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ABSTRACT 

A turbine engine provides power to the helicopter, enabling 

the helicopter to travel and hover in the air. Since the 

rotorcraft operates at high altitudes, ensuring safety and 

maintaining a healthy operational status are crucial at all 

times. Therefore, a prognostics and health management 

(PHM) system for the turbine engine must be implemented to 

predict any anomalies or faults to prevent catastrophic 

accidents. This research proposes a novel fault diagnosis 

method for helicopter turbine engines based on operational 

data acquired from actual aircraft. First, the proposed method 

predicts engine torque using other operational data while 

accounting for uncertainty. A Bayesian regression approach 

is employed to predict the engine torque. The torque margin, 

defined as the difference between the actual torque and the 

estimated torque, is then used to diagnose engine faults. 

Specifically, a multi-head attention mechanism is 

incorporated to capture interactions between various engine 

parameters. Additionally, domain adaptation techniques are 

applied to enhance the model's generalization performance, 

ensuring robustness across diverse operating conditions. The 

proposed method is validated using seven different datasets, 

each acquired from a helicopter engine. Four datasets were 

used for training, while the remaining three were allocated 

for testing and validation. The results indicated that the 

proposed method accurately predicted torque. Furthermore, 

the fault diagnosis showed promising results, leading to a 

3rd-place finish in the 2024 PHM Society Data Challenge in 

terms of validation score. 

1. INTRODUCTION 

A helicopter, as a rotary-wing aircraft, operates by utilizing a 

turbine engine to drive the rotor blades, enabling vertical 

takeoff, landing, and flight. The turbine engine is the primary 

power source that makes these maneuvers possible. 

However, it is constantly exposed to various environmental 

factors and harsh operational conditions. Over time, this 

exposure can lead to a degradation in engine performance, 

which may result in severe accidents. Therefore, to prevent 

such accidents, a reliable engine monitoring and fault 

diagnosis system is essential. 

Previous studies have primarily focused on developing 

monitoring and fault diagnosis methods based on engine 

performance data. For instance, Fentaye et al. (2021) applied 

a modular CNN to address the issue of fault detection and 

classification in helicopter turbine engines. Zhao et al. (2022) 

utilized transfer learning with an Extreme Learning Machine 

to improve the prediction of engine torque using operational 

data. Hu et al. (2024) employed adversarial transfer learning 

with a Gaussian model to enhance fault diagnosis under 

varying conditions. However, these AI-based approaches 

present several challenges. First, AI-based methods often fail 

to provide information regarding the uncertainty of their 

predictions. This lack of uncertainty information is 

particularly problematic in critical systems such as aviation, 

where operators need not only the prediction but also an 

understanding of how reliable that prediction is. Without 

knowledge of prediction uncertainty, operators may over-rely 

on the AI model's output, even when it is potentially 

inaccurate. For example, an AI model might predict that an 

Yong Hun Park et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
aThese authors contributed equally to this work. 
*Corresponding Author: Joon Ha Jung (joonha@ajou.ac.kr) 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

2 

engine is functioning normally but fail to convey the 

uncertainty of this prediction. If the engine is actually in a 

borderline state, this lack of uncertainty information could 

result in operators missing early signs of failure, potentially 

leading to catastrophic outcomes. Therefore, understanding 

and accounting for uncertainty is essential in making 

informed decisions in safety-critical environments. Second, 

the generalized performance across a wide range of operating 

conditions cannot be achieved. Helicopter turbine engines 

operate under diverse conditions, but conventional models 

are trained on specific environments and conditions. 

Consequently, their performance degrades significantly when 

applied to data from new or unforeseen conditions. 

