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ABSTRACT

Battery energy systems are becoming increasingly popular in
a variety of systems, such as electric vehicles. Accurate es-
timation of the total discharge of a battery is a key element
for energy management. Problems such as path planning
for drones or road choices in electric vehicles would benefit
greatly knowing beforehand the end of discharge time. These
tasks are generally performed online and require continuously
quick estimations. We propose a novel prognostic method
based on a combination of classic Riemann sampling (RS)
and Lebesgue sampling (LS) applied to a discharge model of
a battery. The method utilizes an early and inaccurate predic-
tion using a RS-based method combined with a particle-filter
based prognostic. Once a fault condition has been detected,
subsequent Just-in-Time Point (JITP) estimations are updated
using a novel LS-based method. The JITP prediction are
triggered when the Kullback-Leibler divergence between the
probability density functions (PDF) of the long-term-based
prediction and the last filtered state reaches a threshold. The
CPU time needed to execute a procedure is used as a measure
of the computational resources. Results show that this com-
bined approach is several orders of magnitude faster than the
classical prognosis scheme. The combination of these two
methods provides a robust JITP prognosis with less computa-
tional resources, a key factor to consider in real-time applica-
tions in embedded systems.

Camilo Reyes et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

1.1. Riemann and Lebesgue Sampling

Sampling and sensing signals constitute a fundamental task
in our modern digital technology. From basic signal process-
ing in control systems to digital communications, sampling
is a key factor to represent signals from nature in an efficient
way. In the digital world, traditional sensing consists of an
equal time sampling period which is known as Riemann sam-
pling (RS) (Åström & Bernhardsson, 2002). RS method is
widely used in computer-based controlled systems due to the
low complexity in its analysis, design, and implementation
(Åström & Bernhardsson, 2002; Miskowicz, 2016).

Data acquisition technology has been focused on uniform
sampling periods where a great deal of theory has been done,
although there have been alternative sampling techniques pro-
posed. Despite these proposed sampling techniques, there
have been few technologies that can directly support them
(Dorf, Farren, & Phillips, 1962; Tsividis et al., 2016). One
of these nonuniform sampling techniques is based on the
Lebesgue theory, where the sampling is dictated dynamically.

The Lebesgue sampling method is one of the most common
event-triggered sampling mechanism. The main feature of
this strategy is that the signal is sampled every time it crosses
a preassigned level. This sampling method is a way to re-
duce the number of data points required to describe a signal.
This data reduction is an important factor when dealing with
low memory embedded systems or network communications.
Figure 1 illustrates an example of the difference between Rie-
mann and Lebesgue sampling methods.
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Figure 1. (A) Riemann Sampling (B) Lebesgue Sampling.

Specifically, in applications oriented to failure prognosis the
time between the fault detection and failure occurrence can
be considerable. So a constant monitoring may be redun-
dant and resource consuming. In cases where fault diagnosis
and prognosis (FDP) is difficult to implement using a tradi-
tional Riemann sampling (RS-FDP), a Lebesgue based sam-
pling methodology may be a novel response to the problem
of scarce computational resources.

1.2. PHM methods based on Lebesgue Sampling

The Lebesgue sampling (LS) method is characterized by the
philosophy “used when needed” which results in a significant
reduction of computational resources, especially for FDP al-
gorithms with long prognosis horizon. This LS FDP method
is based on the division of the state axis into a number of
predefined states (the Lebesgue States) and the FDP algo-
rithm will only be triggered when there is a change from one
Lebesgue state to another, details see (Yan, 2017).

Applications of a Lebesgue based sampling method can be
seen in a great number of studies. In (Tsividis, 2010) tech-
niques for event-based sampling were reviewed showing the
potential of this method in reducing energy consumption.
In (Åström & Bernhardsson, 2002) a comparison is made
between the Riemann and the Lebesgue sampling methods
which were tested on a linear first order system. A numer-
ical efficiency analysis is done in (Åström & Bernhardsson,
2003) comparing both sampling methods. Here they show
that the Lebesgue method has better performance than a Rie-
mann sampling based method. A PID Lebesgue based con-
troller is presented in (Åarzén, 1999) showing a significant
reduction in the CPU resources.

