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ABSTRACT

Current trends in the Industrial Internet of Things (IIoT) have
increased the sensorization of systems, thus increasing data
availability to apply data-driven fault detection and diagnosis
techniques to monitor these systems. In this work, we show
the capabilities of an information-driven method for detecting
and quantifying faults in a subsystem common among a broad
range of industries: the conical tank. Our main experiment
consists of using a simple black-box model (multi-layer per-
ceptron – MLP) to capture the dynamics of a PID-controlled
conical tank built in Simulink and then induce pump failures
of different severities; the derived data-driven indicators that
we developed increase with the severity of the fault validating
its usefulness in this controlled setting. A complementary ex-
periment is carried out to enrich our analysis; this consists of
simulating an open-loop discrete-time version of the conical
tank to explore a range of fault severity and analyze the distri-
bution of the indicators across this range. All our results show
the applicability of the data-driven fault monitoring method in
conical tanks subjected to either open- or closed-loop opera-
tion.

1. INTRODUCTION

Fault detection and identification (FDI) and fault diagnosis
are essential elements in ensuring the reliability and safety
of systems, including those used in industrial processes such
as conical tanks. FDI involves recognizing the presence of
faults in a system, whereas fault diagnosis goes a step fur-
ther by determining their location and nature (Abid, Khan, &
Iqbal, 2021). These tasks are essential, as undetected faults
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can lead to system failure, reduced efficiency, safety risks,
and increased operating costs. Early detection and accurate
diagnosis of faults can prevent these problems and ensure
continuous and safe operation. Common methods for FDI
and fault diagnosis include model-based approaches, signal-
processing techniques, and data-driven methods. Model-
based approaches use mathematical models to detect devia-
tions, signal processing analyzes output signals for anoma-
lies, and data-driven methods leverage machine learning and
historical data to identify patterns and correlations (Abid et
al., 2021).

The majority of the works in the literature assume open-loop
systems when identifying faults. Indeed, closed-loop control
can degrade FDI and fault diagnosis performance. This is be-
cause the system’s robustness can mask early or minor faults,
lowering detection rates. Additionally, the feedback mech-
anism can cause faults to propagate and couple within the
system, making fault identification more challenging (Sun,
Wang, He, Zhou, & Gu, 2019; Talebi & Khorasani, 2012;
Costa, Angelov, & Guedes, 2015). This raises a caveat, as, in
most industrial and real-world settings, systems are subjected
to a control loop.

Several strategies were developed to deal with system degra-
dation. These strategies can be related to fault mitigation or
failure prevention. In fault mitigation, the failure is taken into
account in the design stage, which tends to increase the fault
resilience of systems. Hence, domains such as system re-
configuration, fault tolerance (Amin & Hasan, 2019), self-
repairing systems (Yang & Kwak, 2022), and self-healing
(Ghosh, Sharman, Rao, & Upadhyaya, 2007) can be gath-
ered under the name of fault mitigation. Despite the out-
standing achievements of fault mitigation, failures cannot be
eliminated; therefore, it is necessary to consider them as un-
avoidable events that have to be prevented. In practice, fail-
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ure prevention can be performed through preventive mainte-
nance policies, which ensure system safety and availability,
and through usage profile adjustment to slow down degrada-
tion rates (Thuillier, Jha, Le Martelot, & Theilliol, 2024; Patel
& Shah, 2019).

Among systems used in the process industry, there are coni-
cal tanks, which are commonly used due to their advantages
in mixing, stirring, efficient cleaning, and ensuring complete
drainage of contents (Vavilala, Thirumavalavan, & Chan-
drasekaran, 2020; Ramanathan, Mangla, & Satpathy, 2018).
However, their conical shape leads to nonlinear dynamics,
posing challenges in controlling the relevant variables for the
various processes in which they are involved. There exists
a vast corpus of literature addressing the control aspect of
conical tanks with many different techniques, such as frac-
tional order control (Vavilala et al., 2020), predictive control
(Srinivasan, Sindhiya, & Devassy, 2016), and reinforcement
learning (Ramanathan et al., 2018), to name a few.

