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ABSTRACT 

For helicopters engaged in sling loads or heavy lift, there is a 
need to report current turboshaft engine health (e.g., margin) 
and contingency power available from the engine in real-
time. Displaying this information allows the pilot in 
command of the aircraft to make more informed decisions 
about the safety of continuing a mission. For engine margin, 
when aircraft parameter data is recorded by a health and 
usage monitoring system (HUMS) or flight data monitoring 
system (FDM), this functionality allows maintainers to be 
notified of the engines’ degraded performance to initiate an 
inspection/maintenance action to restore the engine to its 
designed performance. However, this does not help the pilot 
make mission-critical decisions during the flight. The paper 
covers the method to use HUMS/FDM data to calculate, in 
real-time, the power available to the pilot.  

1. SOME BACKGROUND ON HELICOPTERS AND 
TURBOSHAFT ENGINES 

Turboshaft engines are ubiquitous in aerospace applications 
where high power and reliability are needed in a low-weight 
package. Most helicopters incorporate turboshaft engines. All 
turboshaft-equipped aircraft have power assurance checks to 
ensure the engine can achieve the minimum specification for 
power. However, these checks seldom are automatically 
collected, nor do they provide information during an actual 
mission (flight) to indicate current engine health or power 
available. In many cases, the check looks at the engines’ 
measured gas temperature (MGT) vs. an idealized MGT 
model to determine if the engine is operating properly.  

Engines degrade over time, and assessing when maintenance 
is required is essential for the safe and efficient operation of 
the aircraft. For many operational missions, knowing the 

current engine performance will allow the pilot in command 
to make a go/no-go decision about continuing with the 
mission.   

Turboshaft engines are for their weight and power and are 
remarkably reliable. For example, the M250C47B engine on 
the Bell 407 aircraft (from which this data was measured as 
part of a Health and Usage Monitoring System – HUMS), 
weighing a mere 273 lbs., can provide a continuous 804 
horsepower (HP) of power. The engine has an overhaul 
period on the turbine of 2000 hours, while the compressor 
and gearbox are essentially on condition. 

As noted, helicopters perform periodic tests to ensure the 
engine, compared to a nominal healthy condition, is operating 
at its design specification. For example, for the Bell 407, the 
flight manual (BHT-407-FM-3, 2018) states that 
periodically, power assurance checks need to be performed 
and that if the measured MGT is greater than or equal to some 
nominal temperature value, then maintenance is required. In 
this case, the modeled MGT is a function of pressure altitude 
(PA), outside air temperature (OAT), and the measured 
torque. However, this check does not determine the power 
available, e.g., torque, in real-time.    

In the case of power assurance checks, which compare the 
operational MGT to the notional/modeled MGT. This is a 
go/no-go criterion. That is, if the HIT check MGT is greater 
than the notional MGT, maintenance is performed. Often, to 
make this trendable over time, an engine factor is calculated. 

𝑒𝑛𝑔𝑖𝑛𝑒	𝑓𝑎𝑐𝑡𝑜𝑟 = !"#$%	"#$
!"#$

𝑥	100      (1) 

Where nMGT is the notional MGT. 

 A positive temperature factor indicates the engine is 
operating as designed. Often, an engine fresh out of rework 
will have a 5 to 7 percent positive engine factor. Other power 
assurance checks for different engines may compare engine 
performance metrics such as torque or expected compressor 
RPM (Ng). In any case, the ratio of the difference of 
measured to expected performance indicator can be 
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considered a margin, where a positive margin is indicative of 
the engine meeting its design parameters. In contrast, a 
negative margin would indicate engine performance 
degradation and the need for maintenance.  

There are several causes for engine performance degradation. 
For example, accessories (barrier filters) will reduce 
performance stepwise by restricting airflow to the 
compressor. A barrier filter may be an operational necessity 
that needs to be accepted. Improper maintenance or 
failure/leaking of lines, such as bleed air, will also decrease 
performance. Detection of a step change in performance 
necessitates an inspection to restore safety and performance. 
A step change in engine performance during a flight cannot 
be detected with a power assurance check prior to the 
operation. This is another reason for the need for real-time 
monitoring.   