Applications of Lebesgue sampling method to prognosis has
been a relatively new area of research. However, the increas-
ing number of articles published shows that it is beginning
to become an active field. The applications in fault diagno-
sis and prognosis problems(FDP) can be seen in (Zhang &
Wang, 2014) where the method has been tested in a gear-
box model. In (Yan, Dou, Liu, Peng, & Zhang, 2015), (Yan,
Zhang, Wang, Dou, & Wang, 2016), (Yan & Zhang, 2016),
(Yan, Zhang, & Orchard, 2016) and (Yan, Zhang, Zhao, Wed-
dington, & Niu, 2017) are examples of a Lebesgue sample
method for failure diagnosis and prognosis applied to battery
models. Other applications spread from parameter optimiza-
tion to extended Kalman Filter (EKF) for prognosis problems.

In this study, our main goal is to combine these two sampling
techniques and quantify the accuracy of this joint method. We
are also interested in measuring the computational resources
they use. This joint method will be applied to the battery
discharge estimation problem.

2. PROPOSED METHODOLOGY

2.1. Estimation and Prognosis based on Riemann Sam-
pling

In order to estimate a system’s state of health, a model has
to be established through a suitable state variable (Souibgui,
BenHmida, & Chaari, 2011). The next step is to character-
ize the evolution of the chosen model in order to forecast the
remaining useful life (RUL). Despite there are many tech-
niques to address the forecasting problem many researchers
use Bayesian filters because it allows to include the notion of
uncertainty.

The Bayesian filter proposed in this study is the particle fil-
ter (PF). This filter has been well established throughout the
PHM community because it allows to manage uncertainty
(details see (Orchard, Kacprzynski, Goebel, Saha, & Vacht-
sevanos, 2008)).

Failure prognostics involves predicting the SoH in future time
instants where no measurements are available. The long
terms predictions of the SoH allows the estimation of the re-
maining useful life (RUL) or the time of failure (ToF). In our
case, we use the concept of ToF as defined in (Acuña & Or-
chard, 2017). The ToF consists in the time instant when a fail-
ure takes place and its estimation is done using the corrected
expression, defined in the aforementioned article, given by
Eq. 1.

P (Fk) = P (Fk|Hkp:k−1)P (Hkp:k) (1)

where Fk is a failure occurrence at instant k and Hkp:k−1 is
the system staying healthy from the instant kp until the instant
(k − 1).
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Using the mathematical formulation shown in (Acuña & Or-
chard, 2017), we calculate the PDF of the ToF. This PDF al-
lows us to estimate the just in time point (JITP) and other
statistical figures that can be used to analyze the evolution of
the state of health (SOH). We use the concept of the JITP as
defined in (Pola et al., 2015).

2.2. JITP model based on Lebesgue Sampling

Using the concept of the Lebesgue sampling we propose to
analyze the evolution of the SOH of a system. This evolu-
tion is modeled through the JITPα as it reaches the predefined
Lebesgue states. The model will allow us to predict the be-
havior of the JITPα during the prognosis stage. In our article
the JITPα = JITP2.5.

The first step is to divide the state space into two different sets
of Lebesgue states as suggested in Eq. (2):

{
∆F = {L1, L2...Lf}(filtering)

∆P = {Lf+1, Lf+2...Lk}(prognosis)
(2)

where the first set of Lebesgue states ∆F is defined for the fil-
tering stage (measurements available). The second set is de-
fined during the prognosis stage. The first set of the Lebesgue
states (where measurements are available) is used when a
model can be generated. This model explains the dynamics
of the state transition. Moreover, this model can be evalu-
ated since measurements are available until the current time
instant tk. Once we create a model that explains the state
transition it is assumed that this model holds for the progno-
sis stage. This supposition, however, depends deeply on the
nature of the system analyzed.