Since the last century, there has been an increasing concern
about engineering systems driven by the vast amounts of data
they generate (Jieyang et al., 2023). Conical tanks, which
are crucial pieces of equipment, have also attracted interest in
this context, motivating Passive Fault-Tolerant Control Sys-
tem (PFTCS) schemes to control them (Patel & Shah, 2019).
Although there are publications addressing fault-tolerant con-
trol, as stated above, we consider there is a gap in understand-
ing and quantifying the faults in the context of this particular
system; in turn, the work here opens the possibility for new
Active Fault-Tolerant Control System (AFTCS) methods.

1.1. Our Contribution

In this work, we describe a method for detecting faults and
indicators for quantifying them in conical tanks subjected
to a closed-loop proportional-integral-derivative (PID) con-
troller. Our methodology uses Mutual Information (MI) to
detect faults. Although MI has previously been applied in the
framework of FDI, it is typically used for feature selection
(Lucke, Mei, Stief, Chioua, & Thornhill, 2019; Yin & Yan,
2019; Chen, Wang, Li, & Yang, 2024) or assessing statisti-
cal dependence with labeled faults (Lucke et al., 2019). In
contrast, we use MI estimates themselves as fault indicators.
This approach does not require labeled faulty data, making it
an unsupervised approach in this regard and setting it apart
from existing methods. We apply it specifically to conical
tanks, which are the focus of this study, without a thorough
modeling of the system. Moreover, we highlight how it is
possible to enrich the fault analysis, in the case of having a
system model, by emulating unobserved faults.

A key advantage of our method is its flexibility. For plants
with existing operations, the model we introduce in this work
can be seamlessly replaced by a more complex pre-existing
model, such as one designed to improve fault isolability

(Düştegör, Frisk, Cocquempot, Krysander, & Staroswiecki,
2006). This adaptability allows for the method to be easily
replaced or upgraded without disrupting ongoing processes,
offering a practical solution for both system diagnosis and
enhancement.

1.2. Paper Outline

We start our work by introducing the model of the plant
we will explore, as well as definitions, intuitions, and the
methodology that will be used in the rest of the work, in Sec-
tion 2. In Section 3, we discuss the black-box model (MLP)
we used to monitor our system and show its corresponding
results. We do the same for our explicit analytical model of
the plant and show the results from this complementary anal-
ysis in Section 4. Finally, we give our conclusions and views
on how to extend our work in Section 5.

2. PRELIMINARIES

In this section, we describe the system focused on our study –
the controlled conical tank, as described in (Jáuregui, 2016) –
and the fault detection methodology introduced in (Ramı́rez,
Silva, Tamssaouet, Rojas, & Orchard, 2024) that we adapt to
the mentioned setting.

2.1. The Controlled Conical Tank

This work focuses on a conical tank filled with water. A
pump, positioned at a height of 20 cm from the bottom of
the tank, introduces water into the tank while water is drained
from the bottom, as depicted in Figure 1. As we do not have
sufficient real data, we use a model developed in (Jáuregui,
2016), which has been experimentally validated to describe
accurately the physics of the system under study. This ap-
proach, which can deviate from real-world conditions, has
often been used in the literature to compensate for the lack
of data (Raval, Patel, & Shah, 2021; Patel & Shah, 2019), but
also to be able to carry out many test conditions that would
be impossible to achieve in reality.

Usually, there is interest in controlling the height of the con-
tents of the tank; hence, the controlled variable is the height of
the water in the tank relative to its bottom, which is adjusted
by a PID control loop.

