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ABSTRACT 

Temperature prediction in complex systems like gas 

turbines provides insights to temperature dependent damage 

accumulation but usually involves a huge computational 

cost. For simulation-based prognostics, the computational 

cost is a major hindrance to a real time implementation. In 

this work an ensemble learning based multistage surrogate 

modeling approach is investigated as a possible solution for 

reducing the computational cost. First the nodal temperature 

of a turbine blisk is predicted using computational fluid 

dynamic (CFD) simulations for a limited number of engine 

operating points. Next the proposed ensemble learning 

based surrogate modeling approach is implemented to train 

surrogate models for every node defining the blisk. To 

achieve computational efficiency, the proposed surrogate 

modeling framework implements in sequence, clustering 

techniques for data analysis, multistage polynomial 

regression modeling, and ensemble learning based model 

combination. Finally the prediction errors are quantified 

using the leave-one-out cross-validation method. The result 

suggests that the computational time could be significantly 

reduced using the proposed ensemble learning based 

multistage surrogate modeling technique. The threshold 

value used to tune the polynomial regression model 

complexity is also shown to influence the time for surrogate 

model training. 

1. INTRODUCTION 

Gas turbine engines are complex systems that operate under 

extremely high temperature and mechanical loads. In the 

turbine section, the gas exiting from the combustor hits the 

hot gas path components in the turbine section and results in 

temperature dependent damage accumulation that may 

result in component failures. The heat is transferred from 

the fluid to the solid through convection, within the solid 

through conduction as well as from solid back to the fluid 

through radiation. The heat transfer analysis for a turbine 

part becomes complicated and usually computational fluid 

dynamics techniques like finite volume methods are 

deployed for solving them. However the computational cost 

is very high, not only in terms of the hardware costs and 

time but also in terms of the software. The computation of 

flow parameters over a dense numerical grid using rotary 

frames has to be repeated for every distinct engine operating 

condition. The reduction of the CFD grid computation 

burden would allow a simulation-based prognostics system 

to expand its application range for real-time solutions. 

Hence development of advanced and cheap-to-evaluate 

surrogate models that emulate the expensive CFD solvers is 

required.  

Over the past three decades surrogate models have been 

used extensively in the design, analysis and optimization of 

problems involving computationally expensive simulations. 

Various aspects of the development of surrogate models for 

computer experiments including data sampling schemes, 

metamodeling techniques, and model validation methods, 

have been investigated and reported in the literature (Wang 

& Shan, 2007; Viana et al., 2014). A variety of regression 

modeling techniques used as surrogates for computationally 

expensive simulations have been studied and reported in the 

literature (Wang & Shan, 2007). More widely used 

techniques for this purpose include polynomial response 

surface models, neural networks, Kriging models, radial 

basis functions (RBF), multivariate adaptive regression 

splines (MARS), and support vector regression (SVR). 

These different techniques resulted in many comparative 

studies to determine their merits by applying them to 

various problems (Jin et al., 2001; Chen et al., 2006; Giunta 

& Watson, 1998). There is no conclusion about which 

model is definitely superior to the others; instead the 

literature confirms that the surrogate model performance 
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depends on both the nature of the problem and the sampling 

method used. Because no single best surrogate model 

performs well for all problems, and the cost of developing 

multiple surrogate models is often small compared to the 

cost of high fidelity simulations, there has been increasing 

interest in using ensembles of surrogates (Goel et al, 2007; 

Viana & Haftka, 2008; Acar & Rais-Rohani, 2009; Viana et 

al., 2009) for applications requiring surrogate models to 

replace expensive simulations.  

A large amount of recent work reported in the gas turbine 

literature has used surrogate models for different types of 

applications, such as design optimization, sensitivity 

analysis, model calibration, and uncertainty quantification 

(Keskin et al., 2008; Song et al., 2011; Schmitz et al., 2011; 

Lin et al., 2011; Cui and Wang, 2011; McFarland et al., 

2012). In particular, a few recent studies have investigated 

the use of surrogate models for reducing the computational 

cost for gas turbine blade temperature predictions involving 

CFD simulations (McFarland et al., 2012; van Enkhuizen et 

al., 2017).  

One of the main challenges often faced when using 

surrogate models for CFD applications is that one has to 

deal with a large number of nodal outputs (McFarland et al., 

2012). Thus, the surrogate model developed for CFD 

applications must be capable of handling a highly 

multivariate output by representing the model response for 

all nodal locations. McFarland et al. (2012) presents an 

approach in which individual node-based surrogate models 

are developed and demonstrated for 106 nodal locations. 

