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ABSTRACT

In the field of aeronautical engineering, understanding and
simulating aircraft engine performance is critical, especially
for improving operational safety, efficiency, and sustainabil-
ity. At Safran Aircraft Engines, we were able to demonstrate
the effectiveness of using time series collected from the en-
gines after each flight to build a digital twin that provides a
dynamic virtual model able to mirror the real engine’s state by
using a transformer-based conditional generative adversarial
network. This virtual representation allows for advanced sim-
ulations under diverse operational scenarios like flight con-
ditions and controls, aiding in understanding the impact of
different factors on engine health. It is, therefore, possible
for us to provide virtual flights performed by our engines in
their actual state of wear. This research paper presents a ma-
chine learning model that effectively simulates and monitors
the state of aircraft engines in real-time, enabling us to track
the evolution of the engines’ health over their life cycle. The
model’s adaptability to incorporate new data ensures its ap-
plicability throughout the engine’s lifespan, marking a step
forward in proactive aeronautic maintenance and potentially
enhancing engine longevity through timely diagnostics and
interventions.

1. INTRODUCTION

In the realm of aircraft engine systems, strategically placed
sensors within the engines play an integral role by capturing

Abdellah Madane et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

essential operational data throughout flight cycles. This data
is vital for implementing Prognostics and Health Manage-
ment (PHM) systems (Lacaille & Langhendries, 2022; For-
est et al., 2020). Notably, as demonstrated in recent studies
(Langhendries & Lacaille, 2022), such frameworks can ben-
efit from machine learning models like recurrent neural net-
works, which utilize temporal data to predict engine degrada-
tion patterns accurately.

The evolution of data acquisition technologies has facili-
tated the continuous collection of Engine Operational Data
(CEOD) during flights. This comprehensive dataset includes
a variety of sensor outputs and computational analyses per-
formed by onboard systems, with data processing occurring
post-flight. Leveraging this continuous data flow enhances
the development of algorithms that surpass the traditional
models based on snapshot data. This continuous monitor-
ing is particularly beneficial for improving anomaly detec-
tion techniques, as detailed in (Coussirou, Vanaret, Lacaille,
& DataLab, 2022). By harnessing state-of-the-art computa-
tional techniques, such as machine learning and big data ana-
lytics, engineers and researchers are now able to process and
interpret vast amounts of operational data in real-time. This
capability not only enhances the accuracy of predictive main-
tenance models but also facilitates a more proactive approach
to engine management. The granularity of CEOD allows for
a detailed understanding of engine performance under vari-
ous conditions, thus aiding in the optimization of engine effi-
ciency and reducing unscheduled maintenance.

The following research focuses on two main objectives. The
first is the development of a data-driven simulation frame-
work for aircraft engines that utilizes CEOD to replicate the
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Figure 1. AESim, our proposed data-driven Aircraft Engine Simulator framework. CEOD: Continuous Engine Operational
Data. N1: Low-pressure rotor speed. T: temperature before combustion chamber. EGT: Exhaust Gas Temperature.

complex dynamic behavior observed in real engine opera-
tions. This framework supports simulations across a range
of flight conditions and engine management settings, provid-
ing deep insights into the factors influencing engine health
and performance. The second objective examines the practi-
cal application of this simulator in modeling and understand-
ing degradation processes, which are critical to maintaining
engine reliability and performance.

This novel application serves as a comprehensive algorith-
mic platform for not only simulating the operational dynam-
ics of aircraft engines but also for continuous health monitor-
ing. It integrates seamlessly with existing diagnostic systems,
enhancing their predictive capabilities and extending engine
life through informed maintenance decisions. The versatility
of the platform extends beyond aviation, promising signifi-
cant value for scientific research and practical applications in
sectors such as maritime, energy, and automotive industries,
where similar engine technologies are employed. This cross-
industry applicability ensures a broader impact, facilitating
advancements in engine technology and health management
practices globally.

