
Comparing Feature and Trajectory-Based Remaining Useful Life
Modeling of Electrical Resistance Heating Wires

Simon Mählkvist1, Wilhelm Söderkvist Vermelin2, Thomas Helander3, and Konstantinos Kyprianidis4

1,3 Kanthal AB, Hallstahammar, Västmanland, 734 27, Sweden
simonmkvst@gmail.com

2 RISE Research Institutes of Sweden, Mölndal, Västra Götaland, 431 53, Sweden
wilhelm.soderkvist.vermelin@ri.se

1,2,4 Mälardalens University, Västerås, Västmanland, 721 23, Sweden

ABSTRACT

Industrial heating significantly contributes to global green-
house gas emissions, accounting for a substantial portion of
annual emissions. The transition to fossil-free operations
in the heating industry is closely linked to advancements in
industrial electrical heating systems, especially those using
resistance heating wires. In this context, Prognostics and
Health Management is crucial for enhancing system reliabil-
ity and sustainability through predictive maintenance strate-
gies.

The integration of machine learning technologies into Prog-
nostics and Health Management has significantly improved
the precision and applicability of Remaining Useful Life
modeling. This improvement enables more accurate predic-
tions of component lifespans, optimizes maintenance sched-
ules, and enhances operational efficiency in industrial heating
applications. These developments are essential for reducing
greenhouse gas emissions in the sector.

This paper serves as a guide for conducting Remaining Use-
ful Life modeling for industrial batch processes. It evaluates
and compares two methodologies: deep learning-based ap-
proaches using full time-series data, such as recurrent neural
networks and their variants, and feature-engineering-based
methods, including random forest regression and support vec-
tor machines. Our results show that the feature-oriented ap-
proach performs better overall in terms of predictive accuracy
and computational efficiency. The study includes a detailed
sensitivity analysis and hyperparameter estimation for each
method, providing valuable insights into developing robust
and transparent Prognostics and Health Management sys-

Simon Mählkvist et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

tems. These systems are crucial in supporting the heating
industry’s move towards more sustainable and emission-free
operations.

The findings reveal that feature-oriented methods are both
performant and robust, particularly excelling in handling out-
liers. The random forest regression model, in particular,
demonstrated the highest performance on the test dataset
according to the chosen evaluation metrics. Conversely,
trajectory-oriented methods exhibited less bias across vary-
ing levels of degradation, a helpful characteristic for Prog-
nostics and Health Management systems. While feature-
oriented methods tend to systematically underestimate Re-
maining Useful Life at high true values and overestimate
it at low actual values, this issue is less pronounced in
trajectory-oriented models. Overall, these insights highlight
the strengths and limitations of each approach, guiding the
development of more effective and reliable predictive main-
tenance strategies.

1. INTRODUCTION

Industrial heating is a significant green house gas (GHG)
emitter, contributing to approximately 22% of annual global
emissions (Yoro & Daramola, 2020). Resistance heating
wires play a crucial role in industrial electrical heating sys-
tems and offer a substantial opportunity for the heating in-
dustry’s transition towards fossil-free operations.

In the prognostics and health management (PHM) field, the
focus on maintaining industrial processes is continuously
evolving. Specifically, within PHM, predictive maintenance
strategies leverage data-driven modeling techniques, leading
to the development of remaining useful life (RUL) prediction
models.

The advent of machine learning (ML) technologies has sig-

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

nificantly enhanced the applicability and accuracy of RUL
modeling. This advancement allows for more precise pre-
dictions of the lifespan of critical components, thereby opti-
mizing maintenance schedules and improving operational ef-
ficiency in industrial heating applications.

Numerous challenges are associated with the development of
modeling for industrial batch process data, and specifically,
with the formulation of RUL models in this context. Within
PHM, data quantity of full, end-of-line, trajectories are rare.
The reason for this is that full trajectories involve destroying
the component or product which can be costly. Simulation
is not always feasible since first principles models may not
exist for the degradation metrics, and developing said models
is not an easy task.

The aim of this work is to bridge the modeling of RUL
while evaluating different ML methods, focusing on improv-
ing prediction accuracy and robustness. As the original data
is derived from time-series sensor trajectories data, two ap-
proaches will be employed to generalize this data.

Two approaches will be implemented and compared in this
work in order to evaluate the sensitivity of said approaches.
The first approach, referred to as the trajectory-oriented
(TO) approach, will utilize the complete time-series data and
the second approach, known as the feature-oriented (FO)
approach, will align the data by extracting features from
the time-series. There is a trade-off between the two ap-
proaches which makes the comparison interesting. The
feature-oriented (FO) approach sacrifices the dynamics of the
trajectories in order to be able to implement simpler meth-
ods, while the trajectory-oriented (TO) maintains the trajec-
tory dynamics and have to rely on models of higher complex-
ity.