The above approach is significantly extended in this paper 

to handle more than 100 thousand nodal locations on the 

blisk by addressing the following research issues: a) node-

based surrogate modeling with limited data, b) multistage 

processing adopted for improving computational efficiency, 

and c) ensemble learning to augment accuracy/robustness of 

node-based surrogate models constructed using limited data.  

In this work, the feasibility of using an ensemble learning 

based surrogate modeling method for predicting the 

temperature distribution over gas turbine components is 

studied. In the first step, CFD simulation of a blisk is 

performed for a limited number of operating conditions. In 

the next step the proposed ensemble learning based 

surrogate modeling approach is implemented to train 

surrogate models for every CFD node. To achieve 

computational efficiency, the proposed surrogate modeling 

framework implements in sequence, clustering techniques 

for data analysis, multistage polynomial regression 

modeling (PRM), and ensemble learning based model 

combination. Finally the prediction errors are quantified 

using the leave-one-out cross-validation method.  

The prediction of the temperature of gas turbine components 

is critical to prediction of stress-strain states and damage 

accumulation under different operating conditions. The 

long-term goal of this work is to develop a cheap-to-

evaluate and near real-time processing of the gas turbine 

usage data and to estimate the remaining useful life and 

predictive maintenance of critical components. 

2. APPLICATION FOR REAL-TIME PROGNOSTICS 

Simulation-based prognostics rely on the numerical 

modeling and simulation of different aspects of the 

operation and behaviour of the engine components. This 

will enable the accurate damage accumulation and prognosis 

as a function of the actual usage. This is particularly useful 

in gas turbines where sensors are not available to detect 

performance or health parameters. However only limited 

engine operating data is available that can be used to define 

an operating envelope. As the engine operates at different 

operating points, the engine performance and the hot gas 

temperature keep on varying. Engine modeling using 

thermodynamic principles can be utilized to generate 

boundary conditions for CFD based heat transfer analysis to 

obtain the temperature distribution over the components. 

The component temperatures can then be converted into 

stress-strain states using the mechanical loading which then 

allows for the determination of the damage accumulation 

levels under different modes. 

In simulation-based prognostics, the heat transfer analysis is 

performed by a high fidelity and expensive CFD solver. 

Computation of the flow parameters is required over a dense 

numerical grid using rotary frames for every distinct engine 

operating condition. As such there can be significant wait 

times for the simulation-based prognostics.  

The objective for real-time prognostics is to replace this 

high fidelity and expensive solver with advanced and cheap-

to-evaluate interpolation models that emulate the CFD 

solver. With such an interpolation method for CFD results, 

the models can be trained with a minimal number of CFD 

simulation data generated up front by using expensive 

solvers. The simulation results are very rich in information 

so advanced learning techniques have to be also investigated 

with a view to minimizing the required number of 

simulations. The input includes the parameters for the 

boundary conditions of the CFD analysis estimated from the 

on-design engine modeling. Once trained, the models can 

now be used to directly predict the component temperatures 

for any engine operating point for which no simulation 

result exists.  

A framework as shown in Figure 1 is proposed for applying 

the machine learning based interpolation utilizing limited 

pre-run CFD simulation results. Based on the engine 

operating conditions, the boundary conditions (e.g. gas 

temperature, pressure, mass flow) used as input to the CFD 

analysis keep on varying. This necessitates the rerunning of 

the CFD simulation for every operating point. If a limited 

set of CFD simulation results is available, then through 

machine learning techniques robust interpolation models 

can be defined based on every node in the CFD grid. This 
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model can then be used for predicting the nodal CFD results 

like temperature for new inputs. The prediction model also 

runs in real-time, leading to implementation of real-time 

prognostics within an envelope of existing operating points 

and their CFD simulation results. 

3. MACHINE LEARNING APPROACH FOR 

SURROGATE MODELING  

This section briefly outlines various machine learning 

techniques that can be utilized in developing the proposed 

multistage surrogate-modeling framework for generating 

node-based surrogate models. 

 

Figure 1. Application of machine learning and surrogate 

modeling to real-time prognostics of blisk temperature. 