Long-term changes in performance are a function of fouling, 
corrosion, erosion, and excess heat. Heat may cause turbine 
blade creep, or facilitate dry partials in the airflow to fuse to 
the hot blade.  

Corrosion occurs when chemical reactions of the internal 
parts and contaminants are introduced into the flow. The risk 
of corrosion is higher at extreme temperatures.  

Fouling occurs when debris/contamination builds up on the 
turbine/compressor blade. By altering the shape/roughness of 
the blade, the airflow is reduced, and more fuel is needed for 
the same amount of work. Typically, 70 to 85% of loss in 
engine performance can be attributed to compressor fouling, 
which can be corrected with an engine wash. Barrier filters 
and particle separators are often installed to reduce fouling. 
Erosion occurs again when particles enter the airflow. 
Erosion is an abrasive removal of material that, like fouling, 
increases surface roughness and impedes airflow. 

Finally, foreign object debris (FOD), or any object found in 
an inappropriate location, can be ingested by the engine and 
cause damage to it. While fowling, erosion, or corrosion 
degradation can accrue over time, FOD damage can be 
sudden (step change), resulting in a reduction in engine 
performance.  

The engine itself will have exceedances-based turbine RPM, 
Ng RPM, MGT limitation, and torque limitation. For 
example, at takeoff, a helicopter with a heavy gross weight 
(due to fuel) can run for a limited period of time at an MGT 
or Ng higher than it could continuously. For multi-engine 
aircraft, such as the EC-135, UH-60A, and Bell 429, the 
torque and MGT for one engine inoperative (OEI) are higher 
than in normal operation. These contingency cases allow the 
pilot in command to make decisions in real-time on how the 
aircraft is operated to complete its mission safely. 

ANALYSIS: ENGINE HEATH 

The performance of turboshaft engines is subject to 
thermodynamic analysis (see Hill, 1992). In general, 
turboshaft engines in helicopters have an inlet, a compressor 
(which is driven by the high-pressure turbine, HPT), a burner, 
and a low-pressure (or free) turbine (LPT). The HPT's RPM 
is governed, typically 100%, and provides torque to the load, 
which drives the rotors to supply thrust.  

Using real-world data from the RR M250C47 engine as an 
example, it is possible to build a simplified, physics-informed 
model to estimate the turbine's max continuous power, 
contingency power, and current power. The ratio of the 
difference in measured power to the modeled power, divided 
by model power, is the margin. If the margin is negative, 
sustained, and significantly below the error in the model, the 
aircraft may not have the power available to complete the 
mission, and the pilot in command may decide to change their 
mission profile.  

1.1. Building the Power Assurance Check 

Environmental parameters affect the power produced by the 
turbine engine, including Fouling, Corrosion, Erosion,  and 
others such as 

• Airflow from forward flight 
• Fuel Mixture 
• Governor Setting 
• Fuel Injector atomization. 
For the M250C47 engine, the measurements available to 
determine engine turbine health are OAT, MGT, PA, and TQ. 
The power check procedure uses these parameters to indicate 
the maximum allowable MGT. However, in this paper, the 
inverse problem is solved using MGT, OAT, and PA to 
estimate the modeled torque (see Figure 1). 

As seen in Figure 1, the relationship between engine MGT 
PA, OAT, and TQ  is complex and not easily derived due to 
turbulence in the burner and other non-idealized metrics of 
the engine itself. 