The description of this process can be expressed by a set of
five equations. Firstly, we have the model of the inflow and
outflow given by

Fin = α1 · f + α2 ≥ 0, (1)

Fout = β
√
hc, (2)

where α1 = 543 cm3s−1 and α2 = −78.23 cm3s−1
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Figure 1. Diagram of the controlled conical tank system,
where f is the percentage of pump utilization, hc(t) ≥ 0 is
the noisy measurement of the height of the water inside the
conical tank (measured in cm) at time instant t, Fin and Fout
are the inflow and outflow of water in the tank, respectively
(implicitly at t; both measured in cm3/s). With respect to the
control loop, r(t) is the reference signal at t, and e(k) and
u(k) are the error and control signals, respectively, at the dis-
crete time-step k induced by the zero-order hold (ZOH).

are pump and pipe-dependent parameters and β =
20.21 cm5/2s−1 is a parameter that depends on the spe-
cific geometry of the tank and the characteristics of the fluid
involved. The fluid volume inside the tank (denoted as V ) is
the most important variable for mass balance; experiments
were carried out in (Jáuregui, 2016), and the volume was
adjusted to a cubic polynomial of the liquid height in the
following fashion:

V = 0.21h3
c + 5.7h2

c + 17.1hc + 290.7. (3)

Then, we can perform a chain rule on the rate of volume
change as a function of time by

dV

dt
=

dV

dhc
· dhc

dt
= Fin − Fout, (4)

which results in the following ordinary differential equation
(ODE) for the height hc(t):

dhc

dt
=

Fin − Fout

0.63h2
c + 11.4hc + 17.1

, (5)

In consideration of Eqs. (1) and (2), Eq. (5) can be expressed
as

dhc

dt
=

α1 · f + α2 − β
√
hc

0.63h2
c + 11.4hc + 17.1

. (6)

To emulate a real-world process, Gaussian noise was intro-
duced to the measured water level (i.e., hc(t)), simulating a

pressure sensor with inherent noise. This noise was charac-
terized by a mean of 0 and a standard deviation of 0.03 cm,
reflecting a margin of error typical of such sensors.

This process is controlled by a closed-loop system where the
manipulated variable is the percentage of pump utilization (f )
and the controlled variable, as stated before, is the height of
the liquid inside the tank (hc). The control strategy used is a
PID controller tuned by Particle Swarm Optimization (PSO).

PSO involves generating particles in the optimization space,
which in this case represents the possible values of the pa-
rameters KP,KI,KD of the PID controller (R3). The aim is
to find a solution that minimizes a given cost function. Gen-
erally, we generate s particles with positions and velocities in
the optimization space and use them to explore different so-
lutions to evaluate the cost function. The following iterative
process is applied to the velocity and position vectors of all
the particles:

vij(k + 1) = ωvij(k) + c1φ1(k) · [pij(k)− xi
j(k)]

+ c2φ2(k) · [gj(k)− xi
j(k)],

(7)

xi
j(k + 1) = xi

j(k) + vij(k + 1), (8)

where, xi
j and vij represent the j-th component of the position

(j ∈ {1, 2, 3}) and velocity of the i-th particle, respectively
(i ∈ {1, . . . , s}). The values of k and k + 1 denote the al-
gorithm’s iteration indexes. The parameters are defined as
follows: ω is the inertia factor, c1 and c2 are the cognitive and
social constants, respectively, φ1(k) and φ2(k) are samples
from a uniform distribution (U [0, 1]), pij(k) is the position of
each particle that achieved the best performance according to
the loss function, and gj(k) is the best position in history up
to iteration k for all the particles.