2. DATA-DRIVEN SIMULATOR

2.1. Framework

Generating CEOD within this simulator framework starts
with normalizing raw multivariate time series data, estab-
lishing a standardized input for consistent data. The data
then undergoes temporal phase partitioning to navigate the
challenges presented by varying flight durations and opera-

tional conditions. This technique divides the flight data into
pre-cruise, during-cruise, and post-cruise phases, each tai-
lored to specific operational contexts. Figure 2 shows these
three flight phases. Further refinement is achieved by seg-
menting the data into intervals of 300 seconds, each over-
lapping by 20 seconds. This segmentation boosts computa-
tional efficiency and maintains the continuity and integrity of
the data across lengthy sequences. Then, each phase is pro-
cessed through generative models designed to simulate the
statistical and temporal properties of actual engine behav-
ior, ensuring the coherence of the simulated data with real-
world scenarios. The culmination of this process involves re-
versing the initial normalization—thereby restoring the data
to its original scale—and stitching together all segments to
form a unified and detailed CEOD. This simulated dataset is
now primed for comprehensive analysis, as a crucial tool for
enhancing predictive maintenance strategie, and augmenting
CEOD datasets used to train other machine learning models.
Additionally, for profile missions lacking related CEOD, this
simulation capability allows us to generate the missing data.

2.2. Continuous Engine Operational Data (CEOD)

Our simulation framework is constructed using a CEOD
dataset sourced from engines across a designated fleet. This
dataset contains measurements from various onboard sen-
sors, capturing diverse operational metrics. To ensure con-
sistency in the data, all sensor readings are subsampled to
a standard frequency of 1 Hz. Our research primarily fo-
cuses on the dynamics of critical engine parameters, namely,
the low-pressure rotor speed (N1), the temperature before the
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Figure 2. Flight Phases

combustion chamber (T), and the Exhaust Gas Temperature
(EGT). These parameters are pivotal in understanding engine
behavior under operational stresses. The simulator emulates
the engine’s response to specified flight conditions. This in-
cludes five key environmental and operational variables that
define the mission profile of a flight: ambient temperature,
altitude, Mach number, Throttle Lever Angle (TLA), and a
boolean indicating the engine’s status (ON/OFF). The frame-
work is illustrated in Figure 1. Once trained, the simula-
tor can forecast engine behavior under hypothetical scenar-
ios not covered in the training data. This approach allows
us to understand and anticipate how changes in operational
conditions affect engine performance, which in turn provides
valuable insights into engine design and operation.

2.3. Phase-specific generative models

Our models adopt the architecture of Multivariate Time Series
Conditional Generative Adversarial Networks (MTS-CGAN)
(Madane et al., 2023; Madane & Lacaille, 2023), engineered
for modeling the complex dynamics of aircraft engine opera-
tions. This transformer-based CGAN architecture is adept at
producing context-sensitive multivariate time series, vital for
accurate simulations. The structure comprises two core ele-
ments: a generator (G) and a discriminator (D), where data
generation is strategically conditioned on both the immedi-
ate past data segment and the specific flight mission profile,
ensuring that each data segment naturally progresses from its
predecessor and upholds the essential temporal linkages.
The generator, showcased in Figure 3a, consists of: the Con-
text Encoder that takes a noise vector and the specifics of
the flight mission profile as input and runs them through a
series of transformer encoder blocks. Utilizing multi-head
self-attention, this encoder extracts and synthesizes the in-
tricate interdependencies from the contextual data, essential
for the next data generation stage. The second component is
the Adjustment Encoder, which plays a pivotal role in main-