That said, there is some function of MGT, PA, and OAT that 
estimate TQ:  

𝑇𝑄 = 𝑓(𝑀𝐺𝑇, 𝑂𝐴𝑇, 𝑃𝐴)   (2) 

The function could be defined by several machine learning 
algorithms. However, training data based on real-world data 
would bias the results to the sampled engines’ health. To 
better model a zero-margin (idealized) engine, the inverse 
problem could be solved in that for a range of OAT, PA, and 
MGT, the estimated zero-margin torque could be found. 
Then, with this dataset, in real-time, a machine-learning 
model could be built and referenced to the ideal engine.  
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Figure 1 Engine Performance Table for Bell 407GX 

1.2. Building the Test Dataset 

To automate the process required to build the dataset, for each 
curve in Figure 1, points on the x-axis were selected to build 
a spline. This spline output data is then used to build a second 
spline in the y-axis, known as a bicubic spline. In the model, 
two bicubic splines were used to solve the inverse problem in 
Figure 1. That is, of the output y, for, say, MGT of 600F, as 
given an OAT of 10, is:  

𝑦 = 𝐴𝑦' + 𝐵𝑦'() + 𝐶𝑦'" +𝐷𝑦'()"    (3) 
 Where: 

𝐴 = 𝑥'() − 𝑥 𝑥'() − 𝑥'@ 	           (4) 

	𝐵 = 𝑥 − 	𝑥'() 𝑥'() − 𝑥'@ 	              (5) 

𝐶 = 1
6@ (𝐴+ − 𝐴)B𝑥'() − 𝑥'C

,
   (6) 

𝐷 = 1
6@ (𝐵+ − 𝐵)B𝑥'() − 𝑥'C

,
   (7) 

See Press et al. (1992) for more details on bicubic splines. In 
solving the inverse problem, the “Righthand Side” (RS), the 
input is MGT and OAT, and the output is a y value, which is 
then the input to the “Lefthand Side” (LS). The LS then enters 
with PA (say 1750). The RS was designed with y to return 
values for TQ for a given PA. There were 12 PA tables for -
2000ft PA to 20,000ft PA. Example for the 4000 ft PA: 

MGT = [524 585 635 680 725 780] 
Y = [0 10 18 26 33 40] 

For the RS, there were ten OAT tables for MGT and the input 
y value from the LS. For 10C, as an example: 

TQ = [44.5 53.7 63 72.5 82 91.4 100] 
Y = [0 5 10 15 20 25 30 34] 

 
Figure 2 Using the Bicubic Spline to Solve the Inverse 

Problem 
 
The bicubic spline for the RS takes the measured MGT 
parameter data and builds a series of interpolated y values for 
each OAT, then interpolates those y’s for the measured OAT. 
The inverse process occurs on the LS using PA to output the 
zero margin/minimum allowable TQ (Figure 2, 68.002% 
Torque). 

To build the dataset, a range of MGT, OAT, and PA were 
used to define the zero-margin torque output TQ: 

• MGT = 400 to 740, every 20 degrees 
• OAT = 0 to 35, every 5 degrees. 
• PA = 0 to 15000 feet, every 1000 ft.  
This gave a relatively small training dataset of 724 test cases.  

1.3. Selecting a Machine Learning Algorithm 

One question is, given the ability to solve the inverse problem 
for TQ, based on MGT, PA, and OAT, why not implement 
the two bicubic spline models to run in real-time on an 
embedded processor? This was not a consideration, as most 
embedded processors for avionics have finite computational 
resources. Hammering away on the problem for an 8Hz 
display would likely tax the ability of the embedded to keep 
up with the display. Instead, a more straightforward, linear 
regression model was trained for b, giving the inputs from the 
bicubic spline model for OAT, PA, and MGT as: 

𝑋 =	 E1, √𝑃𝐴, 𝑃𝐴,√𝑂𝐴𝑇 + 273,√𝑂𝐴𝑇 + 273 × √𝑀𝐺𝑇		K 

(8) 

 This allows for a low computation model to estimate TQ as: 

𝑇𝑄L = 𝑿× 𝒃    (9) 

Where b is the regression coefficient, and TQ (hat) is an 
estimator for TQ. Solving for b is easily performed using the 
pseudo inverse, giving a least square error solution: 
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𝒃 =	 (𝑋′ × 𝑋)%) × 𝑋- × 𝑇𝑄         (10) 

The computational requirement for the inverse is small, as the 
inner product of the  Xs is only a 6x6 matrix.  