3.1. Regression Approaches for Surrogate Modeling 

Polynomial regression models (PRM) also known as 

response surface models (RSM) have been widely applied 

for surrogate modeling using low-order polynomials. The 

constant parameters of the PRM are determined using a 

linear least squares algorithm. For problems with a large 

number of inputs and limited training data, polynomial 

regression models are limited to using linear or second-

order polynomial models. In the literature, a class of kernel 

based surrogate models was studied for surrogate modeling 

of problems involving expensive computer simulations with 

considerable success (Wang & Shan, 2007). The members 

of this class of surrogate models include, Gaussian process 

regression (GPR) models, radial basis function (RBF) 

models, and support vector regression (SVR) models. 

Among these techniques, GPR models are the most widely 

used for metamodeling of computer simulations (Viana et 

al., 2014). For a given input vector x, the predicted output y 

of the GPR model is given as a combination of a known 

polynomial function f(x) representing the global trend of the 

output and a gap function g(x) representing deviations as a 

realization of a stochastic process with zero mean, constant 

variance, and nonzero spatial covariance function. GPR is a 

flexible technique because different variations can be 

created by choosing different pairs of f(x) and the 

correlation functions. For metamodeling, RBF models 

achieve approximation by using a linear combination of 

radially symmetric functions with weight coefficients. 

Gaussian basis functions are mostly used in RBF models 

where the basis functions are expressed in terms of the 

Euclidean distance between the basis function center and 

new input vector (Jin et al., 2001). In SVR, the goal is to 

find a function that has at most ε deviation from the training 

data (Clarke et al., 2005). In other words, the errors are 

considered zero as long as they are less than ε. Besides ε, the 

fitting of the SVR model has a regularization parameter 

which determines the compromise between the model 

complexity and the degree to which deviations larger than ε 

are tolerated in the model formulation. An open issue in 

SVR is the choice of parameter values for both the kernel 

and loss functions. 

As noted before all the above regression models (PRM, 

GPR, RBF and SVR) were studied previously for surrogate 

modeling of various problems. However, there was no 

definite consensus reached about any single model type 

being superior to the others for all problems. This prompted 

the investigation of ensemble of surrogate models involving 

either homogeneous or heterogeneous model types as 

described in the following section. It should be noted here 

that in this work only homogeneous models involving 

PRMs are considered for developing ensembles of surrogate 

models to predict CFD temperatures. Future work will study 

the effectiveness of considering all the above regression 

models in an ensemble framework for surrogate modeling 

considering heterogeneous model types.    

3.2. Ensemble Learning 

Ensemble learning is an aggregation of multiple models 

using some combination methods to form a final prediction 

model. Unlike ordinary learning approaches, which try to 

construct a single model from training data, ensemble 

learning methods try to construct multiple models to solve 

the same problem. Ensemble learning generally provides 

solutions with improved accuracy and/or robustness in most 

applications due to the availability of accurate and diverse 

multiple models for combining them into a single solution. 

Well known ensemble learning algorithms include stacking 

(Wolpert, 1992; Breiman, 1996a), bagging (Breiman, 

1996b), and boosting (Freund & Schapire, 1996) algorithms. 
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Generally, ensemble learning is implemented in three 

phases (see Figure 2): 1) generation of base models, 2) 

selection of base models, and 3) aggregation of the selected 

base models using some combination methods. In the first 

phase, a pool of base models is generated, and the pool may 

consist of homogeneous base models (same model types) or 

heterogeneous base models (mixture of different model 

types). In the second phase, a subset of base models is 

selected. Finally, a model is formed by aggregating the 

selected models using a combination method. To get a final 

model with improved generalization, it is essential that the 

base models should be as accurate as possible, and as 

diverse as possible. 

 

 

Figure 2. Ensemble learning process and architecture. 

It should be noted here that generally the computational cost 

of constructing an ensemble of models is not much larger 

than creating a single model. This is because typically we 

need to generate multiple versions of the model for model 

selection when we want to construct a single model, and this 

is comparable to generating base models in ensemble 

learning, while the computational cost for combining base 

models is often small.  

4. SURROGATE MODELING FRAMEWORK 

This section outlines the methodology for the CFD 

surrogate model development by providing details for, the 

input data analysis, the multistage polynomial regression 

modeling which incrementally tunes the model complexity 

for each node, and the ensemble learning to utilize multiple 

models. As part of this methodology, a cluster-based model 

structure selection strategy and a node-based local model 

parameter estimation approach are introduced for an 

efficient CFD surrogate model development process.  