1.1. System, sensors and data

This work approaches how to conduct RUL modeling of in-
dustrial batch process components and the data used provides
resistance heating wires run-to-failure test data.

Accelerated degradation quality inspection test on resistance
heating wires is used as a basis for the modeling and analysis
conducted in this study. These test data contain full run-to-
failure trajectories sampled for the wires in laboratory tests
and consist of close to 1000 batches. The tests subject re-
sistance heating wire to intense power cycling, accelerating
degradation significantly.

Four sensors are used to monitor the test, made anonymous,
named and denoted as such sensor 1 (S1), sensor 2 (S2), sen-
sor 3 (S3) and sensor 4 (S4). In Figure 1, the four sensors are
plotted for all batches. The data is min/max scaled from 0 to 1
where the batch with the longest duration is used as reference
for 1. Further, the values of all four sensors are individually
standardized, where the data are transformed to have an av-

erage value and a standard deviation of 0 and 1, respectively.
Also, the vertical and horizontal axes correspond to the dura-
tion of the test and the sensor value, respectively. Further, the
last point of each sample is emphasized by a black dot.

The distribution of the final points of the trajectories of each
sensor are presented in Figure 2.

2. CONTRIBUTION

The main contribution of this study is twofold.

Firstly, this paper investigates RUL prediction on a novel
dataset, gathered from experimental lab tests that simulate
real usage conditions in a manufacturing process, although at
harsher operating condition leading to an accelerated degra-
dation. Such datasets, collected under controlled experimen-
tal settings rather than ongoing day-to-day operations, are
valuable as they provide insight into the applicability of PHM
techniques in a scenario that closely simulates real-world
conditions. In particular, resistance heating wires are a class
of assets that have received, to the authors’ knowledge, little
if any attention within PHM research. Secondly, this paper
explores the different benefits and limitations of FO and TO-
based RUL prediction. The FO approach relies on machine
learning algorithms such as random forest regression (RFR)
and support vector regression (SVR) that are proven to work
well on tabular data. On the other hand, the TO approach re-
lies on training on the full time-series data and are based on
deep learning techniques. This work benchmarks and elabo-
rates on the different methods, providing insights into trade-
offs between the different approaches.

3. METHODOLOGY

RUL prediction can be achieved through various means and
techniques. The main approaches are (Pecht & Kang, 2018;
Galar, Goebel, Sandborn, & Kumar, 2021) 1) Data-driven,
2) Model based, 3) Hybrid methods. Data-driven methods
revolves around gathering data from the asset of interest and
develop models based on this data. E.g., machine learning
models are a subset of such data-driven approaches. Model-
based or physics-of-failure (PoF) models use first principles
such as physics and mathematical modeling to develop prog-
nostics models. Hybrid methods are a combination of both
data-driven and model-based methods. Data-driven methods
will be discussed in details below. Model based RUL pre-
diction relies on an underlying model of the system at hand,
such as a simulation, mathematical, or physical model. Such
approaches are favorable in the case when there is a good
physical understanding of the degradation process, and such,
so-called PoF methods can be employed. Hybrid RUL pre-
diction methods, aim to combine the two by using data to
train data-driven models and combine the results with model-
based techniques, such as PoF-approaches (Pecht & Kang,

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

0 200 400 600 800 1000

0.0 0.2 0.4 0.6 0.8 1.0
X

2

0

2

4

6

8

S1

(a) Sensor 1 (S1)

0.0 0.2 0.4 0.6 0.8 1.0
X

0.04

0.02

0.00

0.02

0.04

S2

(b) Sensor 2 (S2)

0.0 0.2 0.4 0.6 0.8 1.0
X

2

1

0

1

2

3

S3

(c) Sensor 3 (S3)

0.0 0.2 0.4 0.6 0.8 1.0
X

2

1

0

1

2

3

S4

(d) Sensor 4 (S4)

Figure 1. Sensor Trajectories

4 2 0 2 4
Value

0

10

20

30

40

50

60

70

80

90

100

110

D
en

si
ty

 [%
]

S1
S2
S3
S4

Figure 2. Sensor – Distribution

2018; Galar et al., 2021). This paper deals with data-driven
approaches, based on machine learning methods.

