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ABSTRACT

Aircraft engine removal for maintenance is an expensive or-
deal, and planning for it while balancing fleet stability ob-
jectives is a complex multi-faceted challenge. This is further
compounded by uncertainties associated with usage or just-
in-time maintenance approaches that are becoming prevalent.
Engine removal decisions rely on accurate estimation of dam-
age growth or remaining useful life of critical components
and a framework for aggregating these component-level esti-
mates (and their uncertainties) into an engine-level removal
forecasting model. An approach to this planning challenge
is to develop probabilistic prognostic digital twins tailored
to engine-specific operations and calibrate/update them with
inspection data from the field. To this end, this work out-
lines a framework involving: 1) building component-level
probabilistic models capable of forecasting damage growth
or remaining useful life, 2) aggregating the outputs of these
component-level models into a system-level view using a Dy-
namic Bayesian Network (DBN), and 3) updating the states
of the DBN with inspection information as and when they
become available.

Keywords: Prognostics, Probabilistic Digital Twins, Dy-
namic Bayesian Networks, Cumulative Damage Modeling

1. INTRODUCTION:

Aircraft engines are highly sophisticated systems, compris-
ing a multitude of interdependent components, each vulnera-
ble to various damage and failure modes. This inherent com-
plexity makes accurate prognostics challenging. To mitigate
these risks and ensure the highest standards of operational
safety, regulatory agencies impose stringent requirements for
periodic inspections and maintenance. These regulatory stan-
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dards encompass a wide spectrum of checks and procedures,
from routine Bore-scope Inspections (BSI) to comprehensive
engine overhauls. Often, these procedures necessitate the
removal of engines from the aircraft, leading to significant
downtime and potential revenue loss.

The financial and logistical impacts of unexpected mainte-
nance events can be especially severe. These events not only
result in significant costs but also create major challenges in
re-booking passengers and managing schedules, particularly
when spare engines or aircraft are not immediately available.
Additionally, unplanned maintenance is frequently hindered
by long lead times for replacement parts and limited avail-
ability of certified Maintenance, Repair, and Overhaul (MRO)
shop slots. These multifaceted challenges highlight the criti-
cal importance of efficient engine removal planning, which is
essential to strike a balance between maintaining operational
safety and ensuring engine availability.

Fleet-level engine removal statistics/models, based on histori-
cal data, are inadequate for making engine-specific decisions.
These models, by nature of their construction, fail to capture
differences in damage states from one engine to another – at-
tributed to individual engine-level variations in manufactur-
ing, material properties, operational profiles, and load fac-
tors. Building a prognostic digital twin, therefore, custom-
tuned/calibrated for each individual engine is essential for ef-
fective removal decision-making. These digital twins, as out-
lined in (Li, Mahadevan, Ling, Wang, & Choze, 2017; Li,
Mahadevan, Ling, Choze, & Wang, 2017), must be formu-
lated to accomplish the following:

• Incorporate various sources of uncertainty from hard-
ware manufacturing variations to loading/operational
differences.

• Integrate heterogeneous information – including oper-
ational data, laboratory data, physics-based/empirical
models, expert opinions, and more.

• Capable of updating the uncertainty in model parameters
(to reduce discrepancies between the digital twin and the

1



Annual Conference of the Prognostics and Health Management Society 2024

actual hardware) and tracking the time-dependent system
states using measurement data, i.e., diagnosis.

• Predict/forecast the progression of damage states in the
absence of available data, i.e., prognosis.

In this work, Dynamic Bayesian Networks (DBNs) are cho-
sen to construct such digital twins, an idea previously ex-
plored in the context of aircraft structural health monitoring
(Li, Mahadevan, Ling, Choze, & Wang, 2017; Li, Mahade-
van, Ling, Wang, & Choze, 2017). DBNs have shown their
versatility in handling various data types and can incorporate
existing domain knowledge, all while providing a method for
reasoning under uncertainty. These attributes of DBNs make
them an ideal modeling approach to meet the above listed re-
quirements for constructing prognostic digital twins.

