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ABSTRACT

This paper studies dynamic data communications between
airplanes and a control tower, where the control tower
needs to monitor the state of each aircraft close to the
airport or on the ground in real time. Given limited
communication bandwidth, it is impossible for the control
tower to communicate with all aircrafts at the same time. This
paper focuses on the problem of optimal scheduling of data
communications for the control tower to acquire information
from aircrafts to minimize tracking errors. A dynamic
learning problem with limited communication bandwidth is
formulated in this paper where the objective is to minimize
the total variance of real-time tracking. To solve the problem,
a dynamic scheduling algorithm for data communications is
proposed, which prioritizes data communications based on
the tracking variances of the aircrafts, channel conditions and
importance of the information. Our simulations demonstrate
that our algorithm outperforms policies such as a round robin
policy.

1. INTRODUCTION

Communications play a vital role in safety and operations of
air transportation systems. While voice communications is
the main means in current air transportation systems, digital
communications are essential to facility real-time information
exchange and improve situation awareness. In general, a
control tower can only communicate with a subset of aircrafts
nearly due to limited bandwidth. Therefore, it is imperative to
have an efficient resource allocation mechanism to schedule
data communications to minimize tacking errors with limited
communication bandwidth.

This paper considers the problem of dynamic data communi-
cations for real-time information infusion, which expects to
be critical in the next-generation air transportation systems.
In particular, we focus on data communications between a
control tower and the aircrafts in its controlled space. The
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control tower acquires information from aircrafts to monitor
the trajectories of all aircrafts in its controlled space in real
time. The goal of the dynamic data communications is to
minimize the tracking errors by optimizing the information
transmitted to the control tower.

1.1. Related Work

The use of Kalman filter to track aircrafts is motivated by
(Hwang, Balakrishnan, & Tomlin, 2006), where the problem
of tracking a single aircraft was. Our problem is also related
to information management in wireless sensor networks. For
example, assume the number of sensors to be activated is
fixed in advance, the problem of optimal sensor selection
for maximizing the accuracy of a single estimation has
been studied in (Joshi & Boyd, 2009), where a heuristic
selection method has been proposed and a bound on the
best performance based on convex optimization. This paper
focuses on continuous estimation of the states of dynamical
systems. (Williams, Fisher, & Willsky, 2007) studied the
tradeoff between communication energy cost and the value
of information contained, and proposed an approximate
dynamic programming approach for sensor network manage-
ment. The problem was extended to a more complicated
periodic sensor scheduling on a linear time invariant system
in (Liu, Fardad, Masazade, & Varshney, 2014).

1.2. Notation

In this paper, the boldface little letters in this paper represent
vectors and i.e. x(t), and capital letters represent matrix or
constant i.e. Q(t).

2. A GENERAL PROBLEM FORMULATION

In this section, we introduce a general problem formulation
for real-time information fusion under communication con-
straints. The model includes a continuous time dynamical
system and a discrete time estimator. In particular, we con-
sider the following time-invariant (TIV) dynamical system
for each aircraft indexed by k :

ẋk(t) = f(xk(t)) +wk(t), (1)
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where xk ∈ RN is the state vector of the system at, f is
the system equation and, and wk(t) is zero mean white-noise
process with spectral density matrix Qk. This TIV system is
used to model a physical system such as an aircraft, so we
chose to use a continuous-time model.

We further assume the control tower keeps track the states of
all nearby aircrafts. We assume a discrete-time estimator that
updates its estimates every time slot. We chose a discrete-
time model because most wireless communications systems
are time-slotted systems. Therefore, the control tower
receives the updates in a discrete-time fashion. Assuming the
duration of each time slot is τ units of time. At time slot
m, the control tower receives measurement zk from aircraft
k such that

zk[m] = hk (x(mτ) + vk[m]) , (2)

where hk ∈ {1, 0} such that hk = 1 if aircraft k sends
an update to the control tower and hk = 0 otherwise. In
the equation above, vk is a zero mean Gaussian random
variables with associated covariance matrices Rk, and it can
be understood as the measurement error of the sensors.

To model limited wireless bandwidth, we assume the control
tower can communicate withC (C < N ) aircrafts at the same
time. In other words, the following constraint has to hold

N∑
k=1

hk ≤ C.

To solve the problem, we assume that:

E[wl(t) · vk[m]] = 0 for all k, l, t and m, (3)

which means that the random forcing noise and measurement
noise are independent.

To keep track of the state of an aircraft, the control tower
estimates based on the measurements received up to the
current time t and calculates

x̂(t) = E [x(t)|z0, z1, · · · , zm] mτ ≤ t

where x̂ is an estimator of x(t).

Because the state of the system is Gaussian under the
assumption of this paper, we consider the following error
covariance matrix:

P(t) = E
[
(x(t)− x̂(t))

T
(x(t)− x̂(t))

]
t and use tr(P(t)) as the performance metric of state estima-
tion.