The cost (loss) function for the algorithm is the total error of
the controlled variable with respect to the reference; this is

J(t) =

∫ t

0

|e(τ)| dτ. (9)

Further details on the controller optimization procedure can
be found in (Jáuregui, 2016). The main idea is that, following
the presented rules, particles explore the optimization space
with a compromise between individual and collective behav-
ior. The PID parameters obtained using this approach are
KP = 17.88, KI = 9.41·10−5 and KD = 4.44; these param-
eters are incorporated into the following equation describing
the action of the PID controller:

u(t) = KP · e(t) +KI ·
∫ t

0

e(τ) dτ +KD · de(t)
dt

. (10)

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Although Eq. (5) is in continuous time, the filling and emp-
tying velocities of the tank allow for discretization with a
reasonable resolution and timely response, eliminating the
need for continuous observation. In particular, the filling time
from an empty tank to a height of 50 cm using 100% of the
pump capacity is approximately 150 seconds, while the emp-
tying time is approximately 300 seconds. For this system,
a sampling time of 15 seconds was selected, corresponding
to approximately 10% of the filling rate. For this purpose,
we adopt a Zero Order Hold (ZOH) technique to discretize
the system, using the mentioned 15-second sampling interval.
From this point on, we will consider t as a discrete variable,
corresponding to the sampling described in Equation (11):

t = k · Ts, (11)

where k ∈ N represents the number of samples since the
beginning and Ts = 15 s denotes the chosen sampling time.

2.2. The Information-Driven Fault Detection

We use the method for fault detection proposed in (Ramı́rez
et al., 2024), which considers the system as a generative
stochastic process of the inputs-outputs, which, in turn, can
be reduced to a deterministic underlying mapping η(·). We
approximate this underlying mapping with a model that is
suited for the regression task of a variable of interest. The
model can be of any type, whether it is a phenomenological
model, a data-based (empirical) model (such as a neural net-
work), or any other mapping capable of taking the same in-
puts as the system and generating (almost surely) the same
outputs. The methodology is inspired by the orthogonal-
ity principle of least square error models, which states that
the best model, in the sense of least square error, satisfies
E[(η̃(X) − Y ) ·X] = 0, where η̃(·) is the system model, Y
is the system’s measured output, and X is the system’s in-
put. However, this principle does not align with the common
intuition that the prediction error should be independent of
the input, as the orthogonality principle does not guarantee
independence. Therefore, we propose using the mutual infor-
mation between the residual R ≡ η̃(X)− Y and the input X
to test for independence.

The mutual information of two arbitrary random variables X
and Y , denoted as I(X;Y ), is a quantity derived from Infor-
mation Theory, which quantifies the degree of dependence of
the two random variables involved and has the particularity
of being equal to 0 if and only if, X and Y are independent.
For continuous random variables, mutual information can be
expressed as follows:

I(X;Y ) =

∫
X×Y

µX,Y (x, y) log

(
µX,Y (x, y)

µX(x) · µY (y)

)
dx dy,

(12)

where X and Y take values in X and Y , respectively;
µX,Y (x, y) is their joint probability density function (pdf),
and µX(x) and µY (y) are the marginal pdfs of X and Y ,
respectively, induced from µX,Y (x, y).

The expression in Eq. (12) needs the knowledge of the pdfs,
which implies the necessity to use all distribution moments to
compute it; this is in opposition to knowing just second-order
moments, which is the requirement to compute the correlation
to verify the orthogonality principle. The main cost associ-
ated with working with the mutual information is that know-
ing all distribution moments is not possible for unknown or
non-trivial distributions; therefore, to implement the method-
ology, an estimator for the mutual information is needed.

The proposed method requires access to data from a system
to monitor and a model of this system. In our case, we have
a conical tank whose liquid level height we want to monitor.
Contrary to what one could expect, the system is not just the
tank; we also have to consider that there is a control loop that
is an integral part of the system since, without it, the values
and the distribution of the variables of interest would vary
radically.

Once we have identified the system, we create a model that is
based on it. During operation, the model predicts the target
value; then, we calculate the prediction error, which we de-
nominate the residual (denoted by uppercase R). To under-
stand the relationship between the residual and the input (X),
we estimate the mutual information between them. Since es-
timating mutual information requires multiple samples, we
use a rolling window approach to collect the necessary data.