Figure 3. Architecture of the Generator and the Discriminator

taining both continuity and contextual accuracy throughout
the generated data segments. It features a two-layer architec-
ture: the initial layer is a multi-head self-attention mechanism
that encodes embeddings from the preceding data window,
effectively extracting essential contextual attributes. Follow-
ing this, a subsequent multi-head attention layer refines this
process, using the self-attention outputs as the query while
integrating the key and value from the outputs of the Con-
text Encoder. This setup ensures that each segment not only
reflects but also builds upon the data from prior segments in
conjunction with the encoded parameters of the current flight
mission profile.
On the other side, the discriminator (illustrated in Figure 3b)
is trained to evaluate whether the input CEOD is genuine or
artificially generated, a crucial step for validating the authen-
ticity of the simulation outputs.
For optimization, we use the Least Squares GAN (LSGAN)
loss, augmented with an innovative loss term explicitly de-
signed for the generator. This term is crucial for ensur-
ing fluid transitions between overlapping segments, a fea-
ture critical for maintaining the integrity of the simulated data
streams. Training both the discriminator and generator is exe-
cuted in parallel, focusing on minimizing their respective loss
functions LD and LG, thus enhancing the overall effective-
ness and accuracy of the model simulations.

LD =
1

2
Ex,y∼pdata

[
(D(x, y)− 1)2

]
+

+
1

2
Ez∼pz

[
(D(G(z, y), y))2

]
(1)
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LG =
1

2
Ez∼pz

[
(D(G(zt, yt), yt)− 1)2

]
+

+ ∥G1:20 (zt, yt)−Gend-19:end (zt−1, yt−1)∥2 (2)

3. DEGRADATION MODELING

Developing models to simulate the wear and tear on aircraft
engines involves addressing the inherent complexity of each
engine’s unique degradation path. This path is shaped by
diverse factors, including the nature of the operational mis-
sions, pilot handling techniques, and the engines’ mainte-
nance records. The challenge in creating accurate models
lies in the distinct wear state unique to each engine. Initially,
we introduced the aircraft engine simulator, which we refer
to as the “average engine simulator”. This simulation tool
is trained on a comprehensive dataset encompassing a whole
fleet of aircraft engines, thereby providing a generalized rep-
resentation of an average engine’s behavior within this col-
lective.
To precisely model the wear-specific behavior of an individ-
ual engine, it is essential to characterize its unique degrada-
tion profile and adjust the simulator’s output to reflect the
specific engine’s state of decay accurately. Our approach in-
volves training the simulator only on data of engines in a non-
degraded state to create what we call a “clean average engine
simulator”. This model serves to simulate the fundamental
behavior of an engine without any signs of wear, thus pro-
viding a benchmark against which to measure actual engine
wear. This process establishes a baseline for understanding
an engine’s performance under an optimal, undegraded state.
Following the establishment of the baseline model, we con-
tinuously track the operational data from each engine over its
entire life cycle, comparing this real-time data with the base-
line predictions from our simulator. The discrepancies iden-
tified, referred to as residuals, effectively quantify the devi-
ations between the expected performance of a non-degraded
engine and the actual performance observed in engines expe-
riencing wear through their operational cycles.
Leveraging our comprehensive fleet data, we have compiled
an auxiliary dataset comprised of these residuals across dif-
ferent engine cycles. We used this data to train a forecasting
model that uses the residuals from the previous three cycles to
predict the upcoming residual. In other words, it is designed
to analyze the data from an engine’s last three operational
missions to predict the next deviation. Upon accurately fore-
casting this residual, we adjust the output of our simulator.
This ensures that the simulation considers the state of wear of
the engine so that it mirrors the actual behavior expected in
the next cycle more closely. This method allows for a highly
tailored simulation that dynamically adapts to the wear pat-
terns observed in individual engines.
To elaborate, let us define Sclean as our simulation model that
has been trained exclusively on non-degraded engine data. In
this context, Sclean(X) = Ypredicted symbolizes the forecasted