It is important to note that the filtering process continues after
the tk instant even though a prognosis has already been made.
This means that Lebesgue states that were in the set ∆P be-
come part of the set ∆F , which allows us to update the model
continuously. Particularly, in our case, 50% of the last JITPα
data (as a moving average) from the filtering process is used
to construct the Lebesgue model.

Figure 2 shows the process used to generate the transition
model from one Lebesgue state to another, using the JITPα.
First finding the PDF of the ToF in each Lebesgue state, af-
terward calculate the JITPα and finally model the JITPα as a
function of the Lebesgue states. This process can be summa-
rized in following algorithm.

Algorithm 1:

1. Divide the systems states under monitoring into
Lebesgue state sets for each stage of the process: ∆F

and ∆P .

Figure 2. Three step algorithm employed to model the JITPα
as a function of the Lebesgue State.

2. Find the JITPα of the ToF for each Lebesgue state Li of
the set ∆F as done in the classical method.

3. Use the JITPα calculated in previous step and find an
empirical model between the JITPα(Li) and the Li:
JITPα(Li) = f(Li).

2.3. Combination of RS and LS prognosis

This study proposes the combination of both forms of sam-
pling to take advantage of the strengths each one has. As
known the classical RS-FDP uses the information obtained
until the instant tk for diagnosis. The prognosis stage starts
using the results obtained from the diagnosis as its initial
conditions (Pola et al., 2015). Here, since we are using a
Riemann sampling method, the classical prognosis has to
propagate the state trajectories in time. This is done until it
reaches a condition characterized by a particular failure state
or threshold. Beyond this state the system is considered un-
able to perform normally. So, as before, the process is sep-
arated into two stages, the filtering stage and the prognosis
stage. In our case, we use a particle filter for estimating the
unknown fault state and to project this state estimation into
future instants beyond tk. When the system reaches the pre-
defined failure state the time of failure (ToF) can be charac-
terized by the JITPα.

After the the instant tk it is important to keep in mind that
the system can continue to evolve and therefore continue to
produce measurements. Using a classical RS method it is
possible to continue to update the ToF as more measurements
are available. However this update has a high computational
cost when using the RS method. Since we are using a particle
filter to estimate the state we also have, through the weights,
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the PDF of the state estimation. As we obtain the new infor-
mation we can compare the new states posterior PDF with
the PDF of the state in instant tk (last PDF before the prog-
nosis stage). Once the difference exceeds a certain threshold,
a new prognosis process starts. However, this new prognostic
is done using a model based on Lebesgue sampling, which
was obtained during the filtering stage.

As known, once a fault is detected the prognostic system gen-
erates predictions updating them as new measures arrive. The
prediction process runs continuously consuming computa-
tional resources and energy. Our proposed combined method
decreases the use of computational resources and increases
the prediction speed of the prognostic process.

Using this combined methodology we use the advantage of
the precision of a prognostic based on the RS-FDP method
and the speed of the methodology based on the LS-FDP
method that allows a quick update of the ToF estimation. Us-
ing the model proposed in Section 3, we are able to quantify
the accuracy of the proposed combined methodology and the
CPU time usage.

Once the system reaches the tk instant, our proposed method
starts which can be summarized through the following algo-
rithm:

Algorithm 2:

1. Generate a prognostic using the traditional method (RS
methodology) after the instant tk calculating the JITP at
each Lebesgue State ∆P previously defined.

2. Store the posterior PDF of the predicted state at each time
instant.

3. Calculate the posterior PDF of the filtered state at each
time instant as new PDF information arrives.

4. Compare the posterior PDFs of the prognostic and the fil-
tered state at each time instant using the KL divergence,
if the KL divergence surpasses a threshold go to 5, if not
go to 3.

5. Execute Algorithm 1 updating the model parameters
with all the information obtained from 3.

6. Calculate the JITP of the Lebesgue states using the
model generated in 5.

Figure 3 shows a general representation of the proposed
method summarized by Algorithm 1 and 2.