Finally, we assess the value of the mutual information estima-
tion. If the value is greater than 0, we say our model and our
system have drifted from their ideal fit. Since our model is
fixed (after training), it cannot drift; hence, we attribute this
discrepancy to unwanted alterations of the inner dynamics of
the system, which we consider a fault. In consequence, de-
tection is achieved.

An estimator has to be chosen for the calculation of mutual
information. In this work, we will use the estimator pre-
sented in (Silva & Narayanan, 2012) following the study of
its properties in the fault detection task studied in (Ramı́rez
et al., 2024). This specific estimator, in conjunction with the
method proposed, is formally proven to fulfill a set of conve-
nient properties such as strong consistency, exponentially fast
decision convergence on healthy systems, and guarantees on
error convergence; the details can be found in (Ramı́rez et al.,
2024).

The mentioned fault detection scheme is described in Figures
2 and 3.
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Figure 2. General schematic of model-based fault detection
for controlled systems. Here, s ≥ 1 denotes the number of
historical system output values incorporated into the system
model.
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Figure 3. Main idea of the information-driven fault detection
mechanism.

3. STUDY CASE — CONICAL TANK DESCRIBED BY A
BLACK-BOX MODEL

In this section, we present several experiments in which a
black-box model, fitted to the nominal system operation, su-
pervises the PID-controlled conical tank. These experiments
center around the phenomenological model of the conical
tank operated by the described PID controller. Our objective
is to emulate the system’s behavior and use the information-
driven fault detection method explained in the previous sec-
tion to identify potential faults as they arise.

3.1. Nominal Black-Box Model Fitting

In this subsection, we detail the procedures performed to ob-
tain the nominal black-box model for the system consisting
of the PID-controlled conical tank.

3.1.1. Training Data

The data we used to train our black-box model consists of 90
hours of normal (nominal) plant operation, where the refer-
ence signal varied within normal operating limits to ensure a

diverse and representative dataset. In Figure 4, a visualization
of the initial four hours of nominal operation, which is part of
the training dataset, is shown.

Figure 4. Snapshot of the initial 4 hours of training data. It
reveals the structural composition of the dataset employed, as
well as the impact of PID control.

3.1.2. Black-Box Model Specifications

Our black-box model is a Multi-Layer Perceptron (MLP)
trained with data from the 90 hours of nominal plant opera-
tion described previously. Figure 5 illustrates how this model
functions as a supervisor of the system. The MLP was chosen
for its simplicity and ease of use, allowing us to demonstrate
that the success of our method does not depend on model
complexity. Using a straightforward model like the MLP
helps us to visualize the innovative aspects of our method.
Initially, the model is trained using data from nominal con-
ditions; then, the fitted model emulates the system’s output
signal, which is compared with the actual signal to compute a
residual. This residual signal is then used along with the sys-
tem input for the information-driven fault detection testing.

The specific aim of this MLP is to predict the water level at
the next discretized time step (i.e., at time instant t) based on
the latest two observations of the water level and pump uti-
lization percentage (i.e., hc(t − 1), f(t − 1), hc(t − 2), and
f(t − 2)). This information enables the network to capture
insights about the system’s inertia and dynamics while oper-
ating within its normal range, ultimately allowing it to esti-
mate the water level for the next discretized time step when
assuming normal conditions.

The MLP architecture consists of 4 input neurons followed by
2 hidden layers of 100 and 50 neurons, respectively; both hid-
den layers are equipped with ReLU activation functions, and
there is only one output neuron that represents the predicted
value of hc(t).
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Figure 5. Schematic diagram for both steps in our method-
ology. Top: training of the nominal black-box model. Bot-
tom: System supervision using the nominal black-box model
to perform fault detection.

3.1.3. Training Stage

Our first model was trained using a canonical training loop
over 10,000 epochs. An ADAM optimizer was employed to
minimize the Mean Squared Error (MSE) of the water level
hc(t) prediction, with a learning rate set to 10−4. To prevent
overfitting and enhance generalization, a validation set was
used during training.

