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increasing.
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Operational safety is crucial, and remaining useful life

prediction is its key technology

Drilling platform 
explosion

High speed rail 

accident

Power outage

Plane crash
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Factors Affecting Equipment Remaining Life Prediction

Data 

quality 

and 

quantity

Noises

Modeling of 

degradation 

processes

Operating 

conditions

Eliminating noises interference and extracting the potential state of 
equipment are key challenges in RUL prediction.
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Long-range dependence
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Motivation

• Long-range dependence refers to a statistical property of a time series or stochastic 
process where the correlations between observations decay more slowly than the 
exponential rate typical in short-range dependent processes.

• The Hurst exponent (H) is a statistical measure used to characterize the long-term 
memory or dependence of time series data.
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Fractional Gaussian Noise (FGN)
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Motivation

• Gaussian Noise:  H is typically around 0.5, indicating a random walk (no memory).

• Fractional Gaussian Noise (FGN): H can vary between 0 and 1. Values less than 0.5
indicate mean-reverting behavior, while values greater than 0.5 indicate persistent
trends.

• FGN is more general than Gaussian noise.
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Purpose of  the work
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Motivation

➢ By incorporating FGN into the Gamma process degradation model, we can better account for

persistent trends and self-similarity in degradation processes.

➢ The use of FGN aims to improve the model's predictive accuracy and reliability, particularly in

complex systems where Gaussian or white noise assumptions may lead to errors.

➢ This innovation provides a more robust framework for analyzing and forecasting degradation

behavior, benefiting fields such as reliability engineering and maintenance management.

➢ The ultimate goal is to offer improved tools for understanding and managing system

degradation in various practical applications.
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Proposed methodology
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Methodology

Gamma 
process

…

Stochastic process 
model

Wiener 
process

Poisson 
process

Levy 
process

Potential degradation status unknown

GP & FGN

Fractional Gaussian noise

Gamma process (GP)

Parameter estimation

Observation

Measurement noise

Potential degradation state

Advantages: 

1. Coping with uncertainty; 

2. Handling noise; 
3. Updating status in real 

time;
4. Adapting to different 

degradation behaviors.
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ical studies provide evidence that the shape parameter at a given

time point denoted as t frequently exhibits a proportional relationship with a power

law form expressed as t at =

   ( )~ ( ; ( ), )       The degradation state X t Ga x t with probability density function is given by 

Phase 1: Degradation modeling
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Phase 2 : DEGRADATION MODEL IDENTIFICATION

Gibbs sampling with the stochastic expectation-maximization (SEM) algorithm

Initialization:
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Assuming there are devices given the latent degradation states and

the observations i = 

X

Y

    S        .The number of iterations for the Gibbs sampler should be sufficiently large
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M-Step:

The Nelder-Mead algorithm is then applied to maximize the log-likelihood 

functions.
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E-Step:

The expectation of the log-likelihood function can be decomposed into 

two parts as

1 2 { , , },   { , }.Hwhere a b and H = =θ θ
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In the simulation study, a non-homogeneous GP

model is established to simulate the hidden degradation

states. Measurement noise is modeled using FGN, and

the parameter settings for the above model are shown in

Table 1.

Figure 1 displays a set of simulated paths. 
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The model proposed in this article referred to as M and

the GP model with Gaussian noise referred to as M
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with the actual degradation trajectory
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of parameter estimation in the degradation model From the table M

demonstrates a certain advantage in parameter identification accur
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• Unlike existing Gaussian-noise-based models, the proposed model

uses the Hurst exponent (H) to characterize non-Markovian forms of

noise, which enhances the modeling flexibility.

• Numerical studies show a superior estimation accuracy of the

parameters and the latent degradation states.

• In future research, it would be valuable to apply this model to specific

real-world systems, such as blast furnaces, power grid, and high-

speed trains, and carry out example validations.
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