To accurately predict the state of helicopter turbine engines 

and diagnose faults, this study proposes a two-step 

methodology. In the first step, Bayesian regression is 

employed to predict the torque margin. This approach 

probabilistically models the uncertainty in the predictions, 

providing reliable confidence intervals, which are critical in 

aviation systems where safety is paramount. In the second 

step, the predicted torque margin from the first step is utilized 

as a key feature for fault diagnosis. A multi-head attention 

mechanism is applied to capture complex interactions 

between various features, and domain adaptation techniques 

are incorporated to ensure robust performance across diverse 

and previously unseen operating conditions. 

The organization of this paper is as follows. In Section 2, the 

data challenge task is introduced, including a detailed 

description of the dataset used for training and evaluation. 

Section 3 presents the proposed methodology of the feature 

extraction process, the regression approach for torque margin 

prediction, and the classification method for fault diagnosis. 

In Section 4, the results obtained from the experiments are 

discussed, and Section 5 concludes the paper with key 

findings and future research directions. 

2. DESCRIPTION 

2.1. Dataset Description 

This dataset contains sensor measurements from seven 

helicopter turbine engines of the same model, used across 

different helicopters. For each engine, several key 

operational parameters were recorded, including torque, 

external air temperature, mean gas temperature, pressure 

altitude, indicated airspeed, available power, and compressor 

speed. The variables included in the dataset are as follows, as 

shown in Table 1. 

The torque margin is calculated using the formula, as shown 

in Eq. (1). 

𝑇𝑜𝑟𝑞𝑢𝑒 𝑀𝑎𝑟𝑔𝑖𝑛 =  
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑇𝑜𝑟𝑞𝑢𝑒 − 𝑇𝑎𝑟𝑔𝑒𝑡 𝑇𝑜𝑟𝑞𝑢𝑒

𝑇𝑎𝑟𝑔𝑒𝑡 𝑇𝑜𝑟𝑞𝑢𝑒
 (1) 

The dataset is divided into a training set and a test/validation 

set. The training dataset consists of measurements from four 

engines, with the asset IDs and observation order anonymized 

to ensure unbiased modeling. The test and validation datasets 

comprise the remaining three engines, which are used to 

evaluate the model's ability to generalize to new data. 

2.2. Problem Description 

This study focuses on developing models to diagnose faults 

and predict torque margins in helicopter turbine engines to 

enhance maintenance and operational safety. A key challenge 

is ensuring that the models generalize effectively to engines 

not included in the training set. To address this, data from 

specific engines are used exclusively for testing and 

validation, allowing for a rigorous evaluation of model 

performance on unseen data. 

Additionally, the study includes the estimation of confidence 

levels for each prediction, providing crucial information for 

maintenance decisions. This approach aims to improve the 

reliability of fault diagnosis, optimize maintenance 

scheduling, and enhance the overall operational safety of 

helicopter engines. 

3. PROPOSED METHOD 

In this section, the proposed methodology for predicting the 

torque margin and diagnosing faults of helicopter turbine 

engines is presented. First, the feature extraction process 

from the data is described, followed by the identification of 

distinct and representative clusters that capture key patterns 

Table 1. Data description. 

 

Variable name Description 

Measured 

Torque (%) 

The temperature of the external 

air, measured in degrees Celsius. 

Outside Air 

Temperature 

(°C) 

The average temperature of gases 

inside the turbine, measured in 

degrees Celsius. 

Mean Gas 

Temperature 

(°C) 

The height above the standard 

atmospheric pressure level, 

measured in feet. 

Pressure Altitude 

(feet) 

The speed of the helicopter 

relative to the surrounding air, 

measured in knots. 

Indicated 

Airspeed (knots) 

The effective power output of the 

engine, expressed as a 

percentage. 

Compressor 

Speed (%) 

The speed of the engine’s 

compressor, expressed as a 

percentage of the maximum 

speed. 

Net Power (%) 

The actual torque output of the 

engine, expressed as a 

percentage. 
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and behaviors of the engine through clustering analysis. 

Subsequently, a detailed explanation of the regression model 

used for torque margin prediction and the classification 

model employed for fault diagnosis is provided. 