We can evaluate the fit by looking at the standard deviation 
of the residual (the difference between the model TQ and the 
regression TQ), which was 0.67%, and the correlation 
coefficient, R2, of 0.998 (Figure 3). For more information on 
the evaluation of regression fit, see Wackerly (2008). 

 
Figure 3 Regression Residual and Model Fit for using Eq 8 

For the residual, it is seen that the model fits well and has 
variance relatively independent of TQ.  

The selection of the model in eq 8, particularly the product of 
OAT (reference to absolute zero) and MGT, takes into 
account the non-linear relationship between them and 
pressure altitude.   

1.4. Test Cases 

The Bell 407 was installed with a HUMS, which, among 
other functions, performs flight data monitoring (FDM, 
recording of aircraft parameter data) and automates the power 
assurance check (Fig 1). In the example, the aircraft is 
performing a typical inspection mission.  This includes a 
transit on-site, patrol, and return to base. On landing, the pilot 
reported that the aircraft seemed to lack power. The HUMS, 
after automatically downloading the mission data, triggered 
an alert for an engine power assurance check. The MGT 
margin was -6.29%, requiring an inspection. However, the 
power margin, calculated using (8) was -17% (mean value, 
Figure 4). This indicates that the power available was much 
less than expected. If the mission success was dependent on 
being able to complete a heavy lift, such as a sling load, 
knowing that the engine was not making its expected power 
would be important information for the pilot.  

 
Figure 4 Failed Power Assurance Check with Mean Power 

Margin of -17% 
The post-flight inspection revealed that the engine bleed air 
valve was leaking. The valve was repaired, and the aircraft 
returned to service. These types of events are rare. In fact, in 
monitoring over 50,000 operational hours, we have only 
observed this type of event 23 times.  

In general, we see that the engine runs a positive MGT 
margin. The margin is typically 2 to 5%, depending on the 
age of the engine, when the last compressor wash was 
performed, and other environmental considerations. Figure 5 
shows a typical mission with a power assurance check for 
MGT of +2.2% and a mean power (TQ) margin of 10.3%. 

 
Figure 5 Typical Positive Margin Mission 

2. OTHER CONSIDERATIONS: POWER AVAILABLE 

The pilot/flight crew, at any time, may want to know what 
power is available from the engine. Power available is a 
function of limits of other engine parameters, such as 
compressor RPM (Ng), MGT, and TQ itself. As an example, 
an engine may have (as per the flight manual) a maximum 
continuous operating MGT of 810F. What TQ can be 
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produced at 810F for the current OAT and PA? Additionally, 
this engine has a 30-minute limit of 851F and a 12-second 
limit of 878F. Other operating limits might are Ng (102p for 
12 seconds). Finally, the gearbox itself has a limit for TQ, of 
110%. 

Following the logic of Eq 2., we built a relationship between 
Ng and MGT. That is, there is some function where:  

𝑁𝑔 = 𝑓(𝑀𝐺𝑇)    (11) 

Again, there are any number of potential solutions to the Ng 
function based on machine learning, either regression, 
artificial neural network (ANN), or some other approach. As 
an example, using regression, a potential model is: 

𝑿 =	 E1		𝑃𝐴	Q𝑀𝐺𝑇. 		𝑀𝐺𝑇. 	K   (12) 

where: 

𝑁𝑔L = 	𝑿 × 𝒃    (13) 
Figure 10 shows the relationship between MGT and Ng and 
the estimate of the regression model. Again, other ANN/ML 
techniques could be used to estimate Ng from MGT or other 
aircraft parameters.  

 
Figure 6 Relationship Between MGT and Ng 

 

Of course, this requires a separate model for predicting an 
estimate of TQ based on Ng. Again, we will rely on 
regression. NOTE: The measurement error for the acquisition 
system is approximately 0.5%, which can explain some of the 
scatter in the data.  