The Kullback-Leibler (KL) divergence indicated in Algo-
rithm 2, this is used to measure the differences between two
PDFs. Basically this measure shows the divergence from one
PDF to another. If we have two distributions Ptk and Ptk+n

the KL divergence is defined as:

Figure 3. Proposed Algorithm.

D =
∑
tk

Ptk log(
Ptk+n

Ptk
) (3)

In our case we measure the state posterior PDF (after tk) and
the PDF of the last state before the prognosis stage (at tk).
Figure 4 shows an example of Kullback-Leibler divergence
of the PDF at instant tk) and the incoming PDF for t > tk
with a case study of batter state of charge.

It is important to mention that the KL divergence is defined
for continuous domains, so in order to use this divergence
Gaussian kernels are used to estimate the continuous Ptk .

Figure 4. Kullback-Leibler divergence.
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3. CASE STUDY: BATTERY STATE OF CHARGE ESTI-
MATION AND PROGNOSIS

3.1. State of Charge model

One of the main difficulties of estimating the state-of-charge
(SOC) is the inability to measure this parameter directly. SOC
can only be estimated through measurements of other pa-
rameters (Pattipati, Sankavaram, & Pattipati, 2011). Other
issues that have to be taken into account when estimating
these parameters are the dependency of factors such as tem-
perature, age of the battery or hysteresis, etc (Tampier et al.,
2015). More complex models such as multiphysics or chem-
ical require many precise measurements (Charkhgard & Far-
rokhi, 2010) which make them less preferred. In contrast,
the most popular models currently used are the ones based on
the Ampere-hour counting or the open circuit voltage (OCV)
measurements (Tampier et al., 2015). This last model, OCV
model, also has the advantage that it does not need prior mea-
surement information and is directly related with the SOC
(Tang, Mao, Lin, & Koch, 2011).

The model used for this study was developed by (Pola et al.,
2015) in which an empirical scheme of the model was vali-
dated with experimental data. The model is defined in Eqs.
(4) and (5).

{
x1(t+ 1) = x1(t) + ω1(t)

x2(t+ 1) = x2(t)− v(t).i(t)∆tE−1
crit + ω2(t)

(4)

v(t) = vL + (v0 − vL)eγ(x2(t)−1) + αvL(x2(t)− 1)... (5)

+ (1− α)vL(e−β − e−β
√
x2(t))− i(t)x1(t) + η(t)

Using this model, a Monte Carlo simulation (20,000 realiza-
tions) is conducted in order to have a ground truth at each
Lebesgue State of interest.

3.2. JITP model in Estimation Stage

The system defined in Eq.(4) and Eq.(5) will be used to pre-
dict the JITP and at each predefined Lebesgue state. Also at
each Lebesgue state the CPU time will be measured. Five
hundred Monte Carlo realizations are carried out in order to
have sufficient statistics for the prognosis stage. For each one
of these simulations, the algorithm for the Lebesgue modeling
is done accordingly to the previous section. Figure 5 shows
the result of one of the trials, which is representative of the
dynamics behavior.

As we can see, the dynamics is linear, and the prognosis is
straightforward using a particle filter of 200 particles. Figure
5 shows clearly the two stages of our methodology, the filter-
ing part (blue line), which is done continuously at each time

period (cyan line after the prognosis starts). The red lines
show some of the predefined Lebesgue states. As explained
in the algorithm, the first set defined as ∆F is used to cre-
ate an empirical model between the JITPα and the Lebesgue
states.

Figure 5 also shows the dynamic behavior of the JITPα at
each Lebesgue state (α = 2.5%) during the prognosis pro-
cess. As we can see the suggested relationship is akin to a
linear function. So the model proposed is given by Eq. (6):

J(n) = αL(n) + β (6)

where J(n) is the n − th just-in-time-point, and L(n) is the
n− th Lebesgue state. Since our algorithms are continuously
filtering as more data becomes available, the parameters α
and β may vary.