3.1. Feature Extraction and Modification Based on Air 

Density 

This section describes the process of extracting useful 

features from the helicopter turbine engine data. The original 

dataset consists of seven key operational parameters related 

to engine performance, including measured torque, outside 

air temperature, mean gas temperature, pressure altitude, 

indicated airspeed, net power, and compressor speed. In this 

study, additional features were defined based on these 

parameters to increase the predictive performance of the 

model. 

Air density is a critical factor that influences the performance 

of helicopter turbine engines. To account for this, air density 

was calculated using the International Standard Atmosphere 

(ISA) model, and key operational variables were adjusted 

accordingly. The ISA model is valid for altitudes below 

11,000 meters, and since the pressure altitude in the dataset 

is 3097.5 feet (approximately 944.118 meters), the 

application of the ISA equations was appropriate. 

According to the ISA model, the variation in pressure with 

altitude is calculated using Eq. (2). 

where 𝑝 is the pressure at altitude ℎ, which corresponds to 

the pressure altitude from the dataset, 𝑝0  is the sea-level 

standard atmospheric pressure (constant), 𝑎  is the 

temperature lapse rate (0.0065 K/m), 𝑇0  is the sea-level 

standard temperature (288.15 K), 𝑔  is gravitational 

acceleration (9.80665 m/s²), and 𝑅  is the universal gas 

constant (8.3144598 J/(mol·K)). Once the pressure 𝑝  is 

computed at a given altitude, the air density 𝜌 is calculated 

using Eq. (3). 

𝜌 =
𝑃

𝑅𝑆𝑇
 (3) 

where 𝑃  is the pressure at altitude, 𝑅𝑠  is the specific gas 

constant for air (287.05 J/(kg·K)), and 𝑇  is the outside air 

temperature from the dataset. 

Based on the calculated air density, air density-adjusted 

derived variables were generated for each key operational 

parameter. For example, the net power was adjusted for air 

density as shown in Eq. (4). 

𝑁𝑒𝑡 𝑃𝑜𝑤𝑒𝑟_𝐴𝑖𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑒𝑡 𝑃𝑜𝑤𝑒𝑟

𝜌
 (4) 

Similarly, other variables such as compressor speed, mean 

gas temperature, and measured torque were adjusted based on 

air density. These derived variables reflect the influence of 

environmental factors, such as air density, on engine 

performance, thus enhancing the model's predictive accuracy. 

3.2. Clustering Analysis using Gaussian Mixture Model  

A clustering approach was employed to segment the data 

based on two key features: compressor speed adjusted by air 

density and net power adjusted by air density. This was 

necessary because the helicopter turbine engine operates 

𝑝

𝑝0
= (1 −

𝑎ℎ

𝑇0
)

𝑔
𝑅𝑎

 (2) 

Figure 1. Distribution of GMM clustering: (a) training dataset 

results, showing two distinct clusters (Cluster A and Cluster 

B), (b) test dataset results, where only Cluster B is observed, 

and (c) validation dataset results, where again only Cluster B 

is present. 
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under varying environmental and operational conditions, 

which can lead to different performance characteristics. By 

applying clustering, it becomes possible to identify distinct 

operational regimes within the data, ensuring that these 

variations are accounted for in subsequent analysis and 

modeling, leading to more accurate fault diagnosis. 

The distribution analysis of the data showed that the dataset 

was collected at different conditions, which presented as a 

multiple number of clusters. Thus, Gaussian mixture model 

(GMM) was used to identify latent group distributions in the 

data, as it models the underlying distribution of each cluster. 

In this case, the GMM was configured with two components, 

allowing for the identification of two distinct groups within 

the dataset. A shared covariance structure was used to capture 

the relationships between the two selected features, ensuring 

that the clusters were effectively separated. 