Furthermore, we assume the control tower uses a standard
Continuous-Discrete Linearized Kalman filter to monitor all
aircrafts. The linearized Kalman filter works as follows:

1. Initialization: The first estimation can be a random value
chosen as follows:

xk(0) ∼ N (x̂0,P0). (4)

2. Propagation

(a) State Estimation Propagation

˙̂xk(t) = f(x̂k(t)) (5)

(b) Error Covariance Propagation

Ṗk(t) = F(x̂k(t))Pk(t) +Pk(t)F(x̂k(t)) +Qk

(6)
where

F(x̂k(t)) =
∂f(xk)

∂xk
|
xk=x̂k(t)

(7)

3. Estimation Update
The gain matrix is defined as follows. If hk = 1, then

Kk[m] = Pk(mτ
−)
(
Pk(mτ

−) +Rk

)−1
, (8)

where Pk(mτ
−) is the value of Pk before the state

update is received.

(a) State Estimation Update

x̂k[m] = x̂k(mτ
−) +Kk[m]

(
zk[m]− x̂(mτ−)

)
(9)

where x̂k(mτ−) is the estimated state vector at time
mτ before the measurement received, and xk[m] is
the estimated after receiving the update.

(b) Error Covariance Update

Pk[m] = Pk(mτ) = (I−Kk)Pk(mτ
−). (10)

It is well-known that x̂(t) is the optimal estimation of x(t) in
the mean square error sense when the system function f(x̂(t))
is linear. Assuming the Kalman filter is used, we next study
the problem of minimizing the total variance of tracking by
designing the scheduling policy for data transmissions, i.e.,

minh[1],··· ,h[m],··· limN→∞
1
N

∑N
m=1 tr(Pk[m])

subject to:
∑N
k=1 hk[m] ≤ C ∀m.

3. AIRCRAFT TRACKING MODEL

In this section, we first introduce the aircraft tracking model.

Let N denote the total number of aircrafts, Na the number
of aircrafts in the air, and Ng the number of aircrafts on the
ground. The aircrafts in the air and on the group follow
different dynamics and the communication channels have
different qualities.

Wireless telecommunications often suffer from multipath
interference, which results in signals reaching the receiving
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Figure 1. Airport model

antenna from two or more paths. The ratio between the power
in the direct path and the power in the other paths is called
the Rice factor. According to (Haas, 2002), the Rice factor
of en-route scenario and arrival \ takeoff scenario is higher
that of the taxi scenario and parking scenario, the reason
is that the Line of Sight (LOS) component which plays an
important role in the multipath interference is often blocked
by the buildings while the aircrafts are on the ground. The
Rice factor significantly determines the bit error rate of a
channel. We assume that the success rate of dat transmissions
for aircrafts in the air is pa = 0.99, and is pg = 0.9 for the
aircrafts on the ground.

3.1. Taking Off \ Landing Aircraft Model

According to the Kinematic equations for aircraft motions
proposed by (P. K. Menon & Cheng, 2018), as an aircraft
taking off, we have following motion equations:

ḣ = f(h,A)

γ = sin−1
{
f(h,A)

va

}
λ̇ =

1

(Re + h)
(Va cos γ cosχ+WN )

τ̇ =
1

(Re + h) cosλ
(Va cos γ sinχ+WE)

χ = tan−1
{

sin(τnxt − τ) cosλnxt
sinλnxt cosλ− sinλ cosλnxt cos(τnxt − τ)

}
where (λ, τ) is the latitude and longitude of the the aircraft,
and (λnxt, τnxt) is the position of the next waypoint in the
aircraft flight plan. γ is the flight path angle with respect to
local horizontal, and χ is the course angle with respect to true
North. h is aircraft altitude relative to mean sea level, Va is
airspeed, and Re is the radius of Earth. f(h,A) is the aircraft
type-dependent climb rate data in the Base of Aircraft Data
(BADA) (Gallo, Navarro, Nuic, & Iagaru, 2006). WE and
WN are the wind speed along east and north, respectively

The state of an aircraft in the air can be modeled as [h, λ, τ ]T ,
and we have the following dynamics:

ḣλ̇
τ̇

 =


f(h,A)

1
(Re+h)

(
Va

√
1− f(h,A)

Va
cosχ+WN

)
1

(Re+h) cosλ

(
Va

√
1− f(h,A)

Va
sinχ+WE

)
+wa

(11)
where wa is the random forcing noise of [h, λ, τ ]T , with
spectral density matrix Qa(t). The landing model can be
obtained following similar analysis.

3.2. Runway Aircraft Model

Similar to the model discussed in (Khadilkar & Balakrishnan,
2011), we have the following model for an aircraft on the
ground: 

ẋ
ẏ

V̇g
θ̇

 =


Vg sin θ
Vg cos θ
fV (t)
fθ(t)

+wg (12)

where (x, y) is the position of the aircraft on the ground,
Vg is the velocity, and θ is the direction the aircraft is
heading. fV (t) and fθ(t) are determined by the movement
plan decided by the controller. The forcing noise

wg ∼ N

0,


0 0 0 0
0 0 0 0
0 0 σ2

wV 0
0 0 0 σ2

wθ


 (13)

can be viewed as the operational deviation of the pilot.