behavior of an engine assuming no wear and tear, where X
represents the input parameters such as engine operational
settings, environmental conditions, and other relevant oper-
ational data.
For engines that display specific signs of degradation, we
compute the scalar residual R as R = mean(Yactual −
Sclean(X)), wherein Yactual is the actual performance data col-
lected from the engine during its operations. This residual
quantifies the difference between a non-degraded engine’s ex-
pected performance and the degraded engine’s observed per-
formance under the same operational conditions.
Utilizing the series of residuals {Ri} collected across vari-
ous operational cycles, we have developed a predictive model
f . This model is trained to predict the next residual Rt+1

based on a sequence of the last three residuals, i.e., R̂t+1 =
f(Rt, Rt−1, Rt−2). This approach allows us to adaptively
forecast the degree of deviation in engine performance due to
degradation in near real-time.
Once the residual R̂t+1 is forecasted, we adjust the simula-
tor’s output to accurately reflect the anticipated behavior of
the engine in its subsequent operational cycle. The adjusted
simulation output, Yadjusted, is thus computed as Yadjusted =

Sclean(X) + 1 · R̂t+1, where 1 is a vector of ones of the same
length as Sclean(X). This adjusted output incorporates the
predicted wear effects and provides a more accurate repre-
sentation of the engine’s performance under specific upcom-
ing operational conditions based on the mission profile and
historical wear data.
We develop a Long Short-Term Memory (LSTM) model to
forecast the Mean Squared Error (MSE) between the output
of the “clean average engine simulator” and the real engine
data. The architecture of this model is composed of two
LSTM layers followed by two dense layers. Specifically,
the first LSTM layer has 100 units, employs ReLU activa-
tion, and is configured to return sequences, which are then
passed to the second LSTM layer of 50 units. Afterward, a
dense layer with 20 ReLU units processes the output from
the LSTM layers, leading to a final dense layer with a single
unit that produces the prediction. The model uses an Adam
optimizer with a learning rate of 0.005 and is compiled to
minimize mean squared error.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

In order to conduct degradation experiments, our study uti-
lizes the New Commercial Modular AeroPropulsion Sys-
tem Simulation (N-CMAPSS) dataset, specifically DS01
(Arias Chao, Kulkarni, Goebel, & Fink, 2021). This dataset
simulates the operational wear across a small fleet of large
turbofan engines, providing detailed run-to-failure trajecto-
ries. It comprises data from 10 engines, each averaging ap-
proximately 90 flights throughout its lifecycle. For exper-
imental purposes, the dataset is, by default, divided into a
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Table 1. Measurement Parameters

Symbol Description Units
Wf Fuel flow pps
Nf Physical fan speed rpm
Nc Physical core speed rpm
T24 Total temperature at LPC outlet R◦
T30 Total temperature at HPC outlet R◦
T48 Total temperature at HPT outlet R◦
T50 Total temperature at LPT outlet R◦
P15 Total pressure in bypass-duct psia
P2 Total pressure at fan inlet psia
P21 Total pressure at fan outlet psia
P24 Total pressure at LPC outlet psia
Ps30 Static pressure at HPC outlet psia
P40 Total pressure at burner outlet psia
P50 Total pressure at LPT outlet psia

training set and a test set, consisting of 6 and 4 engines, re-
spectively. The data consists of two types of parameters:
scenario descriptors and measurements. Scenario descrip-
tors encompass four parameters integral to the operational
profile of the flight, namely altitude, flight Mach number,
throttle-resolve angle, and the total temperature at the fan in-
let. These parameters are critical for simulating the environ-
mental and operational conditions encountered during flight
missions. On the other hand, the measurements component of
the dataset includes a set of 14 parameters, detailed in Table 1,
which provide quantifiable metrics essential for assessing en-
gine performance and degradation.