This model is obtained in each one of the 500 Monte Carlo
realizations. Using the results from the Monte Carlo process
we are able to estimate an average of errors and the computa-
tional resources used in the prognostic stage.

3.3. Prognosis results

Once the 500 Monte Carlo simulations are done, the next
step is to analyze the efficiency of our proposed methodol-
ogy. Two figures of merit are proposed as follows:

• The CPU time used to estimate the JITP of each selected
Lebesgue state (∆P ).

• The error of each sampling method (Lebesgue vs Rie-
mann) at each Lebesgue state defined in ∆P .

It is important to remark that the results shown from hereafter
are averages obtained from the results of the 500 Monte Carlo
simulations.

First, let us investigate how the model behaves when the JITP

Figure 5. State dynamics of the model proposed.
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of Lebesgue states are calculated for the prognosis state. Af-
terwards we will compare the results with the JITP obtained
using the classical filtering method. Figure 6, shows the re-
sult (for the 500 Monte Carlo simulations) using our pro-
posed method for the JITP estimation and a classical prog-
nosis method.

It is clear that the classical prognosis method is inaccurate as
the distance grows between the prognosis starting point and
the Lebesgue states.

The error between both methods is used to compare and quan-
tify the performance of each method. Figure 7 shows the
increase of the relative error using the classical method as
the Lebesgue state is further away from the initial prognosis
point. Our proposed method apparently shows, for our case
study, an upper bound and shows a more stable relative error
than the classical method.

Figure 8 shows the comparison of PDF of the classical prog-

Figure 6. JITP estimation during prognosis stage for
Lebesgue and Riemann Sampling.

Figure 7. Relative MSE in the JITP estimation Lebesgue and
Riemann Sampling methods.

Figure 8. PDF and JITP at different Lebesgue states.

nostic method, the PDF of the model, and the JITP from the
Lebesgue model. Figure 9 shows the figure of merit in terms
of the CPU time needed for each method in order to estimate
the JITP after the 500 simulations.

It is clear from Figure 9 that, as the distance increases be-
tween the Lebesgue state and the initial prognosis point (Fig-
ure 5), the computational time also increases for the classical
prognostic approach. The Lebesgue model approach has the
same CPU time. This is because the estimation of the model
and the calculation of the JITP are calculated only once. The
CPU time used in obtaining the model and the JITP is the one
shown in Figure 9. We can see that despite the fact that two
processes are done, the computational time of the proposed
method is 2 orders of magnitude less than that of the classical
method.

4. DISCUSSION

The results in Section 3show that, for the system analyzed,
the use of a combined approach has advantages over classic

Figure 9. CPU time comparison between both approaches.
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method. In our case, we use the classical method (based on
Riemann sampling) to create a database of JITP later used
for the development of the Lebesgue Model. The comparison
of the relative error clearly demonstrates the advantages of
the proposed method. Figure 9 show a different advantage of
the Lebesgue based model in terms of CPU time, which is 2
orders of magnitude less than the classical estimation method.

For systems where computational resources are limited, the
proposed combined methodology can be a solution. It is
also important to note that the JITP estimation of our method
shows a bounded accuracy loss.

Despite the usefulness of the proposed method, it is necessary
to test this scheme on a nonlinear system where the Lebesgue
model generated in the filtering phase can be a difficult issue
to address and maybe more ad-hoc models will need to be
developed. Another possible area of interest is nonlinear sys-
tem where the relationship between fault and the Lebesgue
State will need a closer analysis depending on the systems
dynamics.

5. CONCLUSION

The proposed method shows a significant reduction of the
CPU time. This indicates that this proposed combined
method has the possibility to be used in embedded systems
or where the communication between sensor-controller is
scarce. In systems that have a CPU controlling and monitor-
ing a process, estimating the ToF of the battery that energizes
the sensor becomes essential. Our proposed method allows to
continuously update the prognosis at different states without
accuracy loss and with less computational resources used.
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