Figure 1(a) shows the clustering result for the training dataset, 

where two distinct and meaningful clusters, Cluster A and 

Cluster B, were identified. Conversely, Figure 1(b) and 

Figure 1(c) display the clustering results for the test and 

validation datasets, respectively, where only a single cluster, 

Cluster B, was observed. This suggests that when the GMM, 

trained on the training dataset, was applied to the test and 

validation datasets, the data points in these sets exhibited 

characteristics that corresponded only to Cluster B, with no 

data points aligning with Cluster A. 

Thus, the focus was placed on the data within Cluster B when 

developing the model from the training dataset. This insight 

helped refine and focus the modeling process by emphasizing 

the most relevant operational regime, which was present in 

both the test and validation sets. 

3.3. Bayesian Regression for Torque Margin Estimation 

To estimate the torque margin and the confidence level of the 

prediction, the Gaussian Negative Log-Likelihood Loss 

(GNLLLoss) based Bayesian regression method was used. 

As the operational condition of helicopters encounter 

considerable amount of uncertainties, Bayesian regression 

that treats model parameters as probabilistic variables was 

used to capture both the mean and the associated uncertainty 

(variance) in the predictions. In addition, GNLLLoss 

function allowed the model to express the confidence of the 

predictions, providing more information than just the 

predicted value. The GNLLLoss is defined as shown in Eq. 

(5): 

𝐺𝑁𝐿𝐿𝐿𝑜𝑠𝑠 =
1

2
(

(𝑦 − �̂�)2

 �̂�2
+ log( �̂�2)) (5) 

Figure 1. Framework of the proposed fault diagnosis method. 
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where 𝑦 is the true value, �̂� is the predicted mean, and �̂�2 is 

the predicted variance. This loss function optimizes both the 

mean and the uncertainty of the predictions, allowing the 

model to obtain results in terms of probabilistic distributions. 

The optimized mean and the variance are used to present the 

mean and the variance of a normal distribution, which gives 

a probability of the predicted sample. This enables more 

informative predictions that not only give a predicted value 

but also a measure of confidence, which is crucial for 

evaluating the performance of helicopter engines, reliably. 

3.4. Multi-head Attention Based Domain-Adaptive Fault 

Diagnosis  

The ensemble approach of two different methods were 

proposed to acquire a robust and reliable fault diagnosis result. 

Specifically, the extreme gradient boosting (XGBoost) 

decision tree classifier and the multi-head attention classifier 

were used. XGBoost showed a robust classification result on 

the training dataset, however the tree-based model presented 

an inferior result when used to predict data from different 

operational environments. Thus, to overcome the domain 

differences, the proposed methodology leverages the multi-

head attention mechanism based deep learning model. 

Particularly, the multi-head attention mechanism was used in 

the deep learning model to increase the extraction 

performance of interactions between features. When 

compared to the conventional deep learning models, the 

multi-head attention mechanism allows the model to learn the 

importance of each feature and the relationships between 

them, yielding improved performance. 

The proposed framework, as shown in Figure 2, incorporates 

additional variables, including the predicted torque margin 

from Bayesian regression and the target torque, which is 

calculated using the measured torque. The framework utilizes 

the training set as the source domain and the test and 

validation sets as the target domains. Features are extracted 

from both the source and target domains through a shared-

weight multi-head attention module. To minimize the 

discrepancy between domains, Maximum Mean Discrepancy 

(MMD) is employed. Furthermore, the domain discriminator 

uses a Gradient Reversal Layer (GRL) to ensure that the 

model cannot differentiate between the source and target 

domains, thus enabling effective domain adaptation. This 

approach allows the model to perform fault diagnosis reliably, 

even in different operational environments. 

The features extracted from the source domain are passed 

through two fully connected layers, leading to fault diagnosis. 

The predictions are then scaled between 0 and 1 using a 

sigmoid function, yielding probabilistic outputs. The deep 

learning model is thus capable of generating both predicted 

labels and their associated probabilities. 

