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ABSTRACT 

Chemical mechanical polishing (CMP) has been widely used 

in the semiconductor sector for creating planar surfaces with 

the combination of chemical and mechanical forces. CMP is 

very complex because several chemical and mechanical 

phenomena (e.g., surface kinetics, contact mechanics, stress 

mechanics, and tribochemistry) are involved. Due to the 

complexity of the CMP process, it is very challenging to 

predict material removal rate (MRR) with sufficient 

accuracy. While physics-based methods have been 

introduced to predict MRR, little research has been reported 

on data-driven predictive modeling of MRR in the CMP 

process. This paper presents a novel decision tree-based 

ensemble learning algorithm that trains a predictive model of 

MRR on condition monitoring data. A stacking technique is 

used to combine three decision tree-based learning 

algorithms, including the random forests (RF), gradient 

boosting trees (GBT), and extremely randomized trees 

(ERT). The proposed method is demonstrated on the data 

collected from a wafer CMP tool that removes material from 

the surface of the wafer. Experimental results have shown 

that the decision tree-based ensemble learning algorithm can 

predict MRR in the CMP process with very high accuracy. 

1. INTRODUCTION 

Chemical mechanical polishing (CMP) was invented in IBM 

in the early 1980s to create a planar surface and enable 

subsequent lithographic imaging (Krishnan et al., 2009). The 

global CMP market in 2014 is valued at $3.32 billion and is 

estimated to reach $4.94 billion by 2020 

(Marketsandmarkets.com). The key factors driving the 

growth of the CMP market are the increasing need of CMP 

for wafer polishing, high demand for consumer electronic 

products, and increasing use of micro-electro-mechanical 

systems. A typical CMP tool consists of a rotating table used 

to carry a polishing pad, a replaceable polishing pad attached 

to the table, a translating and rotating wafer carrier used to 

carry the wafer, a slurry dispenser, and a translating and 

rotating dresser used to condition the polishing pad 

(Steigerwald et al., 2008; Zantye et al, 2004). During the 

CMP process, a wafer is pressed against a polishing pad while 

a wafer carrier and a polishing pad are rotating in the same 

direction. An abrasive and corrosive chemical slurry is 

deposited onto the polishing pad during the CMP process. 

Modern CMP is a very complex process that involves several 

chemical and mechanical phenomena such as surface 

kinetics, electrochemical interfaces, contact mechanics, 

stress mechanics, hydrodynamics, and tribochemistry. The 

performance of the CMP process is measured using the 

metrics such as material removal rate (MRR), planarization 

(e.g., surface roughness), and process stability.  

One of the key challenges in CMP is to achieve a high MRR 

and low non-uniformity of the polished surface (i.e., surface 

roughness). Fundamental understanding of the material 

removal mechanism in CMP is critical to control the CMP 

process and ultimately to control the quality of the polished 

surface. Because the performance of the CMP process is 

affected by many process variables such as the attributes of 

the slurry, polishing pad, and wafer carrier, it is very 

challenging to predict MRR with sufficient accuracy. The 

main contribution of this study is that a decision tree-based 

ensemble learning approach is introduced to predict MRR in 

CMP.  

The remainder of this paper is organized as follows. Section 

2 reviews the related work on CMP. Section 3 introduces an 

ensemble learning-based predictive modeling approach to 

MRR prediction. Section 4 presents a case study as well as 

discusses experimental results. Section 5 provides 

conclusions and future work. 

2. RELATED WORK 

Luo and Dornfeld (2001) proposed a physics-based model 

that predicts MRR by taking into account wafer hardness, pad 

hardness, pad roughness, abrasive size, and abrasive 

geometry. The experimental data collected from a silicon 
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CMP process were used to verify the model. The 

experimental results have shown that the predictive model 

can estimate MRR. Lin and Wu (2002) conducted a set of 

experiments to investigate the effects of polishing parameters 

such as rotating speed, applied pressure, flow rate of flurry 

on surface characteristics when polishing an aluminum-based 

rigid disk. The experimental results have shown that MRR 

increases as the applied pressure and relative velocity 

between the disk and the polishing pad increase. The 

experimental results also suggested that the Preston equation 

could be further modified to improve prediction accuracy. 