4.1. Multistage Surrogate Modeling Framework 

Inputs to the proposed framework include CFD data 

describing nodal spatial and temperature distributions, and 

input data describing boundary conditions and loads 

characterizing various operating parameters. Then the 

proposed methodology sequentially implements, i) a data 

clustering analysis along with a region-based input selection 

method (stage 1), ii) a multistage PRM based surrogate 

modeling which includes model structure selection, model 

parameter estimation and cross-validation procedures (stage 

2), and finally, iii) an ensemble learning for model 

combination (stage 3) as shown in Figure 3.  

More details of the functional descriptions for each block in 

all three stages of the surrogate modeling framework as 

shown in Figure 3 are given in the following subsections. 

 

 

Figure 3. PRM based multistage surrogate modeling 

framework. 

4.2. CFD Data Analysis and Input Selection 

To solve the CFD interpolation problem at the node level, 

given the CFD data generated for various operating points, 

first one needs to identify suitable inputs with high 

predictive power by using problem specific knowledge and 

dividing the CFD data into regions. 

Within a chosen region with suitable inputs identified 

(applying problem specific knowledge) the CFD Data 

Clustering block (see Figure 4) groups the CFD nodes into 

clusters by employing a K-means clustering method in 

phase 1 using temperature values and then a hierarchical 

clustering method in phase 2 to further cluster the data using 

nodal spatial locations. In phase 1, the number of clusters K 

is determined by the available temperature range (max_T – 
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min_T) and a preselected value (delta_T) which splits the 

temperature range into K clusters. In phase 2, from the 

above K clusters the hierarchical clustering automatically 

further selects the number of sub clusters based on the mean 

value of inter nodal distances. After forming the clusters, the 

CFD Data Clustering block outputs the cluster 

representative nodes that are used as inputs to the model 

structure search process as shown in Figure 4. 

4.3. PRM based Surrogate Modeling 

Having identified the suitable inputs within each region and 

performed a data clustering to group neighbouring nodes 

into clusters, the proposed PRM based surrogate modeling 

implements a cluster-based model structure selection by 

constraining all the nodes within a cluster to adopt the same 

model structure. Then, having selected the suitable inputs 

and the most appropriate model structure at each node, one 

can proceed to estimate the model parameters using the least 

squares method.  

The two major steps involved in a model structure search 

and selection are: i) generation of candidate model 

structures, and ii) evaluation of model structures using pre-

defined selection criteria that are mostly determined by the 

estimated model parameters. Therefore, it is clear that the 

cluster-based model structure selection and the node-based 

local model parameter estimation are closely coupled in a 

loop as shown in Figure 4 which shows the process flow in 

a block diagram format for the cluster-based model structure 

search and selection procedure.  

4.3.1. Cluster-based Model Structure Selection 

For each cluster representative node, the Generation of 

Model Structures block (see Figure 4) will produce a set of 

linear regression model structures given the set of m basic or 

natural inputs along with the model order q (allowed 

maximum degree for each regression term) and the number 

of regression variables p. The model structure of a linear 

regression model is defined by the number and the type of 

regression variables used in the model formulation. The 

regression variables used in the model are selected from a 

larger pool of regression variables that are formed by 

transforming a set of basic or natural input variables. The 

process of generating a larger set of regression variables 

from a smaller set of basic or natural input variables, and 

then choosing all possible combinations of p number of 

regression terms from the larger set of regression variables 

is performed by the Generation of Model Structures block 

in Figure 4. The procedure to implement these two steps is 

given below. 

1. Consider a set of m basic or natural input variables 

denoted as {w1, w2, ..., wm} and from this set, let us generate 

a larger set of M regression variables denoted as {X1, X2, ..., 

XM} by using some input transformations (depending on the 

given model order q) such as linear, quadratic, cubic, cross-

product terms of the original m basic and natural input 

variables.  

{w1, w2, ..., wm}         {X1, X2, ..., XM} 

2. From the larger set of regression variables {X1, X2, ..., 

XM}, choose all possible combinations of p number of 

regression terms and this will form a set of candidate linear 

regression model structures.  

{X1, X2, ..., XM}         {x1, x2, ..., xp} 

 

 

Figure 4. Process flow for cluster-based model structure 

search and selection. 

4.3.2. Node-based Local Model Parameter Estimation 

The node-based local model parameter estimation forms the 

core of the solution proposed for the CFD surrogate model 

development studied in this paper. At each node, given the 

model structure information along with the training datasets, 

the goal of the model parameter estimation procedure is to 

seek the values for the unknown parameters of the linear 

regression model by using the least squares method. 