4.2. Experiments

4.2.1. Analyzing Model Accuracy in Capturing Progres-
sive Engine Wear

We began our experiments by training our “clean average en-
gine simulator”, denoted as Sclean, using training data from
engines in their non-degraded state. This determination is
made using the boolean ”health state” parameter provided in
the dataset, which indicates the cycles during which the en-
gine’s state is degraded. As for the CEOD case, the simulator
receives the four scenario descriptors as inputs and simulates
the 14 measurements as outputs. Once training is complete,
we go through the engines individually and simulate all the
missions they have undergone. Thereafter, we compute the
residuals between the simulated measurement outputs and the
actual data from these engines. Thus, we compile a series of
residuals for each engine that describe its lifecycle. These
residuals form the dataset we used to train the model that
forecasts the next residual based on the last three residuals. In
the DS01 dataset, there is one failure mode; we noted that it
predominantly affected two parameters, T48 and T50. There-
fore, we specifically focused on the residuals of these two
parameters.
After training the model, we test our approach on the test
dataset. The process involves the following steps: For a given
engine, we sequentially simulate the behavior of the average

Figure 4. Health index trajectory of an engine lifecycle with
maintenance interventions

non-degraded engine of the fleet for each mission it has un-
dertaken. We then predict the residual for each cycle based
on the last three residuals and adjust the simulator’s output
accordingly. To evaluate our method, we compare, for each
cycle, the Mean Squared Error (MSE) or Root Mean Squared
Error (RMSE) between the outputs of the non-degraded sim-
ulator and the actual data, with the MSE or RMSE between
the corrected outputs and the actual engine data. This com-
parison provides insight into the effectiveness of our residual
correction in simulating and predicting engine behavior more
accurately.

4.2.2. Assessing Model Capability in Detecting Mainte-
nance Interventions and Their Effects

For this experiment, we conducted simulations of engine life-
cycles with maintenance events. We created engine life cycle
data that included maintenance interventions, as such data are
not available in the N-CMAPSS dataset. The method consists
of substituting the flights following each maintenance with
flights from another, less degraded engine. This approach
mimics the reality where, post-maintenance, an engine is con-
sidered to be in a near-new condition. These simulated flights
were used solely for testing; the training dataset remained un-
changed. Figure 4 illustrates the health index trajectory of
an engine lifecycle, incorporating maintenance interventions.
Each peak on the graph signifies a return to a healthier state,
characterized by reduced degradation following maintenance.
Similarly, to evaluate our method, we compare, for each cy-
cle, the Mean Squared Error (MSE) or Root Mean Squared
Error (RMSE) between the outputs of the non-degraded sim-
ulator and the actual data, with the MSE or RMSE between
the corrected outputs and the actual engine data. This com-
parison provides insight into the effectiveness of our residual
correction in accurately simulating and predicting engine be-
havior, particularly in reflecting maintenance interventions’
impact on engine health.
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Figure 5. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data - T48 parameter

Figure 6. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data - T50 parameter

4.3. Results

The findings showcased in this section pertain to an engine
randomly chosen from the test dataset. Results for the other
engines in the test dataset are provided in the appendix.
Figure 5a and 6a present a detailed comparison between the
forecasted Mean Squared Error (MSE) and the actual MSE,
derived from the data produced by the non-degraded simu-
lator and the actual engine measurements throughout an en-
gine’s lifecycle within a test dataset. The forecasting model’s
precision is underscored by its ability to accurately predict
forthcoming MSE values (residuals) based on the preceding
three cycles. The blue line in the graph demonstrates a no-
table increase in MSE as the engine undergoes progressive
degradation, highlighting the disparity between the simula-
tor’s output for a non-degraded engine and the real engine
measurements.
In Figure 5b and 6b, we observe a comparison of MSE val-
ues between corrected simulator outputs and real engine data,

plotted against the MSE derived from comparing the non-
degraded simulator outputs with the same engine real data.
The corrections to the simulator outputs are achieved by inte-
grating the forecasted MSE bias, leading to a noticeable im-
provement in the accuracy of the simulation. The corrected
outputs consistently show a lower MSE, which does not in-
crease as the engine’s degradation progresses. This consis-
tency suggests that the modifications applied effectively align
the simulator’s outputs with the actual degradation patterns of
the engine, enhancing the predictive accuracy of the simula-
tor across the engine’s operational lifespan.