Lee and Jeong (2011) introduced a model that estimates MRR 

for copper CMP processes using a modified form of the 

Preston equation. A spatial parameter that is composed of 

three normalized parameters (i.e., normal contact stress, 

relative velocity between the wafer and the polishing pad, and 

chemical reaction rate) was added into the original Preston 

equation. Experimental results have shown that the modified 

Preston equation can be used to estimate MRR. Lee et al. 

(2013) proposed a semi-empirical MRR distribution model 

for SiO2 CMP. This model incorporates the effects of the size, 

concentration, and distribution of particles as well as the 

slurry flow rate, polishing pad surface topography, material 

properties, and chemical reactions.  

Kong et al. (2010) introduced a model-based method that 

integrates nonlinear Bayesian analysis and statistical 

modeling to estimate MRR. The particle filtering method was 

used for nonlinear Bayesian analysis to predict the CMP 

process state. A set of Cu-CMP experiments was conducted 

to collect vibration signals from a CMP machine. 

Experimental results have shown that the predictive model 

achieved a R2 value of 0.96. Lih et al. (2008) introduced an 

approach to the prediction of MRR in Silicon CMP using an 

adaptive neuro-fuzzy inference system. Experimental results 

have shown that the predictive model trained by the ANFIS 

can achieve substantial improvements in prediction accuracy 

in comparison with neural networks and neuro-fuzzy 

modeling methods.  

While previous research efforts have been focused on the 

development of physics-based and model-based predictive 

modeling techniques for CMP, few studies have been 

conducted to explore data-driven methods to predict MRR in 

CMP. To fill the research gap, an ensemble learning 

algorithm is introduced to predict MRR in this paper.  

3. ENSEMBLE LEARNING 

Ensemble learning is a data-driven method that combines 

multiple machine learning algorithms (also known as base 

learners) into one learning algorithm to improve the 

performance of predictive models (Džeroski et al., 2004; 

Zhou, 2012). The base learners can be aggregated to reduce a 

predictive variance by randomization ensemble (Evans et al., 

2003), or to reduce a predictive bias by boosting ensemble 

(Friedman, 2001), or both by stacking ensemble. In general, 

the predictive model trained by ensemble learning 

outperforms that of individual base learners (Li et al., 2017). 

None of these ensemble methods outperforms other methods 

consistently. However, some empirical studies have shown 

that stacking outperforms boosting and randomization 

(Džeroski et al., 2004). Therefore, stacking is used to 

combine multiple base learners in this work. Stacking 

combines multiple classification or regression models using 

a meta-classifier or meta-regressor. The stacking technique 

includes two steps: training base learners and training a meta-

algorithm. Fig. 1 illustrates the two-layer ensemble learning 

method using stacking. 
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Figure 1. Two-layer ensemble learning using stacking 

A training dataset is used to develop the predictive model. A 

validation or test dataset is used to validate the predictive 

model trained on the training dataset. The training, validation, 

and test datasets contain the raw sensory data. A set of 

features in the time and frequency domains is extracted from 

the training, validation, and test datasets. To reduce the 

dimensionality of the features, RF is used to reduce the 

number of features based on a measure called variable 

importance. In the model training phase, the selected features 

are fed into the decision tree-based ensemble learning 

algorithm that combines three base learning algorithms, 

including RF, GBT, and ERT. To develop a more accurate 

predictive model while avoiding overfitting, k-fold cross-

validation (CV) is conducted to train the base learners. The 

predictions of the base learners are fed into another machine 

learning algorithm to train a meta-regressor. Two machine 

learning algorithms, including extreme learning machines 

(ELM) and classification and regression tree (CART) are 

used to train the meta-regressor. The output of the meta-

regressor is the final prediction of the ensemble learning 

method. In the model validation phase, the validation and test 

datasets are used to validate the performance of the predictive 

model trained on the training dataset. 
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4. CASE STUDY 

In this section, the decision tree-based ensemble learning 

method is demonstrated on the data acquired from the 2016 

PHM Data Challenge (Propes and Rosca, 2016).  