Given an estimate from MGT for Ng and using Ng to estimate 
TQ in real-time, the contingency power limits can be 
calculated to estimate their respective values and limits for 
display to the flight crew. In this example, in real-time, the 
estimated Ng is calculated for MGT for, say, 810F, using max 
continuous MGT, for a pressure altitude of 1514 ft, at time i, 
is then: 

99.6	 = 	 E1	1514		√810		810K × 𝒃𝑵𝒈Y    (14) 

 
Figure 7 Relationship Between Ng and TQ 

 
Then, a test is performed to ensure that Ng, at the current 
time,  does not exceed its limit of 102%. With these estimated 
Ng values, the estimated normalized contingency power can 
be calculated for max continuous power for the current PA 
and OAT (using a regression model):  

94.5 = 	 E1		√99.6		99.6	99.6,K × 𝒃    (15) 

This would indicate that the max continuous TQ for the 
current PA, OAT, and Ng is 94.5%.  

2.1. Display Considerations 

In practice, this information would be displayed in real-time 
on an accessory display (not on the primary). This is because 
there are software certification issues with using the primary 
display (DO-178C, DAL A). Additionally, the likely 
deployment is a retrofit application into an existing 
helicopter, where the HUMS would drive the display directly. 
Considering that it is not often that new helicopters or aircraft 
are produced, retrofitting a system is a common practice via 
a supplemental type certificate (STC).  

Another consideration is that all models have errors, and 
developers must be concerned with false alarms. That is, 
saying maintenance is required when, in fact, the engine is 
good. Therefore, a real-time display would indicate an 
acceptable range of margin so that the pilot in command, in 
real-time, can be informed of the power available and engine 
health. For example, in Figure 8, the measured torque is 63%, 
the model estimates the max continue torque as 94.5%, and 
the 30-minute limit is 106%. The 12-second limit is greater 
than the 110% limit of the transmission – so the limit is just 
110%.  Note that the model’s estimated torque for this 
condition is 66.7%. That is, the engine is running at -3.7% 
(negative) margin. The error in the model is 2% (3 standard 
deviations of the residual error), which gives a range of 
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“within limits” error of 64.7% to 68.7% TQ (although 
running a positive margin is not bad, a significant positive 
margin could indicate a model failure or measurement error).  

 
Figure 8 Example of Torque Margin and Power Available 

Cockpit Display 

A prolonged and persistent negative margin would indicate 
degraded engine performance. In this case, the gauge 
indicator would be changed to red. A HUMS/FDM would 
then report this as an inflight exceedance. The report of an 
exceedance by the pilot, flight crew, or the HUMS would 
initiate an engine inspection to restore the engine to its design 
performance. 

3. CONCLUSION 

The paper is concerned with estimating, in real-time, a 
turboshaft engine margin (e.g., performance) and power 
available. While all engine manufacturers have power 
assurance tests, these are conducted at the beginning of the 
flight for one operating condition. Most power assurance 
checks measure performance based on measured gas 
temperature (MGT), not torque (TQ). As turboshaft engines 
run at 100%, TQ is proportional to power.  

Using the bicubic splines, the inverse of the power assurance 
check is used to estimate TQ based on MGT, pressure altitude 
(PA), and outside air temperature (OAT). While machine 
learning approaches could build a relationship between MGT 
and TQ, it would only be for the engine on which the data 
was collected. What if the engine is running below margin? 
Using the standard power assurance test as a model allows 
for an absolute performance measure.  

A real-time model can also provide other aircraft safety 
information, such as the available contingency power. 
Turboshaft engines have RPM limits for the compressor 
(Ng), temperature, and torque limits. Both the Ng and MGT 
limits directly affect the torque that can be generated by the 
engine. Providing real-time power available for max 
continuous, 30-minute, or 5-minute (as per the flight manual) 

gives information that the aircrew will use in executing their 
mission. 

This model is for predicting torque margin and contingency 
power but is built using linear regression. These models have 
low error and are computationally easy to implement in a 
real-time system.  
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