Figures 7a and 8a illustrate the comparison between the
predicted and actual residuals. A notable correspondence
is observed, particularly in the reduction of actual residuals
post-maintenance, which aligns with the expectation that air-
craft are less degraded following maintenance. This decrease
is also evident in the predicted residuals, demonstrating the
model’s proficiency in accurately forecasting the effects of
maintenance and incorporating them effectively into the ad-
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Figure 7. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data on engine lifecycle with maintenance events - T48 parameter

Figure 8. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data on engine lifecycle with maintenance events - T50 parameter

justments of the data derived from the simulator. It is note-
worthy that during the first two maintenance intervals, the en-
gines were not significantly degraded, and the non-degraded
simulator was able to emulate a behavior that was comparably
accurate, as indicated by the low MSE. However, prior to the
third maintenance, an increase in the MSE between the simu-
lator outputs and the actual data was observed. This increase
was due to the more significant degradation, making the dis-
crepancy between the outputs of the non-degraded simulator
and the actual data more pronounced (evidenced by the peak
observed before it decreases post-maintenance).

On Figures 7b and 8b, the objective is to ensure that the resid-
ual of the corrected simulator data remains very low through-
out the engine cycle. This is confirmed here, as the MSE re-

mains low and stable, even in instances of engine degradation
and following maintenance.

Figures 9 and 10 present visualizations of the corrected out-
puts for T48 and T50 parameters, respectively, in comparison
with the outputs from the non-degraded simulator and the ac-
tual data collected from the physical engine. These figures
demonstrate that our methodology effectively produces out-
puts closely resembling the actual engine signals, effectively
capturing the true behavior of the engine. It is important to
note that this data corresponds to the 87th flight in the life-
cycle of the engine, indicating that it is nearing the end of its
service life and is in a significantly degraded state.
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Figure 9. Vizualisation of T48 parameter for flight n°87

Figure 10. Vizualisation of T50 parameter for flight n°87

5. CONCLUSION AND PERSPECTIVES

In this research, we have proposed a novel method for sim-
ulating aircraft engine degradation using an advanced sim-
ulator framework. By leveraging simulated data that accu-
rately emulates real-world engine behavior, our approach en-
ables proactive failure prediction and performance optimiza-
tion, ultimately enhancing the longevity of aircraft engines.
Moving forward, we aim to enhance these degradation mod-
els to more closely mirror the intricate and diverse operating
conditions encountered in actual flight scenarios. Such im-
provements are expected to yield more accurate predictions
of engine degradation and provide a more comprehensive in-
sight into engine performance across different operational en-
vironments. This progression will not only improve reliabil-
ity but also increase the efficiency of maintenance schedules,
contributing to safer and more cost-effective aeronautical op-
erations.
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APPENDIX

In this appendix, we present the results for additional engines
from the test dataset and also visualize the simulated mea-
surements taken at both the beginning and the end of an en-
gine’s lifecycle within the test dataset.
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Figure 11. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data - T48 parameter - Engine n°1 from test dataset

Figure 12. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data - T50 parameter - Engine n°1 from test dataset

Figure 13. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data - T48 parameter - Engine n°2 from test dataset
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Figure 14. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data - T50 parameter - Engine n°2 from test dataset

Figure 15. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data - T48 parameter - Engine n°3 from test dataset

Figure 16. Comparison of MSE between corrected simulator and Real Engine Data with Actual MSE between non-degraded
Simulator and Real Engine Data - T50 parameter - Engine n°3 from test dataset
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Figure 17. Visualization of T48 parameter for selected flights from the beginning and end of an engine cycle in the test dataset
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Figure 18. Visualization of T50 parameter for selected flights from the beginning and end of an engine cycle in the test dataset
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