This paper aims to present a broad overview of the structure
necessary for developing such probabilistic prognostic digi-
tal twins using DBNs, without going into the intricacies of
each element in the framework. For a more comprehensive
review of some of the modeling elements mentioned in this
framework, readers are referred to (Thelen et al., 2022, 2023;
Bhaduri et al., 2024; Luan, Jacobs, Ghosh, & Wang, 2023;
Ghosh et al., 2020). The remainder of this paper is organized
as follows: The subsequent section offers a brief introduction
to Dynamic Bayesian Networks (DBNs) from the perspec-
tive of systems structure. The following section delves into
component-level damage modeling, with a particular focus
on a selection of available modeling techniques for construct-
ing these damage models. Thereafter, inference within DBNs
is discussed, accompanied by an explanation of the state up-
date concept. Finally, a demonstrative example of a DBN
model for engine removal planning is illustrated.

2. DYNAMIC BAYESIAN NETWORKS (DBN)

Aircraft engines have multiple interacting components, each
contributing to the overall system performance. The failure
behavior (i.e., the damage evolution) of each component can
be described through variables, states, and the structural re-
lations that describe the conditional dependencies between
these entities. The presence of multiple components or failure
modes, each with its own set of variables and states affecting
the system’s functionality, can be difficult to model. More-
over, the limited predictability of the damage models, which
will be discussed in the subsequent section, makes it diffi-
cult to accurately forecast the system’s state at any given mo-
ment. This uncertainty can lead to sub-optimal maintenance
decisions, such as removing an engine from service too early
or too late, resulting in increased maintenance costs, reduced
operational efficiency, and increased risk of failure.

Probabilistic graphical models, or Bayesian networks (BNs),
are a powerful tool for modeling complex systems. They can
represent the relationships between variables within a system
and capture beliefs about the sources of uncertainties inher-

ent to the models. In Bayesian networks, system behavior
is depicted as nodes in a graph, with edges representing the
relationships between these nodes. The nodes denote the sys-
tem’s variables or states, while the edges indicate the con-
ditional dependencies between them. Two classes of condi-
tional dependencies are common in these system models,

Xt+δt = f(Xt,Ωt),

Yt = g(Zt,Φt),
(1)

where Xt are states of the system, Yt and Zt are variables
that capture local conditions at time t, Ωt and Φt are external
factors influencing system behavior, and f(·) and g(·) are the
functional form of the conditional dependencies between the
system variables. Specifically, g(·) represents structural rela-
tions between random variables of a behavioral model at time
t, and f(·) represents the Markovian dynamics that describe
the evolution of system states from t to t+ δt. Functions that
govern the behavior of state variables are conditionally de-
pendent on the value of the system states at the previous time
step. Since these state-governing functions (also called tran-
sition functions) describe the time-based evolution of system
behavior, the probabilistic graphical models used to model
such behavior are also called dynamic Bayesian networks
(DBNs). DBNs, as such, can be seen as a sequence of static
BNs (slices) taken in chronological order with edges connect-
ing nodes across adjacent time-slices (representing temporal
dependencies).

This study utilizes GE-DBN, a Dynamic Bayesian Network
tool developed by GE Aerospace Research as part of the U.S.
Air Force’s P2IAT program. Over the recent years, this versa-
tile DBN tool has been refined to address engine prognostics
and removal planning needs. The inputs and formalism re-
quired for engine prognostics have been structured into mod-
ules within the DBN framework as illustrated in the accom-
panying Figure 1.

3. COMPONENT DAMAGE MODELING:

Forecasting when a component would deteriorate (due to
faults, fatigue, or wear) to a threshold level deemed unsafe for
its intended use is crucial for prognostics. The moment when
the component reaches this failure threshold is known as the
end of useful life (EOL), and the duration left until this EOL
is reached is referred to as the remaining useful life (RUL).
Both of these measures are characteristics of the damage pro-
gression/growth, and hence, constructing models capable of
forecasting damage growth in components is fundamental for
developing any prognostic tool.