4.3.3. Evaluation of Candidate Model Structures 

To select the best model structure from the set of candidate 

model structures generated by the Generation of Model 

Structures block as described above, one needs to specify a 

set of performance measures or evaluation criteria to assess 

the performance of each model structure generated. In the 

following, a few such performance measures are described.  

Measure of Fit or Goodness of Fit 

Measure of fit or goodness of fit for a linear regression 

model can be expressed as a function of the residual sum of 

squares R
2
 also known as the coefficient of determination. 

Values closer to 1 for R
2
 indicate a good measure of fit and 

high predictive power of the regression variables for the 

target variable, while values close to 0 indicate little 

predictive power. An equivalent representation of R is given 
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by the sample correlation coefficient (also known as the 

multiple correlation coefficient) between the observed and 

fitted target vector values which can be implemented using 

the Matlab function corrcoef as follows  

 

                )   (1) 

 

R is a direct measure of how similar the observed ( ) and 

fitted target (  ) vector values are. 

Hat Matrix 

For the linear regression model expressed in a matrix form 

as        , the hat matrix H is given as 

 

               (2) 

 

The diagonal elements hii of this hat matrix are important for 

evaluating the test performance of the model while 

predicting with new data. These diagonal elements also give 

a measure of extrapolation attempted while predicting with 

new data. In this study, the maximum value of the diagonal 

elements of the hat matrix is used as one of the important 

criteria when selecting the best model structure. 

Variance Inflation Factor (VIF) 

When some of the regression variables in a linear regression 

model are highly correlated with each other, this situation is 

called as collinearity. Regression variables that are highly 

correlated with each other can lead to instability in the 

regression parameters. A diagnostic procedure to determine 

this collinearity in general is the variable inflation factor 

(VIF) that quantifies the proportional increase in the 

variance of the estimated parameter for each regression 

variable compared to what it would have been if the 

regression variables had been uncorrelated. The VIF is 

defined as 

     
 

     
  

      (3) 

where Ri
2
 is the R

2
 for the regression fit of the variable xi on 

other regression variables. In this paper, the maximum value 

of VIFi is used as one of the important criteria while 

selecting the best model structure. To avoid a collinearity 

problem with the selected model, the maximum value of 

VIFi is kept within a low range. There are no formal 

guidelines to specify the cut-off for the maximum value of 

VIFi. Collinearity is generally not a problem if the 

maximum value of VIFi is below certain threshold given by 

the following equation 

                   
 

     
  

                  (4) 

where   
  is the usual R

2
 for the chosen linear regression 

model (Chatterjee & Simonoff, 2013). The above cut-off 

implies that either the regression variables are more related 

to the target variable than they are to each other, or they are 

not related to each other very much. In either scenario, 

collinearity will not be a problem for regression modeling. 

PRESS Criterion 

If we delete the i
th

 data sample, fit the regression model to 

the remaining n-1 data samples, and calculate the predicted 

value of yi corresponding to the deleted data sample, the 

corresponding prediction error is 

                 (5) 

 

This prediction error calculation is repeated for each data 

sample i = 1, ..., n. These prediction errors are usually called 

PRESS errors because of their use in calculating the 

PRESS (Prediction Error Sum of Squares) criterion as 

shown below. It would initially seem that calculating the 

PRESS errors requires fitting n different regression models. 

However, it is possible to calculate PRESS errors from the 

results of a single least squares fit to all n data samples as 

shown here: 

     
  

     
                                   (6)                                  

where it is easy to see that the PRESS error is just the 

ordinary error weighted according to the diagonal elements 

hii of the hat matrix.  

 

It has been suggested (Allen, 1974) that using the Prediction 

Error Sum of Squares (PRESS) criterion, defined as the sum 

of the squared PRESS errors, serves as a good measure of 

model quality. The PRESS criterion is defined as 

         
            

    
  

     

 
                 (7)        

The PRESS criterion is generally regarded as a measure of 

how well a regression model will perform in predicting new 

data. A model with a small value of the PRESS criterion is 

desired. 

The maximum VIF value and the maximum value of the hat 

matrix diagonal elements play the role of filters in reducing 

the number of model structures considered for selection thus 

improving the computational efficiency of the model 

structure selection process. Furthermore, as regression 

variables that are highly correlated with each other can lead 

to instability in the regression parameters, the maximum 

VIF value is used first to filter out model structures with 

high collinearity thus assuring stability in the subsequent 

computations. Also, as the computation of the hat matrix is 

slightly more involved than the computation of VIF values 

for a given model structure, it is advantageous to limit the 

model structure space using the maximum value of the hat 

matrix diagonal elements after reducing the model structure 

space with the maximum VIF value. After ensuring 

computational stability and efficiency, the PRESS criterion 

is used at the end to provide performance ranking on the 

reduced model structure space. By combining the maximum 
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VIF value, the maximum hat matrix diagonal value, and the 

PRESS criterion as defined above, the procedure to 

implement the evaluation of the model structures is:  

1. From the set of candidate model structures generated by 

the Candidate Model Structures Generation block, select a 

subset of model structures that satisfy the requirement for a 

VIF value below a certain threshold value VIFmax.  