The target MSE is determined by the naive no-change pre-
diction approach (Armstrong, 2001, p. 308), which is one of
the most straightforward forecasting techniques. This method
posits that the forecast for the next time step is simply the
most recent observed value and is used as a baseline for as-
sessing more sophisticated forecasting methods – in this case,
the naive prediction of hc(t) is given by hc(t − 1). We set
the target MSE to be at most the 1% of the MSE of the naive
prediction (we will call it “naive MSE” for simplicity) to con-
sider a model to be valid. A graphical representation of this
kind of prediction can be seen in Figure 6.
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Figure 6. Visualization of the naive no-change prediction.

To ensure the robustness of our nominal black-box model,
we trained four additional models using the same architec-

ture. These models were only varied in the number of epochs
and he employment of different learning rate (LR) schedulers.
Their performances are compared in Table 1.

Table 1. MSE comparison between different models.

Model N° of
epochs LR scheduler MSE

Test Set
Naive N/a N/a 2.46487

V1 10000 No 0.00649

V2 20000 No 0.00573

V3 30000 No 0.00261

V4 30000 Multiply the LR by 0.1
every 10000 epochs 0.00241

V5 50000 Multiply the LR by 0.9
every 2000 epochs 0.00186

As we can see in Table 1, all models achieve the target MSE.
Given their similar performance, and to avoid redundancy,
the results presented will focus on the best-performing model
(i.e., model V5).

3.2. Modeling Pump Faults

In order to model a pump failure, we modified Eq. (1) to in-
corporate a perturbation coefficient δ, which weights a step
change in the equation at time Tfault, explicitly induced by
using the unit step function s(τ) which is 1 if τ ≥ 0 and 0
otherwise; this leads us to the following expression for the
liquid inflow:

Fin = α1(1− δ · s(t− Tfault)) · f + α2. (13)

In our setting, all fault scenarios consist of a simulation of 90
hours with Tfault = 45 h, where we explore different values
of δ. In Table 2, we show how different fault severities (i.e.,
δ values) impact the maximum possible liquid inflow of our
system.

Table 2. Absolute impact of the simulated faults for 100%
pump utilization.

Fault severity Maximum fault impact (cm3/s)
5% -27.15
10% -54.3
20% -108.6
30% -162.9
40% -217.2

3.2.1. Application of the Mutual Information Test

The mutual information test was performed using a sliding
window technique (see Figure 7), where the estimated mutual

6
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information (EMI) was calculated over a sliding window of 4
hours (which contains 960 samples).

Figure 7. Mutual information estimation between the resid-
ual signal and some model input using a sliding window of 4
hours rolling over the whole time-series.

3.2.2. Results

In this section, we present the results of our experiments and
analyses. We conducted the mutual information test over the
residual signal R(t) = hc(t) − ĥc(t) and the inputs of the
model that generated ĥc(t). In Figures 8 and 9, we present
the time evolution of the EMI value of R(t) with f(t − 1)
and hc(t − 1), respectively, for all fault scenarios described
in Table 2, represented in different colors. There is a clear in-
crease in the EMI signal after the fault injection time (Tfault),
depicted as vertical dashed red line, from which a transient
in their values is observed up until all the data of the imple-
mented rolling window is subjected to the fault (which is in-
dicated as vertical dashed black line).

Once all the data of the rolling window used to calculate the
EMI between the residual and the corresponding inputs con-
tains only faulty data, the EMI stabilizes at increasing val-
ues which are monotonic with the severities of the introduced
faults; this is clearly visible in Figure 10 where the EMI val-
ues from said times are averaged and their standard deviation
is calculated. We also show these EMI statistics when no fault
is introduced for comparison. It is clear that there is a mono-
tonic relationship between the failure severity and the EMI,
this could be exploited to easily detect faults in the system.