Subsequently, the features extracted from the multi-head 

attention module are used to train an XGBoost classifier, 

which generates an additional set of predictions (predicted 

labels and associated probabilities). These predictions are 

then combined with those from the deep learning classifier 

using an ensemble approach. Specifically, if both classifiers 

produce the same predicted label, the final confidence score 

is computed as the arithmetic mean of the two confidence 

scores. However, when the predicted labels differ, the 

prediction with the higher confidence score is selected, and 

the final confidence score is adjusted by averaging the two 

confidence scores. For instance, if one classifier yields a 

confidence score of 0.1 and the other 0.8, the final confidence 

score is averaged out as 0.45. 

During the evaluation, the two classifiers predicted 

differently for 3,108 out of 426,625 samples in the training 

set. Figure 3 is a scatter plot showing the confidence scores 

when the two classifiers made different predictions. 

According to the plot, when the XGBoost classifier assigned 

a confidence score between 0 and 0.5, the deep learning 

classifier often tended to assign a higher confidence score for 

the same instance.  

 

Additionally, Figure 4 and Table 2 show the confidence 

scores and selection ratios between the deep learning 

classifier and the XGBoost classifier during prediction. When 

both classifiers made the same prediction, the deep learning 

classifier's prediction was predominantly chosen. However, 

when the predictions differed, the XGBoost classifier's 

prediction was more frequently selected. Furthermore, when 

the predictions were identical, both classifiers exhibited high 

confidence scores, but when they diverged, there was a 

greater variance in the confidence scores. Based on this, the 

performance of each classifier and the ensemble method on 

instances where their predictions differed in the training set 

was compared. As shown in Table 3, the results demonstrate 

that the ensemble method outperforms the individual 

classifiers. This indicates that the proposed ensemble 

Figure 3. Scatter plot of confidence scores for XGBoost and 

deep learning (DL) classifiers for discrepant predictions. 
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approach allows the two classifiers to complement each other, 

resulting in more robust predictions. 

 

 

4. RESULT 

In this section, the results of the proposed methodology are 

presented. The model's performance is evaluated based on the 

feature selection process and its comparison with existing 

approaches.  

4.1. Selected Features for Torque Estimation and Fault 

Diagnosis 

In this study, the wrapper method for feature selection, which 

evaluates the performance of different subsets of features 

based on their predictive power. This method involves 

training a model on various feature subsets and selecting the 

subset that produces the highest score on the test set. For the 

classification model, we selected the feature subset that 

achieved the highest accuracy on the test set. Similarly, for 

the regression model that is used for the estimation of the 

torque, the feature subset with the highest prediction accuracy 

(based on test set performance) was chosen. The results of the 

selected features for both the classification and regression 

tasks are summarized, as shown in Table 4. 

4.2. Results of Torque Estimation and Fault Diagnosis 

4.2.1. Evaluation Metrics 

The performance evaluation in this study follows the 

methodology described by the PHM North America 2024 

Conference Data Challenge, assessing both regression and 

Table 2. Prediction selection table. 

 

Prediction Groups Deep Learning XGBoost 

All 

Predictions 

(426,625) 

403,397 

(94.56%) 

23,228 

(5.44%) 

Same 

Predictions 

(423,517) 

401,391 

(94.78%) 

22,126 

(5.22%) 

Different 

Predictions 

(3,108) 

1,906 

(61.33%) 

1,202 

(38.67%) 

 

Table 3. Comparison of classifier performance metrics. 

 

Classifier Accuracy Precision Recall 
F1 

Score 

Deep 

Learning 
0.613 0.650 0.666 0.658 

XGBoost 0.387 0.437 0.334 0.378 

Ensemble 0.679 0.737 0.663 0.698 

 

Table 4. Selected features for each task. 