2. From the subset of model structures selected in the above 

step, further select a reduced subset of model structures that 

satisfy the maximum value of the hat matrix diagonal 

elements hii below a certain threshold value hmax. 

3. From the reduced subset of model structures selected in 

Step 2 above, choose the best model structure that has the 

lowest PRESS criterion value. Sometimes, it may be desired 

to choose a few top performing model structures instead of a 

single best model structure. 

4.4. Cross-Validation Techniques 

The simplest and most widely used method for estimating 

prediction error is cross-validation. This method directly 

estimates the generalization when the model is applied on a 

new data set. Typically, there are two main separate goals 

for which we need the cross-validation approach, namely, 

model selection and model assessment. If we are in a data-

rich situation, the best approach to meet these goals is to 

randomly divide the dataset into three parts: a training set, a 

validation set, and a test set. Since data are often scarce, as 

is the case we are faced with in this study, the above 

division of data into three parts is not possible. To tackle 

this problem of data scarcity, K-fold cross-validation uses 

part of the available data to fit the model, and a different 

part to test it. We split the data into K equal-sized parts and 

fit the model using K-1 parts, and then calculate the 

prediction error of the fitted model using the remaining part. 

The case K = n is known as the leave-one-out cross-

validation. This leave-one-out cross-validation is efficiently 

implemented using the PRESS criterion as discussed above. 

4.5. Model Complexity Tuning Process 

For the CFD surrogate modeling studied in this paper, 

polynomial regression modeling techniques are used and the 

Tune Model Complexity block in Figure 3 is responsible for 

incrementally changing the model complexity from linear 

terms to quadratic terms and then finally to cubic terms. 

That is, at each node, a model structure search is performed 

sequentially by searching over the model candidates. In the 

first stage, using RM1 (linear) regression modeling, the 

model structure search is performed using up to linear 

terms. In the next stage, for those nodes showing a 

maximum absolute error of more than a certain threshold 

(say TH), RM2 (quadratic) regression modeling is employed 

and the model structure search is performed using up to 

quadratic terms. In the final stage, for those nodes from the 

second stage with a maximum absolute error more than a 

certain threshold (say TH again), RM3 (cubic) regression 

modeling is employed and the model structure search is 

performed using up to cubic terms. 

4.6. Ensemble Learning using Stacked Regression 

The surrogate-modeling framework in Figure 3 uses the 

stacked regression method (Breiman, 1996a) for ensemble 

learning. Stacked regression is a general method for forming 

linear combinations of base level models (also known as 

level-1 models) to give improved prediction accuracy. Here, 

the combiner is called a level-2 model. The idea is to train 

the level-1 models using the original training data, and then 

use cross-validation data and least squares methods under 

non-negativity constraints to determine the coefficients for 

the level-2 model. The non-negativity constraint is needed 

to guarantee that the performance of the stacked ensemble 

will be better than selecting the single best model (Breiman, 

1996a). For the ensemble learning process adopted here, as 

given in Figure 2, the generation of model candidates and 

the model selection are implemented using the process 

shown in Figure 4. For the model selection in Figure 2, the 

top performing Mt models, in terms of prediction errors, are 

identified first then this set is further reduced to m models 

by removing those models with a high correlation with the 

single best model in terms of cross-validation data. For the 

model combination strategy in Figure 2 where level-1 

models are combined using a weighted average (WA) 

approach, a non-negative least squares method (Lawson & 

Hanson, 1974) is used with an added constraint that the sum 

of all the weights is equal to one.  In other words, the 

weights or coefficients for the level-2 model are determined 

using the least squares method under non-negativity 

constraints with the outputs of level-1 models (computed 

using the cross-validation step) as input data to predict given 

output data. This process can be implemented using the 

Matlab function lsqnonneg. It is also noted here that the 

simple average (SA) strategy for combining m level-1 

models can be considered as a special case of the above 

weighted average (WA) strategy where each weight takes 

the (equal) value of 1/m. 

