis
is performed again. In Table 3, the first column denotes algo-
rithm accuracy when only the flight position data at the alti-
tude of 700 meters is available, the second column represents
the accuracy of the developed approach in anomaly detection
and fault identification given the flight position data at the al-
titude of 700 and 500 meters, and so on. As expected, the
algorithm’s performance improves with the increase in the
observed data. Table 3 reports the accuracy values over the
three cross-validation tests.

The above analysis demonstrates the overall performance of
the developed algorithm in anomaly detection and fault iden-
tification. Next, we consider a specific case (fault mode 13) to
illustrate the developed method for flight position prognosis.
The Bayesian state estimation method correctly diagnoses the
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Figure 1. The latitude of all the simulation cases at multiple altitudes

Table 3. Performance evaluation of the proposed method in anomaly detection and fault diagnosis with different amounts of

observed data

Algorithm accuracy with

Algorithm accuracy with
observation at 700 and 500 meters

observation at 700 meters

Algorithm accuracy with
observation at 700, 500 and 300 meters

Algorithm accuracy with
observation at 700, 500, 300 and 100 meters

0.7033 0.9133

0.9400 0.9567

landing location
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Figure 2. Touchdown locations across all the simulation cases

fault mode with the observed flight position data at the alti-

tude of 700 meters. Based on the diagnosis result, we esti-
mate the flight position along the subsequent altitudes. Fig. 4
shows the prognosis of flight position in terms of latitude and
longitude over the subsequent altitudes. In Fig. 4, the blue
curve denotes the probabilistic estimation of the flight posi-
tion using Eq. (5). It can be observed that the actual aircraft
latitude and longitude stay within the prior predicted distribu-
tion of flight latitude and longitude considering all scenarios.
Along with the flight position prediction at subsequent alti-
tudes, we also estimate the probability of failure (i.e., landing
outside the runway) for this particular case as 0.736, based on
the diagnosis result at 700 meters altitude.

5. CONCLUSION

In this paper, a probabilistic computational algorithm is de-
veloped to perform anomaly detection, fault diagnosis and
prognosis of flight trajectory. The problem of anomaly de-
tection is treated as one of state estimation, where the system
state is the flight position at different altitudes during landing,
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Figure 4. Flight position prognosis based on diagnosis at 700 meters altitude: (a) Latitude at 500 meters. (b) Latitude at 300
meters. (c) Longitude at 500 meters. (d) Longitude at 300 meters

and the various failure cases diagnosed based on observations
of these states. This approach permits real-time fault identi-

fication, and is able to account for the presence of multiple
faults. The methodology can be further extended to system-
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level safety assessment by modeling the interactions among
flight trajectories of multiple aircraft if the trajectory infor-
mation is available.

With an open source air traffic simulator (BlueSky), simu-
lations are performed to mimic the landing process for all
the considered sixteen cases (13 single isolated fault modes
and three combined fault modes). Additional simulations are
also performed to verify the performance of the diagnosis
methodology. As illustrated in Section 4, the developed algo-
rithm demonstrates reasonable performance in detecting the
anomalous landing trajectory and diagnosing the fault mode
corresponding to the observed anomaly, especially as the air-
craft position is monitored over several steps.

Although the fault modes considered in this paper are simpli-
fied representations of reality, the proposed state-space esti-
mation method is generalizable to account for more realistic
scenarios. Also, fault modes such as high approach velocity,
response delay and braking system failure represent the ef-
fects of other underlying causes, and future work can consider
extending this approach to diagnosis through the hierarchy of
fault modes.
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