
13 November 2024

Physics-Informed Data-Driven 
Approaches to State of Health 
Prediction of Maritime Battery 
Systems
PHM 2024, 
Nashville, Tennessee, USA

A. Bakdi, M. Bruch, Q. Liang, E. Vanem



DNV © 13 NOVEMBER 2024

Introduction and motivation

• Available energy information is important for the safety of electric ships → Need to monitor SoH

• SoH estimated by BMS, but difficult to assure accuracy

• Class requirement that SoH from BMS should be verified by an independent method
• Typically done by an annual capacity test
• Annual capacity test is time consuming and costly → want to go for data-driven verification of SoH
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Background

Cumulative models: 
• Estimate contribution to degradation from each 

cycle and add up to get current SoH

𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑛𝑛 = 100 −�
𝑖𝑖=1

𝑛𝑛

Δ𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑖𝑖)

• Computationally expensive – do not scale well to 
large battery systems

• Requires full operating history of the batteries

Snapshot methods
• Based on extracting features from 

charge/discharge curves
• Establish models for the relationship between 

these features and SoH
• Results OK for about 40% of the cells
• Possibly because lack of representative training 

data
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• Previous attempts with purely data-driven methods failed to meet expectations*

Semi-supervised learning
• Train models on pseudo-capacity extracted from operational data; but do only have SoH from annual tests
• Assume constant SoH in a time-window around annual tests and look for “similar” cycles
• Build a statistical model on newly labelled data
• Dependent on previous vessels having relevant data; experienced similar conditions and degradation

* See papers presented at previous PHM conferences, PHM 2021, PHM 2022 and PHM 2023
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Available data sources

• Battery cells have been cycled within the project to obtain lab data
• Fraunhofer and Corvus labs; DDE, DDP and DDF cells
• Time-series of current, voltage and temperature with regular check-ups

• Operational data have been collected from several vessels
• Vessels A – F; similar cells as DDF (pouch cells)
• Time-series of current, voltage, temperature and SOC + annual test results
• Ferries and offshore vessels: all-electric and hybrid

• Some publicly available dataset

• One problem is that different chemistries and cell types have very different degradation. 
• Need training data from the same cell types as the ones to monitor with data-driven approaches
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Example of operational data from ships in service

5



DNV © 13 NOVEMBER 2024

Data-driven SoH estimation

• Earlier attempts on pure data-driven methods did not meet 
expectations
• Accuracy and robustness
• Computational cost and scalability to very large battery systems
• Data requirements; full operational history and need for high-quality 

representative training data
• Accounting for all perceivable operating conditions

• Different approaches were encouraging but not quite good enough

• Concluded that data alone is not enough! 
• Purely data-driven models not sufficient, need to utilize physical insight
• Explore physics-informed data-driven models, combining simple physical 

principles with sensor data
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Data-driven SoH estimation utilizing physical 
principles
• Exploits fundamental relationship between integrated current 

and change in SoC
• Model for degradation without the need for training data
• Capacity, Q, is regression coefficient between integrated current and 

change in SOC

�
𝑡𝑡1

𝑡𝑡2
𝜂𝜂𝜂𝜂 𝜏𝜏 𝑑𝑑𝜏𝜏 = 𝑄𝑄 𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡2 − 𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡1 → 𝑌𝑌 = 𝑄𝑄𝑄𝑄

• May be solved by OLS: 𝑌𝑌 = 𝑄𝑄𝑄𝑄 + 𝜀𝜀
• Or by TLS, accounting for measurement error in both Y and X to 

remove attenuation bias: 𝑌𝑌 + Δ𝑌𝑌 = 𝑄𝑄(𝑄𝑄 + Δ𝑄𝑄)
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Simple linear model based on Coulomb counting

• Performs well on lab-data • More challenging on operational data
• More noise; more variable conditions

• Variable results
• Initial attempts did not appropriately account for 

changes in loading conditions 
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Ensembles of simple linear models

• Use an ensemble of simple linear models to account for variable operating conditions
• Apply the model on various subsets of the data; filtering and pre-processing
• Apply the model to segments of the charge and discharge curves between specified voltage ranges
• Individual estimates from pure charging and discharging; and both
• Final estimate based on average of individual estimates; normal and weighted average

• Four voltage ranges specified (between cut-off voltages of 3.0 and 4.2 V): 
• 3.65 – 3.7 V
• 3.7 – 3.8 V
• 3.8 – 3.9 V
• 3.9 – 4.0 V

• This yields 8 point-estimates for each selected time period

• Use 14-days snapshots 3 months apart
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Ensembles of simple linear models

10

Segments of charge/discharge curves Extracted data and fitted linear models
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Ensemble of simple linear models – capacity 
prediction examples (vessel A)
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Ensemble of simple linear models – capacity 
prediction examples (vessel C)
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Ensemble of simple linear models – capacity 
prediction examples (vessel E)
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Ensemble of simple linear models

• Results generally better for Vessels C and E compared to A
• Vessel A is hybrid; vessels C and E are fully electric

• One problem with the simple linear model is the reliance on SoC
• SoC is a derived quantity not directly measured – it may not be accurate enough
• More accurate algorithms for SoC calculation can improve capacity estimation

• A possible remedy for this is to rather use open circuit voltage (OCV) 
• Need to obtain an estimate of the OCV from the data
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Methods based on open circuit voltage (OCV)

• This approach utilizes the correlation between capacity and open circuit voltage
• OCV is increasing with SoC, but the relationship is not linear
• There is also a small influence of temperature and SoH
• The challenge is to estimate OCV when the cell is not at rest

• An equivalent circuit model (ECM) can be used to describe the overpotential
• OCV can be obtained by subtracting the overpotential from measured voltage
• OCV can then be related to the capacity at 100% SoC using a known OCV-SoC curve