Progression of damage in mechanical components is an accu-
mulative process. Models designed to capture this irreversible
build-up of damage through discrete time increments are
known as cumulative damage models (CDMs). These mod-
els represent the damage at time t as (VanStone, Gooden, &
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Figure 1. Engine prognostic digital twin framework for removal planning. Operation forecasting module: This module employs
statistical models, which are based on transitional probability matrices, to predict flight route structures from historical behavior.
These predicted routes are subsequently utilized to estimate engine sensor parameters, either through bootstrapping or via
calibrated engine performance models. Component damage modeling module: refer to Sec 3. Inspection data ingestion module:
refer to Sec 4

Krueger, 1988; Nascimento & Viana, 2020; Saxena, Goebel,
Simon, & Eklund, 2008):

Dt = Dt−1 +∆Dt

∆Dt = ϕ(Dt−1, Xt)
(2)

where Dt−1 is the damage level at time t − 1, and ∆Dt is
the damage increment at time t, which is a function of both
Dt−1 and inputs Xt. The inputs Xt usually express time-
dependent loading and boundary conditions (e.g., pressures,
temperatures, torques, mechanical and thermal stresses, etc.)
that the component experiences.

Traditional methods for building these damage models have
been deterministic, implying that the components operate un-
der the assumption of per-defined design service conditions
with fixed material strength. These models, in practice, are
paired with safety factors, derived from experience, to fore-
cast the component’s life/durability. Such models, however,
fail to account for variations in manufacturing conditions
and operating profiles - leading to discrepancies between the
predicted and observed life of the components. Therefore,
this work proposes construction of probabilistic models ca-
pable of capturing these variations through random parame-
ters (with either predefined or calibrated distributions). Prob-
abilistic outputs from such models can not only facilitate ef-

fective risk-informed decision-making but can also be seam-
lessly integrated as random variable nodes within the DBN.

The subsequent subsections provide a concise discussion of
two popular modeling strategies used for developing these
component-level damage progression models. These models,
once trained on engine operational (i.e., sensor) data and ob-
served characteristics of component failures like crack length
or area of coating loss, should be capable of predicting com-
ponent damage progression as a function of engine opera-
tional data.

3.1. Data-driven modeling:

Data-driven methodologies have become indispensable for
accelerating various modern engineering workflows, particu-
larly in design analysis, optimization and component/system
reliability analysis (Pidaparthi, Li, & Missoum, 2022; Ravi,
Dong, & Wei, 2022; Ghosh et al., 2020; Pidaparthi & Mis-
soum, 2023; Pidaparthi, Missoum, Xu, & Li, 2023; Ravi
et al., 2023; Pidaparthi & Missoum, 2019). The flexibility
of these methods are making them an attractive choice for
rapidly constructing (low-fidelity) models capable of predict-
ing component-level damage. These models, using engine
operational data as input, not only forecast failures but also
provide corresponding damage curves when trained on sparse
and noisy inspection observations. The set of suitable mod-
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els for this task encompasses linear regression, Gaussian pro-
cess regression, probabilistic deep neural networks, random
forests, and other advanced techniques. Often, these models
are developed with inputs derived from statistical transforma-
tions of engine operational data accumulated over operational
history to yield outputs that correspond to observed damage.

In recent times, developments in time series modeling have
facilitated their application to component damage modeling
(Zhao, Wang, Yan, & Mao, 2016; Amer & Kopsaftopoulos,
2019; Wu, Wu, Chen, Li, & Yan, 2021; Choe, Kim, & Kim,
2021). Time series models, such as recurrent neural networks
(RNNs) and long short-term memory (LSTM) networks, can
be trained using inspection observations from a fleet of en-
gines. A key distinction from previous models is the direct
ingestion of time-domain operational data at each time slice.
This approach allows for richer information in the modeling
framework, resulting in accurate models, albeit with poten-
tial challenges related to over-parameterization and overfit-
ting. The trained model can then be deployed to predict fight-
by-flight damage evolution.