4.1 Data Description 

The data contain multiple sensory signals collected from a 

wafer CMP tool that removes the material from the wafer 

surface. The total volume of the dataset is 187 MB. More 

details about the data can be found in Table 1. The conditions 

of four CMP tools were monitored during various runs of the 

CMP tools for specified wafers. The dataset is divided into 

three datasets, including one training dataset, one validation 

dataset, and one test dataset. The training data were collected 

from 1981 wafers under two operational stages: A and B. A 

total number of 672744 trajectories was collected from the 

wafers. These training trajectories are stored in 185 files in 

excel format. The validation and test datasets include 144148 

and 156262 trajectories, respectively.  

Table 1. Data description 

ID Description ID Description 

1 Machine ID 14 Pressure applied to the 

retainer ring 

2 Wafer ring location ID 15 Pressure applied to the 

ripple air bag 

3 Time (s) 16 Usage of polishing 

membrane 

4 Wafer ID 17 Usage of wafer carrier 

sheet 

5 Stage ID (A or B) 18 Flow rate of slurry type 

A 

6 Chamber ID 19 Flow rate of slurry type 

B 

7 Usage of polish-pad 

backing film 

20 Flow rate of slurry type 

C 

8 Usage of dresser 21 Rotating rate of wafer 

9 Usage of polishing table 22 Rotating rate of stage 

10 Usage of dresser table 23 Rotating rate of head 

11 Chamber pressure 24 Status of dressing 

water 

12 Pressure applied to the 

main outer air bag 

25 Pressure applied to the 

edge air bag 

13 Pressure applied to the 

center air bag 

  

4.2 Feature Extraction and Selection 

The raw data were transformed into a set of features and then 

a reduced subset of features before being processed by the 

decision tree-based ensemble learning algorithm. Four 

statistical features (see Eqs. 1-4) in the time domain, 

including the standard deviation, central moment, skewness 

and kurtosis, were extracted from each sensor signal. In 

addition, another three features in the frequency domain, 

including the maximum frequency amplitude, frequency 

center, and kurtosis of frequencies, were extracted from three 

vibration measurements. Eighty-five (85) features in total 

were extracted from the raw sensory data. 

Standard 

deviation 
𝜎(𝐱) = E[𝐱 − 𝜇]1/2 (1) 

Central 

moment 
𝑚𝑝(𝐱) = E[𝐱 − 𝜇]

𝑝 (2) 

Skewness 𝑠(𝐱) = E[𝐱 − 𝜇]3/𝜎3 (3) 

Kurtosis 𝑘(𝐱) = E[𝐱 − 𝜇]4/𝜎4 (4) 

where E[∙] denotes the expectation operation, 𝜇 is the mean 

value of x, p is the order of moment and p = 3 in this study. 
 

To avoid overfitting, a subset of the 85 features was selected 

in model training. RF was used to select the features by 

measuring the importance of features. More details about 

feature selection using RF can be found in Wu et al. (2018). 

The number of selected features was determined by balancing 

the trade-off between prediction accuracy and training time. 

Prediction accuracy is measured using R-square (R2), root 

mean square error (RMSE), relative error (RE), and score 

function (S-score) (see Eqs. 5-8). RMSE and RE measure the 

deviations between the predicted and actual MRRs. R2 

measures the goodness of fit of a predictive model. The S-

score, initially introduced in 2008 PHM Data Challenge, 

measures the performance of a model by taking into account 

whether the model overestimates and underestimates MRR.  

RMSE 𝜀𝑅𝑀𝑆𝐸 = √E[(�̂� − 𝐲)
2] (5) 

RE 𝜀𝑅𝑃𝐸𝑖 = |�̂�𝑖 − 𝑦𝑖| /𝑦𝑖 (6) 

S-score 𝜀𝐶𝑉𝑖 = {
exp(−𝑑𝑖/13) , 𝑑𝑖 < 0 

exp(𝑑𝑖/10) , 𝑑𝑖 ≥ 0
, (𝑑𝑖 = �̂�𝑖 − 𝑦𝑖) (7) 

R2 

{
 
 

 
 
𝜀𝑅2 = 1 − 𝑆𝑅 /𝑆𝑇

𝑆𝑅 =∑�̂�𝑖 − �̅�
𝑇

𝑖

𝑆𝑇 =∑�̂�𝑖 − 𝑦𝑖
𝑇

𝑖

 (8) 

where i = 1, 2, …, N (N is the sample number), yi is the actual 

MRR of the ith sample, �̂�𝑖 is the predicted MRR of the ith 

sample, �̂� is the matrix form of all predicted MRRs, and �̅� is 

the mean value of the actual MRR vector y.  