 

Regression Classification 

Measured Torque  

Mean Gas Temperature  

Indicated Airspeed  

Net Power  

Compressor Speed 

Pressure Altitude  
Predicted Torque 

Margin (%) 

Outside Air 

Temperature  

Predicted Torque Target 

(%) 

 

Mean Gas Temperature 

adjusted by air density 

Net power 

adjusted by air density 

Compressor speed 

adjusted by air density 

 

Figure 4. Average confidence scores of deep learning (DL) 

and XGBoost classifiers for all predictions, same predictions, 

and different predictions. 
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classification tasks based on the accuracy and confidence of 

the predictions. For the regression task, a probabilistic 

approach is used to generate a probability density function 

(PDF) around the predicted values, while the classification 

task is evaluated based on the predicted labels and associated 

confidence levels. 

The regression score is calculated by determining the 

intersection between the predicted PDF and the actual value. 

For each predicted value, a specific distribution (e.g., normal 

or Cauchy) is selected to generate the PDF, utilizing various 

distributions from the Scipy library. All PDFs are normalized 

so that the total area under the curve is equal to 1, ensuring 

consistency and fairness across different distributions. The 

score is then determined by the probability density at the 

actual value, meaning that predictions closer to the true value 

yield higher scores. In this way, the regression score reflects 

both the accuracy of the prediction and the model's 

confidence in that prediction.  

For the classification score, both the predicted label (0 = 

healthy, 1 = faulty) and the confidence level of the prediction 

are used to calculate the score. If the prediction is correct, the 

confidence level is directly used as the score, with higher 

confidence resulting in a higher score. However, if the 

prediction is incorrect, the score is penalized, particularly in 

the case of false negatives, where a faulty engine is 
incorrectly classified as healthy. In such cases, the penalty is 

more severe, as misclassifying a faulty engine poses a greater 

risk. Confidence values must fall between 0 and 1, and any 

value outside this range results in a score of -100. 

Finally, the overall performance of the model is computed as 

the average of all regression and classification scores. This 

approach ensures that the model is evaluated not only on the 

accuracy of its predictions but also on the confidence it 

assigns to those predictions. 

4.2.2. Results of Torque Margin Regression and Fault 

Diagnosis  

For the regression task, the performance of the proposed 

Bayesian regression method is compared with that of a deep 

neural network (DNN) model using Monte-Carlo simulation 

(MCS). In the classification task, the proposed multi-head 

attention-based classification model is compared with DNN 

model, XGBoost, and multi-head attention-based deep 

learning method without domain adaptation. Notably, the 

torque margin and target torque used in the classification task 

were derived from the proposed regression method, which 

provided optimized values for the classification process. 

The performance comparison results showed that the 

proposed methodology outperformed other approaches in 

each task, as summarized in Table 5. In the regression task, 

Figure 5. Attention maps of (a) normal engine and (b) faulty engine. 

 

Table 5. Performance of test datasets. 

 

Task Method Performance 

Regression 

(Torque Margin 

Prediction) 

DNN+MCS 0.8166 

Proposed Method 0.9918 

Classification 

(Fault Diagnosis) 

DNN -0.1992 

XGBoost 0.9816 

Multi-Head 

Attention based 

Deep Learning 

(Source) 

0.9822 

Proposed Method 0.9858 
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the Bayesian regression method effectively modeled the 

uncertainty of the predicted values, achieving accurate torque 

margin predictions. In the classification task, the multi-head 

attention-based model captured complex interactions 

between key operational variables, significantly improving 

fault diagnosis accuracy. Notably, even when compared to 

XGBoost, known for its strong generalization performance, 

the proposed multi-head attention-based method 

demonstrated superior performance. The proposed 

methodology achieved a performance score of 0.918 on the 

validation dataset using pseudo-labels from the test dataset. 

4.2.3. Analysis of Attention Maps 

To further analyze the model's performance in fault 

prediction, attention maps were extracted from the final 

attention layer, which significantly influenced fault diagnosis. 