5. MODEL TRAINING AND VALIDATION 

In order to test the efficacy of the proposed multistage CFD 

surrogate modeling framework in general and the model 

structure selection and model parameter estimation 

procedures in particular, 13 CFD datasets of temperatures 

for a gas turbine blisk were considered at various operating-

points. The following set of inputs is selected for building 

CFD interpolation models in the blade region from the 

boundary conditions and load inputs, and their values are 

shown in Figure 5. 

• Load - Shaft speed (rpm) 

• BC1 - Inlet average total temperature (K) 
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• BC2 - Inlet maximum total temperature (K) 

• BC3 - Inlet flow rate (kg/s) 

• BC4 - Outlet pressure (kPa) 

• BC5 - Bore wall fixed temperature (K) 

 

Figure 5. Boundary conditions and load values considered 

as inputs for surrogate modeling. 

Figure 6 shows the temperature distribution over the blade 

section of the blisk as a function of different operating 

conditions and plotted against the Y position of the CFD 

node location. Based on a preselected value of delta_T = 5, 

the blade region nodes are grouped into K = 52 clusters of 

nodes during phase 1. From these 52 clusters, the 

hierarchical clustering further selects 2918 sub clusters 

during phase 2 based on the mean value of inter nodal 

spatial (Euclidean) distances.   

 

Figure 6. Blade region solid CFD temperature data 

simulated at 13 operating points (Cases 7-9: operating 

points 1-3 and Cases 11-20: operating points 4-13). 

In the first stage, for the blade region, RM1 regression 

modeling is used along with five inputs (BC1 – BC4 and 

load) shown above in Figure 5. In the next stage, for those 

nodes showing a maximum absolute error of more than a 

threshold value of TH=4K, RM2 regression modeling is 

employed along with the same five inputs as above. In the 

final stage, for those nodes from the second stage with a 

maximum absolute error of more than a threshold value of 

TH=4K, RM3 regression modeling is employed along with 

the same five inputs as above. It should be noted here that 

multiple models can be chosen at each stage of the above 

multistage PRM training as they are readily available for 

selection without additional computational cost. In turn 

these multiple models can be used as an ensemble of PRMs 

at each node for temperature predictions. However, in this 

work multiple models are chosen only at stage 3 (RM3) at 

selected nodes with prediction errors higher than TH = 4 to 

form an ensemble of PRMs at each of those nodes. 

Figure 7 shows the prediction error performance at each 

node for the blade region obtained using the multistage 

PRM (by applying RM1, RM2 and RM3 in stages) for 13 

CFD data cases involving 99,577 nodes. This prediction 

error performance is obtained using the leave-one-out cross-

validation test method - trained on 12 data cases and tested 

on the remaining single case and repeated for all 13 

combinations – and resulting in 13 prediction errors at each 

node. The maximum temperature and temperature gradient 

is in the mid-airfoil region of the blade. Hence the higher 

errors in this region show the difficulties in training the 

surrogate models for this region across different operating 

points. Figure 8 shows the cross-validation errors for each 

operating point as box plots of absolute prediction errors in 

CFD temperatures for the blade region nodes. In Figure 8, 

as per the standard definition of the box plot, the minimum 

and maximum limits of the vertical error bars represents 0 

and 100 percentile respectively, whereas the minimum and 

maximum values of the box represents 25 and 75 

respectively. The red horizontal line inside the box 

represents the 50 percentile. The red crosses represent the 

outliers of the respective box plots. 

 

Figure 7. Absolute prediction errors in CFD temperature at 

each blade node. 
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Figure 8. Box plots of absolute prediction errors in CFD 

temperatures for blade nodes at each operating point. 

Figure 9 shows the performance comparison in terms 

maximum and mean absolute errors taken at each node for 

various threshold values by displaying the box plots of 

absolute errors taken over the entire blisk region. It should 

be noted here that in Figure 9, the box plots show the 

performance for 151,892 blisk nodes that include the disk 

region nodes also. Table 1 compares the CFD simulation 

time and surrogate model training and prediction time 

performances. The comparison of surrogate modeling 

training times that vary with prediction error threshold 

values is also shown in Table 1.  

 

Figure 9. Box plots of maximum and average absolute 

prediction errors in CFD temperatures for blisk nodes using 

different threshold values. 