The predictive capabilities of these models can also be uti-
lized within Explainable AI frameworks to understand the
reasons/ mechanisms behind failures. This is particularly
important when dealing with black-box models – thorough
investigations are essential before making downstream deci-
sions. These investigations can occur at the fleet or engine
level through global and local sensitivity analysis. Global
sensitivity analysis (such as Sobol Analysis) allows indepen-
dent evaluation of the overall model intuition. At a more
local level, sensitivity analysis (using techniques like SHAP
or LIME) on input features provides insights for individual
predictions, aiding investigative prognosis regarding failure
causes or high damage.

3.2. Hybrid Physics Modeling:

While data-driven approaches are widely used in damage
modeling, they face challenges in forecasting damage over
extended time horizons. This issue necessitates explicit incor-
poration of physical principles or constraints into the damage
models to maintain realistic trends in damage progression,
such as monotonicity. One approach to this is to develop and
calibrate analytical physics-based cumulative damage models
(CDM). These CDMs are specific to the damage mode (such
as oxidation, crack growth, fatigue) and can be probabilisti-
cally calibrated using Markov Chain Monte Carlo sampling
or the Kennedy O’Hagan formulation (Kennedy & O’Hagan,
2001). Since the physics of the failure mode is integrated into
the structure of these models, it is anticipated that their fore-
casting performance will exceed that of purely data-driven
models.

An alternative to expertly crafted CDMs is the develop-
ment of CDMs via sparse regression algorithms such as

compressed sensing, variational relevance vector machines
(Zhang, Jacobs, Ghosh, Kulkarni, & Wang, 2022; Tsilifis et
al., 2023; Tipping, 2001). Though the fundamental mech-
anism remains regressions, the cumulative nature of these
models to predict ∆Di (as defined in Eqn 2) ensures mono-
tonicity of the damage evolution, and inherent sparsity in the
equation guarantees generalizability. These features incorpo-
rate soft forecast-ability to these models. In this context, GE
Aerospace Research has developed a hybrid physics mod-
eling tool known as the Physics-Informed Research Assis-
tant and Theory Extractor (PIRATE). PIRATE is designed to
discover physical laws in the form of human-readable equa-
tions from observed data (Luan et al., 2023). PIRATE offers
two data-driven methods for equation discovery: compressed
sensing (Zhang et al., 2022) and symbolic regression (Luan et
al., 2023). In compressed sensing, an equation is constructed
by defining a class of basis functions, and the coefficients
of the linear combination of these basis terms are automat-
ically computed via sparse regression. The symbolic regres-
sion method, on the other hand, is built on the foundation of
genetic programming. It distills the solution by evolving the
equation individuals created from basic mathematical opera-
tors, variables, and ephemeral constants. Beyond fitting to the
observed data, PIRATE also allows the discovered equation
to be constrained by prior knowledge. Table 1 lists examples
of the constraints that can be enforced during this equation
discovery process.

Table 1. Examples of physics-motivated constraints for PI-
RATE (Luan et al., 2024)

Constraint Mathematical formulation
Output bound f(x) ≤ 0 or f(x) ≥ 0

Monotonic non-increasing ∂f(x)
∂xi

≤ 0

Monotonic non-decreasing ∂f(x)
∂xi

≥ 0

Concavity ∂2f(x)
∂2xi

≤ 0

Convexity ∂2f(x)
∂2xi

≥ 0
Even symmetry f (xi) = f (−xi)
Odd symmetry f (xi) = −f (xi)

4. INFERENCE & STATE UPDATING:

DBNs can be paired with a variety of inference algorithms -
from exact approaches like Forward-Backward and Island Al-
gorithm to approximate algorithms such as Particle Filtering
(PF) and Kalman Filters. The choice of the algorithm de-
pends on the DBN structure, variable types (discrete and/or
continuous), linearity assumptions, and the desired accuracy-
complexity trade-off. Exact methods are computationally ex-
pensive but provide precise results, while approximate meth-
ods are more efficient and flexible but may introduce approx-
imation errors. This work, GE-DBN in particular, employs
Sampling Importance Resampling (SIR) implementation of
PF as the inference algorithm owing to its flexibility to han-
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dle: both discrete and continuous variables, and linear/non-
linear functional relationships in the network.