Specifically, attention maps were generated for each of the 

eight heads in the multi-head attention mechanism, and 

global max pooling was applied to these attention maps to 

highlight the most critical interactions. As shown in Figure 5, 

the attention maps allow for a direct comparison between the 

normal engine and the faulty engine. 

The attention maps present the attention of key operational 

variables depending on the condition of the engine. Under 

normal state, the attention is evenly distributed across various 

features. In contrast, in the faulty condition, which is shown 

in Figure 5(b), attention becomes more concentrated on 

specific features, such as measured torque (trq_measured), 

mean gas temperature (mgt), and net power (np). The 

attention based model focuses on the relationship among 

three features, which aligns with the domain knowledge. 

From a domain perspective, torque margin serves as a key 

indicator of engine health due to its direct correlation with the 

engine's ability to produce the required torque under various 

operational conditions. Its interaction with other variables, 

such as mean gas temperature and net power, affect the 

engine's thermodynamic efficiency and power generation 

capacity. Specifically, changes in mean gas temperature 

reflect variations in the heat energy conversion process, while 

net power indicates the engine's ability to deliver the 

expected output. These variables are directly linked to the 

engine's overall performance and deviations in these metrics 

can signal potential inefficiencies or emerging faults in the 

engine’s operation. 

In the faulty state, these relationships become more 

significant, as the model assigns higher attention values to 

features that heavily impact the engine’s torque margin. This 

shows that the model is capable of dynamically adjusting its 

focus based on the real-time condition of the engine, 

effectively prioritizing critical variables needed for accurate 

fault diagnosis. 

The results validates that the multi-head attention mechanism 

effectively captures feature interactions and highlights the 

key variables that contribute to the performance of fault 

diagnosis. The increased attention to specific features under 

faulty conditions, especially in relation to torque margin, 

shows that the model is able to adapt its focus according to 

the engine's operational state, thereby enhancing the 

reliability of fault diagnosis. 

5. CONCLUSION 

This paper proposed a two-step methodology for accurately 

predicting the state of helicopter turbine engines and 

diagnosing faults. In the first step, Bayesian regression was 

used to predict the torque margin, probabilistically modeling 

the uncertainty in the predictions, and providing confidence 

intervals, which are crucial for ensuring reliability in aviation 

systems. In the second step, the predicted torque margin from 

the first step was utilized as a key feature for fault diagnosis. 

A multi-head attention mechanism was employed to capture 

complex interactions between various features, and domain 

adaptation techniques were applied to ensure robust 

performance in new operating environments. 

Additionally, attention maps were analyzed to provide further 

insights into the model’s decision-making process. The 

Attention maps demonstrated that, under faulty conditions, 

the model focused more heavily on critical features such as 

measured torque, mean gas temperature, and net power. 

These attention maps validated the model’s ability to 

effectively prioritize the most relevant variables for fault 

diagnosis, further confirming the importance of torque 

margin and its associated features in distinguishing between 

normal and faulty engine states. This attention-based analysis 

provided a deeper understanding of the relationships between 

key operational variables, reinforcing the robustness of the 

proposed approach. 

However, there were limitations in the feature extraction 

process due to the absence of specific information about the 

environmental conditions in which the experiments were 

conducted (e.g., humidity, atmospheric pressure variations, 

temperature fluctuations). As a result, constant values for 

parameters such as sea-level pressure and standard 

temperature were used. Therefore, the calculated air density 

should be considered an approximation and may differ from 

the actual air density in the operating environment. 

Despite these limitations, the proposed two-step 

methodology, along with the insights gained from the 

attention map analysis, has proven to be highly effective in 

improving the monitoring of helicopter engine health, 

providing a reliable framework for aviation safety and 

maintenance. Future research will focus on further enhancing 

the proposed methodology by more accurately modeling the 

complex interactions and causal relationships between 

variables in both regression and fault diagnosis tasks, while 

continuing to explore the use of attention mechanisms for 

deeper interpretability.  
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