• The only necessary prior knowledge is the OCV-SoC curve
• May be obtained from initial laboratory testing

• In this study, an ECM with a serial resistance and 3 RC elements is assumed
• Parameters are estimated by least squares to minimize voltage fluctuations within a narrow capacity range
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Methods based on open circuit voltage (OCV)

Subtracting overpotential from measured 
voltage

Fitting to known OCV curve

16



DNV © 13 NOVEMBER 2024

Methods based on open circuit voltage (OCV)

• Results are found to have questionable 
accuracy and low precision
• Voltage signal might not provide sufficient 

significant information
• Large variability indicates overfitting

• Might be improved by regularization 

17
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Methods based on equivalent circuit models (ECM) 
and extensive characterisation tests
• The previous method is extended with a more complicated ECM model and extensive 

characteristics testing to account for variations in current and temperature
• ECM with serial resistance, 2 RC elements and a thermal and a hysteresis model

• ECM defines a set of five states: 𝑥𝑥 =

𝑆𝑆𝑆𝑆𝑆𝑆
𝑈𝑈1
𝑈𝑈2
ℎ
𝑇𝑇

. Cell voltage and overpotential given by 𝑉𝑉 = 𝑆𝑆𝑆𝑆𝑉𝑉 𝑥𝑥 + 𝑆𝑆𝑂𝑂
𝑆𝑆𝑂𝑂 = 𝜂𝜂𝑅𝑅0 𝑥𝑥 + 𝑈𝑈1 + 𝑈𝑈2
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Cell states and state change

• Each of the circuit elements depend on cell states and conditions
• E.g. OCV and internal resistance depend on SoC, SoH, T and h

• The state change according to a set of differential equations: 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

=

𝜂𝜂 𝐼𝐼
𝑆𝑆𝑆𝑆𝑆𝑆×𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛
𝐼𝐼𝑅𝑅1 𝜕𝜕 −𝑈𝑈1
𝜏𝜏1(𝜕𝜕)

𝐼𝐼𝑅𝑅2 𝜕𝜕 −𝑈𝑈2
𝜏𝜏2(𝜕𝜕)

𝑓𝑓ℎ(𝑥𝑥, 𝜂𝜂)
𝛼𝛼𝑅𝑅0 𝑥𝑥 𝜂𝜂2 − 𝛽𝛽(𝑇𝑇 − 𝑇𝑇𝛼𝛼)

• Integrating between two SoC values gives: 𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑛𝑛𝑆𝑆𝑛𝑛 × 𝑆𝑆𝑆𝑆𝑆𝑆2 − 𝑆𝑆𝑆𝑆𝑆𝑆1 = 𝜂𝜂 ∫𝑡𝑡1
𝑡𝑡2 𝜂𝜂 𝑑𝑑𝑡𝑡
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Method overview

• The method is based on estimating the states 
OP and h, which allows the lookup of SoC and 
calculating depth of discharge and comparing 
with actual capacity from Coulomb counting. 

• Lookup tables established based on extensive 
characterization testing
• Establish dependence on temperature, current, 

hysteresis, etc…
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Verification on operational field data

• Verification and validation based on 
• Calculate SoH from operational data for selected modules
• Send modules to the lab and perform lab capacity check-up
• Compare SoH calculated from operational data with SoH from laboratory check-up
• Note: there may be some delay between operational calculation and lab; calendar aging

• Module SoH is assumed to be the lowest cell SoH within the module

• In total 6 validation scenarios reported in the paper
• Scenario 1: hybrid ferry with 79.7% SoH from lab and 79.7% SoH from field measurements
• Scenario 2: hybrid bulk carrier with 93.25% SoH from lab and 93.50% from field data
• Scenario 3: same vessel as Sc.2; lab = 92.38% and field = 92.85%
• Scenario 4: Shore station. SoH difference in the range of 1 – 2 %
• Scenario 5: fully electric ferry. Lab = 83.8%; field = 85.2%.  (1 year lag; defect cell)
• Scenario 6: Shore station. Lab = 73.7%; field = 76.1% (1 year lag; DoD about 40%)
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Discussion

• Attempts with purely data-driven models for capacity estimation failed on actual operational data
• Although they can perform well on laboratory data

• A simple linear model based on Coulomb counting is attractive; it does not need training data
• Not accurate enough, probably due to reliance on SoC
• Ensemble methods can improve results, but dependence on SoC remains

• A modified method relating capacity to OCV was developed, utilizing a simple ECM
• Initial results highly variable, although average predictions are somewhat reasonable

• Supplementing this approach with comprehensive lookup tables from characterization tests to 
account for temperature, hysteresis and current effects yields reasonable results
• Still requires “deep enough” cycles to have been experienced in the operational data
• This method has already been used in actual verification of capacity for electric ships in operation, as 

announced in a recent press release
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https://corvusenergy.com/corvus-energy-first-marine-ess-supplier-to-enable-data-driven-state-of-health-test-soh/


DNV © 13 NOVEMBER 2024

Summary and conclusions

• Purely data-driven models for capacity and SoH estimation for operational conditions is 
challenging

• Carefully constructed physics-informed, data-driven models may improve this by utilizing 
fundamental physical knowledge
• Final model is based on Coulomb counting, ECM, extensive characterization tests and snapshots of 

sensor data collected during normal operation
• But requires some “relatively deep” charge and discharge cycles

• Further validation is recommended – particularly for batteries approaching their end of life
• And for other battery chemistries

• Facilitates continuous verification of SoH without disrupting normal operations
• Considerable benefit for operators of electric ships
• Can relax strict requirements of test protocols for annual tests
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www.dnv.com

Get in touch!
Questions and comments are welcome!
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Erik.Vanem@dnv.com
+47 6757 9900
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