 

For those nodes in Figure 7 with a maximum absolute error 

of more than the threshold value TH=4K were selected for 

the ensemble learning process. The ensemble learning was 

employed using the stacked regression method (weighted 

average) and the simple average strategy. The performance 

comparison between the single best model and the 

ensembles obtained using the weighted average (WA) and 

simple average (SA) are shown in Figure 10. This figure 

shows the box plots of maximum absolute error and RMSE 

in CFD temperatures for those selected blade nodes. As for 

the surrogate model training time with ensemble learning is 

increased only slightly by less than 2% compare to the times 

reported in Table 1.      

 

Figure 10. Box plots of maximum absolute error and RMSE 

in CFD temperatures for selected blade nodes using single 

best model and simple & weighted average ensembles.  

Table 1. Training and Prediction Time. 

 

CFD Mesh Details: 

Number of Nodes 151,892 

Number of Elements 749,310 

CFD Computation Time: 

2 cores, 64 GB RAM 241 min 

4 cores, 64 GB RAM 131min 

Training Time (4 cores, 16 GB RAM): 

Threshold: 3K  141 min 

Threshold: 4K 60.1 min 

Threshold: 5K 19.1 min 

Threshold: 6K 7.6 min 

Prediction Time (4 cores, 16GB RAM): 

All Nodes Combined 0.1 sec 
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6. RESULTS AND DISCUSSION 

To demonstrate the efficacy of the proposed multistage 

surrogate modeling framework, a minimal number of 

operating points were selected using Latin Hypercube 

Sampling techniques (Santner et al., 2003) to maximize the 

space filling property of the operating points envelop. 

Corresponding to these minimal sets of 13 operating points, 

CFD datasets of temperatures were generated as shown in 

Figure 5. Utilizing problem knowledge, different sets of 

inputs (consisting of BCs and the load) were selected for 

developing surrogate models for the blade and disk regions. 

As demonstrated by the results here, selected inputs exhibit 

high predictive power for interpolating blisk temperatures. 

This study demonstrates the effectiveness of the proposed 

multistage approach for developing CFD node-based 

surrogate models involving a very high number of CFD 

nodes (151,892 nodes). Figure 7 illustrates the very good 

performance for the PRM based surrogate modeling in 

terms of leave-one-out cross-validation errors for all the 

blade nodes (R
2
 values range from 0.9983 to 0.9999). Only 

a small fraction (less than 1%) of these nodes exceeded the 

threshold value of 4K in terms maximum absolute error. As 

it can be seen from Figure 8, the only major contribution for 

these high maximum errors comes from operating point 5. 

One of the advantages of this node-based approach is that 

the goodness of fit of the surrogate models can be analyzed 

with respect to node location, making it possible to identify 

specific regions on the blisk where the goodness of fit of the 

surrogate models are not high enough, for example, the 

region between 0.069m and 0.073m in Figure 7. 

Figure 9 and Table 1 illustrate the performance trade-off in 

terms of prediction accuracy and computational time for the 

entire blisk region when the threshold parameter TH is 

varied between 3K and 6K. When the threshold value is 

decreased, the number of nodes utilizing high order 

polynomials increases yielding reduced prediction errors 

and increased computation time as reflected in Figure 9 and 

Table 1. Less time is required to develop the surrogate 

models using the proposed multistage approach compared to 

full CFD simulations and real-time prediction is also 

achieved as shown in Table 1.   

On selected blade nodes with high prediction errors, Figure 

10 illustrates the performance enhancement of 20%-25% 

that can be achieved by using the ensemble learning 

approach as part of the proposed multistage surrogate 

modeling framework. The performance difference between 

the simple average (SA) strategy and the stacked regression 

method (weighted average) is not significant. In general, it 

is widely accepted that the SA strategy is suitable for 

combining models with similar performance, whereas the 

WA strategy with unequal weights may be more appropriate 

for combining models with diverse performances. 

7. CONCLUSION 

An ensemble learning based multistage approach has been 

investigated for developing surrogate models to predict gas 

turbine blisk temperatures. Using CFD simulations for a 

limited number of engine operating points, node-based 

surrogate models were developed using a multistage 

polynomial regression modeling approach. By adopting 

clustering techniques for data analysis, multistage 

polynomial regression modeling, cross-validation 

techniques, and ensemble learning based model 

combination, the proposed multistage surrogate modeling 

framework demonstrated its effectiveness in developing 

node-based surrogate models for more than 100 thousand 

nodes with high predictive performance and computational 

efficiency. Also, the computational time required for model 

training is influenced by the threshold limit used to tune the 

model complexity. Future work will consider testing the 

effectiveness of this methodology using different problem 

datasets. 
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