To determine a subset of the initial features, GBT, RF, and 

ERT were used to train predictive models using 5, 20, 35, 50, 

65, and 85 features. These decision tree-based learning 

algorithms were used to train predictive models using the 

training dataset. The validation dataset was used to evaluate 

the performance of the predictive models. Fig. 2 shows the 

average of R2, RE, S-score, RMSE, and Training time. As 

shown in Fig. 2(a), R2 increases as the number of features 

increases for both GBT and RF. R2 decreases as the number 

of features exceeds 50 for ERT. As shown in Fig. 2(b), RE 

decreases as the number of features increases for both GBT 

and RF. RE increases as the number of features exceeds 35 

for ERT. As shown in Fig. 2(c), S-score decreases as the 
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number of features increases for both GBT and RF. S-score 

increases as the number of features increases for ERT. As 

shown in Fig. 2(d), RMSE decreases as the number of 

features increases for both GBT and RF. RMSE increases as 

the number of features exceeds 35 for ERT. As shown in Fig. 

2(e), training time does not vary with the number of features 

for both GBT and RF. However, training time increases as 

the number of features increases for ERT. Therefore, 35 out 

of 85 features were selected to train predictive models.  

 
 

Figure 2. Prediction performance using different number of features: (a) R2, (b) RE, (c) S-score, (d) RMSE, and (e) training 

time

4.3 Prediction Results Using Ensemble Learning 

Table 2. Prediction performance 

Validation Dataset 

Method R2 RMSE RE S-score 

GBT 0.917 8.323 0.062 3.915 

RF 0.917 8.066 0.063 2.476 

ERT 0.919 7.571 0.064 5.521 

CART-stacking 0.937 6.926 0.052 1.318 

ELM-stacking 0.905 7.222 0.057 3.452 

Test Dataset 

Method R2 RMSE RE S-score 

GBT 0.919 8.252 0.058 2.224 

RF 0.918 8.572 0.063 6.876 

ERT 0.939 7.336 0.055 1.723 

CART-stacking 0.941 7.009 0.056 1.034 

ELM-stacking 0.94 7.261 0.054 2.051 

The 35 features were fed into the decision tree-based 

ensemble learning algorithm. The predictive models trained 

by the ensemble learning methods were validated on the 

validation and test datasets. Table 2 lists the R2, RE, S-score, 

RMSE values for CART-based stacking and ELM-based 

stacking methods. The experimental results have shown that 

the decision tree-based ensemble learning methods using 

CART and ELM as stacking methods outperform the base 

learners. For the validation dataset, the ensemble learning 

method using CART outperforms the ensemble learning 

method using ELM in terms of R2, RE, S-score, RMSE. For 

the test dataset, the ensemble learning method using CART 

still outperforms the ensemble learning method using ELM 

in terms of R2, S-score, and RMSE. However, the ensemble 

learning method using EML outperforms the ensemble 

learning method using CART slightly in terms of RE. 

5. CONCLUSION 

This paper has presented an ensemble learning-based 

prognostic approach to prediction of MRR in the CMP 

process. Two stacking techniques were used to combine RF, 

GBT, and ERT. This ensemble learning method was 

demonstrated on the datasets acquired from the 2016 PHM 

data challenge. The predictive model was developed on a 

training dataset, and then was validated on the validation and 

test datasets. The experimental results have shown that the 

decision tree-based ensemble learning approach predicts 

MRR of the CMP process with sufficient accuracy and 
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reasonable training time. In addition, the ensemble learning 

algorithm outperformed the base learners (i.e., RF, GBT, and 

ERT). In the future, the training process of the ensemble 

learning-based prognostics approach will be parallelized to 

improve the computation efficiency.  
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