When an inspection exposes the damage/distress state of a
component/sub-system represented by a node in the Bayesian
network, the inspection data is used to update the network
through Bayesian inference. This inference process reduces
the uncertainty associated with the hidden state variables and
calibration parameters in the network, allowing the network
to better match the observed evidence. This update mecha-
nism improves the network (and the prognostics digital twin it
represents) over time with more field experience/inspections.
Note that, in practice however, the observations may become
available asynchronously (i.e., inspections of different com-
ponents in the system could occur at different timestamps).
Hence, the minimum time-step required for evolving the sys-
tem dynamics must be carefully chosen.

While updating, the current parameters and system state esti-
mates are adjusted to match the data using Bayesian infer-
ence. In PF, each particle (from the priors) is assigned a
weight based on the comparison of the predicted and true
observation (i.e., the likelihood). The ensemble of these
weighted samples forms the updated (i.e., posterior) distribu-
tion. An issue often encountered in filtering approaches is that
the weight disparity can lead to weight collapse. This can be
mitigated by including a resampling step before the weights
become too uneven. GE-DBN uses a SIR approach to this
end where a new pool of equally weighted particles is gen-
erated to match the updated distribution. These distributions
are then used to continue the dynamic simulation, or option-
ally, restart the entire simulation for a more accurate system
state history. Details of this implementation can be found in
(Bartram & Mahadevan, 2013; Asher, Ling, & Wang, 2018).

5. DEMONSTRATIVE EXAMPLE:

In this section, a simplified, yet representative, engine prog-
nostics model is showcased to demonstrate the DBN-based
digital twin framework for engine removal planning. The
datasets/models used in this example are from actual engines
but are sanitized/re-scaled to eliminate any descriptors.

The problem considers three distinct failure modes, each as-
sociated with a different engine component (A, B, C). These
failure modes are assumed to be independent, a reasonable
assumption in many cases. For example, the growth of cracks
on a High-Pressure Turbine (HPT) blade is typically affected
by factors like the blade’s temperature conditions and mate-
rial properties. Conversely, coking of fuel nozzles, which is
a distinct damage mode, is influenced by factors specific to
the fuel nozzle, such as the quality and flow rates of the fuel.
These two modes exert minimal influence on each other and
can be considered to evolve independently. The decision to
remove an engine is critically influenced by the condition of
these components. In specific, the engine must be removed if

Figure 2. Probabilistic forecast of damage progression for
component-A: Each blue progression curve here is a pre-
diction sample from component-A damage model, and the
spread of these curves signifies the uncertainty in its predic-
tion. The dashed horizontal line marks the failure threshold,
and the ratio of sample predictions that cross this threshold at
any given cycle (i.e., flight index) provides an estimate of the
component’s failure probability. Note that this figure illus-
trates the prediction for a particular component from a single
engine [i.e., obtained by feeding the sensor data of an engine
into the damage model of component-A].

any one of the components — A, B, or C exceeds its permis-
sible damage tolerance.

The construction of the prognostic digital twin begins with
the development of individual damage progression models
(of the form Eqn 2) for all three components. These mod-
els are trained/calibrated on datasets of sensor data and dam-
age measurements (from a fleet of fielded engines) to predict
flight-by-flight damage evolution of the components (given
engine sensor data as inputs). Serviceability limits for these
components are represented by defining failure thresholds on
these damage progression curves (i.e., when the damage level
crosses the threshold, the component is deemed to have failed
or reached its serviceability limit). Since these component-
level models are probabilistic, their outputs can be sampled
and compared against the thresholds to estimate their proba-
bility of failure as shown in Figure 2.

Once the component-level damage models are developed,
they are structured as nodes within the DBN with failure/safe
labels becoming their output states determined through
thresholds (see Figure 3). The stochastic parameters θ associ-
ated with these damage models are also represented as nodes
in the network (with pre-calibrated distributions). When an
inspection is performed to observe the damage condition of
a component, these findings can be used to update the net-
work as discussed in Sec 4. This accomplishes two things: it
shifts the prediction from the damage model to match the in-
spection outcome, and it reduces the uncertainty in the model
prediction. This update mechanism customizes/re-calibrates
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Figure 3. DBN for aggregating component-level damage models to estimate engine failure probability. Here, the network is
visualized for two time slices. Nodes are marked with a subscript to denote the time index and a superscript to identify the
component they are associated with. Nodes encased in dashed boxes are observed data, and may only be available at specific
time indices (from inspections). Additionally, it is not always necessary that the inspection data be available for all components
at the same time. The nodes marked S represent the Fail/Safe state of the components by comparing the component damage
prediction D with failure-threshold T .