It is interesting to note that although the fault is located ex-
clusively in the pump, the mutual information estimation be-
tween the residual and the water level input rises when the
fault begins. This can be explained by the close connection
between the percentage of pump usage and the water level
caused by the PID control loop.

Figure 8. Estimated mutual information (EMI) between R
and f(t−1) – i.e., the residual and the percentage of pump use
as a function of time – for different fault severity scenarios.

Figure 9. Estimated mutual information (EMI) between R
and hc(t− 1) – i.e., the residual and the water height level as
a function of time for different fault severity scenarios.

Figure 10. Average value and standard deviation of the mu-
tual information estimations over a 40-hour window for nor-
mal system operation and different fault severities.

4. COMPLEMENTARY ANALYSIS — EXPERIMENT
WITH A WHITE-BOX MODEL

To explain the results of the previous section, a white box ex-
periment is performed. Here we are interested in enriching
our previous analysis by simulating the plant with and with-
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out faults in an open-loop fashion and comparing the outputs
of both faulty and faultless settings for the same inputs; this
allows us to compare the performance of the methodology
with the best possible model of the system, which is an exact
simulation of the faultless system.

4.1. Experimental Setup

For this experiment, the original continuous-time variable
system is discretized, and the ODEs are solved using Euler’s
method. The discretized set of equations, which are derived
from Eq. (6), is the following:

hk+1 =
(1− δ) · α1f + α2 − β

√
hk

0.63k2k + 11.4hk + 17.1
· Ts + hk, (14)

where k ∈ N denotes the iteration step, δ ∈ [0, 1] denote the
fault severity, hk and hk+1 denote the liquid height at steps
k and k + 1, respectively, and Ts is the sampling time which
in this case was the same as the black-box experiment (15 s).
Different levels of fault severity were explored: from 0% to
50%. The main differentiation of this analysis, with respect to
the black-box analysis, is that we are working in an open-loop
setting where the values of f are randomly generated from
U [30%, 40%] instead of being obtained from a controller.

4.2. Results

In Figure 11, we can see that as the fault increases, the
value of the input-residual EMI – residual information values
(RIVs), as introduced in (Ramı́rez et al., 2024) – increases
monotonically. This is in agreement with what was observed
in the black-box analysis of the system.

We can see that for faults of low severity, there are no de-
tections, and on the contrary, there is a point from which the
detection rate is 100% (represented by the values of all RIVs
being greater than 0). This is more clear to visualize in Fig-
ure 12, where the detection rate is plotted as a function of the
fault’s magnitude, where from fault severities higher than 5%,
all 100% of the simulations are correctly detected as faulty;
more importantly, Figure 12 also shows that our method does
not incur in false positives (i.e., the false positive ratio – FPR
– is 0).

To remark on the capability of the proposed method to quan-
tify the fault’s severy, Figure 13 shows, for different severities
of fault, the histograms for the RIVs. It is possible to see that
from a 10% severity, there are no false negatives; this means
that there are no instances of faulty data wrongly labeled by
our method as healthy. This is not the case for 5%, but the
percentage of such occurrences is very low — 1.8%.

Although there is a discrepancy in the exact values of the
RIVs between the black-box and white-box analyses, the
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Figure 11. RIV values for different severities of the fault un-
der study. For each fault level, 100 simulations were per-
formed. For the estimation of the RIV, 1200 samples were
used, which, at a sample time of 15 s, is equivalent to 5 hours.

overall behavior is consistent in both cases. The magnitude
difference (approximately a factor of 2) can be attributed to
the white-box analysis being an open-loop system and the dif-
ferent methods of solving the ODEs: a simple Euler method
for the white-box analysis and Simulink as the solver for the
black-box analysis.

5. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that our method effectively
detects faults of varying severity using a black-box model,
which can be pre-existing and not necessarily designed for
fault detection purposes. Our methodology not only identi-
fies faults but also provides an indicator of fault severity. To
validate our approach, we replicated the setup in an open-
loop system, where the model used is a white-box generative
model of the data. The results were similar, further validating
the effectiveness of our methodology even with a black-box
model.