Putting the models for the dynamics of aircrafts together, we
have{

ẋa,i = Fa(xa,i) +wa,i i = 1, 2, · · · , Na
ẋg,j = Fg(xg,j) +wg,j j = 1, 2, · · · , Ng

(14)

where Fa(x) and Fg(x) are the system functions defined in
(11) and (12), respectively. And the random force noise wa,i

and wg,i have spectral density matrix Qa and Qg(t).

4. AN ADAPTIVE ALGORITHM FOR DATA COMMUNI-
CATIONS

In this section, we propose an adaptive algorithm to solve
this problem defined the previous section. Our numerical
evaluation in the next section will show that our algorithm
outperforms policies such as Round Robin.

Assume that at time slot m, after acquiring information from
the aircraft, the updated error covariance of the ith aircraft
in the air is P(a,i)[m], and the covariance of the jth aircraft
on the ground is P(g,j)[m]. Then at time slot m + 1, the
predicted values of P(a,i)[(m + 1)−] and P(g,j)[(m + 1)−]
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can be derived according to equation (6). If the ith aircraft in
the air is chosen to transmit an update, the expected updated
covariance is

E[P(a,i)[m+ 1]|hi = 1] =(1− pa)P(a,i)[(m+ 1)−]+

paP(a,i)[(m+ 1)+].

where P(a,i)[(m + 1)+] is the updated error covariance
computed from equation (10), and it is the error covariance
matrix if the measurement is transmitted to the controller
successfully. If the ith aircraft in the air is not chosen, we
have:

E[P(a,i)[m+ 1]|hj = 0] = P(a,i)[(m+ 1)−].

Similarly, E[P(g,j)[m + 1]] can be computed condition
on whether aircraft j on the group is selected for data
transmissions. Based on these, the greedy algorithm can be
described as:

Algorithm 1 Greedy Policy

1: Start from initial states and error covariances xa,i(0) and
P(a,i)[0], xg,i(0) and P(g,i)[0]

2: Update the states and error covariances using (5) and (6)
3: Compute the greedy aircraft selection at time mτ :

h[m+ 1] = argmin
h

Na∑
i=1

E[P(a,i)[m+ 1]|hi]+

Ng∑
j=1

E[P(g,m)[m+ 1]|hj ].

4: Acquire information from aircrafts with index h[m+ 1],
and update the states and error covariances using (9) and
(10)

5: Repeat step 2,3 and 4 as time goes by.

With this greedy algorithm, the communication resources are
assigned to the most aircrafts whose information can be used
to reduce the total variance.

5. SIMULATIONS

In this section, we use simulations to demonstrate the pro-
posed adaptive algorithm, and compare it with the round-
robin algorithm. Assume that the aircraft taking off from
Phoenix Sky Harbor airport (33.4373◦N, 112.0078◦W ), and
the next waypoint is at (33.5◦N, 112◦W ), and they are also
initial state of coming aircraft, such that the trajectories of
aircrafts in the air can be derived from these two waypoints
using (11). For simplicity, we assume that the climb or
decrease rate function f(h,A) is a linear function, and
that the wind speed is a constant. For the aircraft on the
ground, they start from position (0, 0), and we assume that
their acceleration and the angular acceleration follow some
sinusoidal function over time. However, different states might

have different importance, for example, in the air model, 0.1
degrees in latitude or longitude can be much more significant
than 0.1 meters in height, so we will use weighted sum of
variance and error to make the decision. Also according
to (Gelb, Staff, & Corporation, 1974), the optimality of the
Kalman filter is independent with the weights. The weighted
sum of variance and error are shown in Fig.2 and Fig3. The
average values of the variance and error are shown in Table.1
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Figure 2. Weighted Sum of Variance
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Figure 3. Weighted Sum of Variance

Table 1. Average

Average Variance Average Error
Greedy Algorithm 2.2422e+04 1.2731e+03

Round Robin 2.4194e+04 3.3853e+03

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Also, we show the trajectories of one aircraft in the air and
one aircraft on the ground in Fig.4 and 5 under the round-
robin and our algorithm.
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Figure 4. Trajectory of one Aircraft in the Air
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Figure 5. Trajectory of one Aircraft on the Ground

From the numerical results above, we can observe that our
algorithm significantly outperform the round robin policy.

6. CONCLUSION

In this paper, we proposed a dynamic data communications
algorithm for real-time information fusion. The numerical
results demonstrated that outperforms round-robin in both
accuracy and variance. The trajectories of two aircrafts
showed that the control towel can track the aircrafts more
accurately than round-robin communication mechanisms. In

our future work, we will incorporate important environmental
and geological factors, such as weather, humidity, surface
conductivity and so on into the model and the algorithm.
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