Figure 4. Engine Failure Risk Estimation. This illustration demonstrates aggregation of failure probabilities from three
component-level damage models using DBN. The left figure exclusively shows the damage development of component-A.
However, analogous curves for the other two component models are also computed here and are shown in the right figure.
The bold red curve on the right figure represents the estimated engine failure probability, derived from aggregating all three
component failure probability curves.
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Figure 5. Engine Exposure Across the Fleet: Each curve in this figure corresponds to the failure probability for a distinct engine
serial number. The higher the probability, the greater the risk of failure.

the component damage model (pre-trained on a dataset with
fleet-wide observations) to a specific part serial number. In-
spections generally can yield two types of outcomes: a bi-
nary pass/fail result or a quantities measurement of the failure
characteristics, such as the crank length. Both of these out-
come types can be incorporated into the update mechanism as
shown in Figure 2. This can be done either by conditioning
on the node that represents the damage, if the damage value
is accessible, or by directly conditioning on the node that rep-
resents the component’s failure state.

The failure probabilities derived from the component-level
damage models can be aggregated into a system-level fail-
ure estimate. This aggregation is achieved by defining edges,
or conditional dependencies, between the nodes representing
the states of the individual components and the nodes repre-
senting the overall state of the engine, as illustrated in Figure
3. The problem assumes that engine failure occurs if any of
the components fail. Consequently, the Dynamic Bayesian
Network (DBN) aggregation results in engine failure proba-
bilities, as depicted in Figure 4. This figure shows the failure
probability curves for a single engine over time.

This methodology can be extended to a fleet of engines, as
demonstrated in Figure 5. Each curve in this figure represents
the failure probability, or exposure, for a specific engine serial
number over various time horizons. This fleet-wide perspec-
tive allows for the ranking of engines based on their exposure
at any given date. By identifying engines with high exposure
before they reach critical failure probabilities, decisions can
be made to withdraw these engines from operation preemp-

tively.

The fleet-wide exposure view enables maintenance planners
to align engine withdrawals with the availability of MRO
slots. This alignment ensures that engines are removed from
service in a timely manner, minimizing operational disrup-
tions and optimizing the use of MRO resources. Addition-
ally, this approach allows for proactive management of the
fleet, ensuring that engines with the highest risk of failure are
prioritized for maintenance, thereby enhancing overall fleet
reliability and safety.

Airline operators can leverage fleet-wide exposure charts in
various ways to align with their organizational goals. In ad-
dition to scheduling preventive maintenance activities by ser-
vicing engines with higher exposure, understanding fleet ma-
turity with the exposure charts allows operators to predict the
demand for spare engines, ensuring availability of an ade-
quate number of spares to minimize aircraft downtime. Ana-
lyzing these exposure plots also helps in forecasting mainte-
nance costs and allocating budgets effectively, ensuring funds
are available when needed. Additionally, exposure plots can
inform strategic decisions on fleet expansion by identifying
trends in engine operational availability. Finally, optimal en-
gine maintenance enhances fuel efficiency and reduces emis-
sions, supporting environmental regulations and sustainabil-
ity goals.

6. CONCLUSIONS:

This work proposes Dynamic Bayesian Networks (DBN) to
construct probabilistic prognostics models for aircraft engine
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removal planning. The graph-like structure of DBNs has been
demonstrated to be particularly effective for modeling fail-
ures at the system level amidst uncertainties. Moreover, the
study introduces the notion of updating, which enables the
network to be iteratively enhanced over time to accurately re-
flect the actual state of the hardware system damage, using
asynchronously available inspection data. The practicality of
this framework is demonstrated through a representative dig-
ital twin model for engine prognostics.
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