One key advantage of the presented methodology is its unsu-
pervised nature for fault detection. It does not require prior
access to fault data from the monitored system before begin-
ning the detection process. This feature enhances its utility
as a fault detection tool, with the resulting residual informa-
tion value (RIV) serving as a critical component for Active
Fault-Tolerant Control (Jiang & Yu, 2012).

As a potential improvement, more sophisticated models could
be used to enhance the reliability of the experiments per-
formed with the MLP. Additionally, running two parallel
closed-loop simulations with identical inputs could serve as
an ideal validation step, as it would represent a perfect model
of the process. Finally, using a real system is the ultimate
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Figure 12. Detection Rate as a function of the severity of the
fault. These rates were computed from 100 simulations with
different random seeds.
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Figure 13. RIV histogram for different fault severities; these
histograms were computed from 1000 simulations per fault
severity with a unique random seed per simulation.

goal. Hence, this is another area where this work can be ex-
tended.

Finally, comparing our method with other FDI approaches is
necessary to better understand its advantages and limitations.
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versité Toulouse III - Paul Sabatier and the LAAS-CNRS lab-
oratory. His research interests include prognostics and health
management of complex systems, discrete event systems, and
renewable energy, with a particular focus on concentrated so-
lar power.

Marcos Orchard received the M.S. and
Ph.D. degrees in electrical and computer
engineering from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2005 and
2007, respectively. Currently, he is a Profes-
sor with the Department of Electrical En-
gineering, Universidad de Chile, Santiago,
Chile, and an Associate Researcher with the

Advanced Center for Electrical and Electronic Engineering
(UTFSM). He has authored and coauthored more than 100
papers on diverse topics, including the design and imple-
mentation of failure prognostic algorithms, statistical process
monitoring, and system identification. His research work at
the Georgia Institute of Technology was the foundation of
novel real-time failure prognosis approaches based on parti-
cle filtering algorithms. His current research interests include
the study of theoretical aspects related to the implementation
of real-time failure prognosis algorithms, with applications to
battery management systems, electromobility, mining indus-
try, and finance. Dr. Orchard is a Fellow of the Prognostic
and Health Management Society.

10



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Jorge Silva received the M.Sc. and Ph.D.
degrees in electrical engineering from the
University of Southern California (USC),
Los Angeles, CA, USA, in 2005 and 2008,
respectively. From 2003 to 2008, he was
a Research Assistant with the Signal Anal-
ysis and Interpretation Laboratory (SAIL),
USC. He was also a Research Intern with

the Speech Research Group, Microsoft Corporation, Red-
mond, WA, USA, in 2005. He is currently an Associate Pro-

fessor with the Department of Electrical Engineering (EE),
University of Chile, and a Principal Investigator with the Ad-
vanced Center of Electrical and Electronic Engineering, Val-
paraı́so, Chile. He received the Outstanding Thesis Award
for Theoretical Research of the Viterbi School of engineer-
ing, in 2009, the Viterbi Doctoral Fellowship, from 2007 to
2008, and the Simon Ramo Scholarship at USC, from 2007
to 2008. He was an Associate Editor of IEEE Transactions
on Signal Processing, from 2016 to 2018.

11


	Introduction
	Our Contribution
	Paper Outline

	Preliminaries
	The Controlled Conical Tank
	The Information-Driven Fault Detection

	Study Case — Conical Tank Described by a Black-Box Model
	Nominal Black-Box Model Fitting
	Training Data
	Black-Box Model Specifications
	Training Stage

	Modeling Pump Faults
	Application of the Mutual Information Test
	Results


	Complementary Analysis — Experiment with a White-Box Model
	Experimental Setup
	Results

	Conclusion and Future Work
	References