An overview of the methodology, showing the successive
steps of the shared framework, the individual approaches, as
well as the shared concluding steps, can be seen in Figure 3.
The details of the steps are found in the following sections,
but in general, a common preprocessing is done followed by
a random truncation of the trajectories. Then, the train/test
split is designated which is followed by a split into the two
separate approaches. The TO approach starts with an outlier
removes, moves on to a train/validation split and concludes
with a feature scaling. The FO, while similar to the former,
starts with feature selection, continues to outlier removal, and
finishes with removal of missing values.

3.1. Data Cleaning

As the data are provided and anonymized by the manufac-
turing company, most necessary data cleaning was performed
prior to receiving the dataset. According to the company, the
data have been normalized, extreme outliers have been re-
moved, and other infeasible trajectories have been excluded

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Start

Preprocessing

Random Truncation

Train/Test Split

Trajectory-oriented

Outlier Removal

Train/Validation Split

Feature Scaling

Feature-oriented

Feature Extraction

Outlier Removal

Nan Removal

Hyperparameter Search

Model Training

Evaluate

End

Figure 3. A flowchart representing the model development
phases for both the FO and TO approaches.

from the data. Even still, it is important to perform some
basic data pre-processing to prepare the data for machine
learning modeling. Firstly, of course, the data are split into
training, validation, and testing datasets. This is done so that
the performance of the model can be assessed on the testing
dataset. The validation dataset is used to monitor the train-
ing of the model, e.g., to stop training early in the case of
overfitting. 20% of test identifiers (TIDs) of the full dataset is

randomly allocated to the testing dataset. This means that out
of the 695 total TIDs, 139 of them are assigned to the test-
ing dataset. Then, out of the remaining 80%, another 80/20
split is performed, such that 64% of the original dataset is
assigned to the training set, and 16% are assigned to the vali-
dation dataset. In Table 1 the partitions are shown.

Partition % # of TIDs
Full 100 695
Training 64 445
Validation 16 111
Testing 20 139

Table 1. Training, validation, and testing splits of the original
dataset.

After partitioning the data into training, validation, and test-
ing data, the data are scaled. There are several choices for
scaling data but one of the common ways is so called min-
max scaling where data are mapped onto to the interval [a, b]
where a, b ∈ R and a < b. Min-max scaling of a dataset x of
size n is then defined in the following manner:

x̃i =
xi −minxtrain

maxxtrain −minxtrain
(b− a) + a, (1)

for each i = 1, . . . , n. Here, minxtrain and maxxtrain refer
to the minimum and maximum values in the training dataset,
respectively. It is important to use the min/max values of the
training set to prevent leaking information about the testing
dataset to the model during training. Common choices for a
and b are a = 0, b = 1 or a = −1 and b = 1. In this case, the
latter was chosen.

3.2. Data-Driven Remaining Useful Life Prediction

In data-driven RUL prediction, the aim is, as the name sug-
gests, use data to develop models for predicting the RUL of a
system. Specifically, in this work, the data-driven models are
based on machine learning. When using machine learning for
RUL prediction, the problem is formulated as a supervised
machine learning problem. In this case the goal is to learn a
mapping f from measurements of the system over time, x(i)

t

to the corresponding RUL y
(i)
t :

f : x
(i)
t 7→ y

(i)
t (2)

for t = 0, . . . , T (i), and i = 1, . . . , N where T (i) is the
life length of unit (also referred to as the end-of-life (EoL) of
device/asset i) i and N is the number of devices in the full
dataset. When f is parameterized by some parameters θ and
a loss function can be defined L (f (X; θ) , y) the supervised
learning problem can be stated an optimization problem:

min
θ

L (f (X; θ) , y) . (3)

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

In the context of deep artificial neural network (NN), the
training is performed using gradient descent, through the
backpropagation algorithm. As RUL prediction, in the con-
text of ML, is a regression problem, a common choice for loss
function is the mean squared error (MSE) loss or the square
root of MSE, root mean squared error (RMSE) loss, defined
as

LMSE(y, ŷ) =
1

N

N∑
i=1

(
y(i) − ŷ(i)

)2

(4)

and

LRMSE(y, ŷ) =

√√√√ 1

N

N∑
i=1

(
y(i) − ŷ(i)

)2
, (5)

respectively. To penalize models for predicting poorly on out-
liers and minimize the error of the worst predictions, the so
called L∞ loss can be used, which is defined in the following
manner:

L∞(y, ŷ) = max |y − ŷ|. (6)

The loss function used when training the models is a combi-
nation of MSE and L∞, namely

L(y, ŷ) = LMSE(y, ŷ) + L∞(y, ŷ). (7)

MSE and L∞ is combined, because they serve two different
purposes. MSE is a common regression loss function and is
often used in RUL prediction. MSE loss is sensitive to out-
liers and will penalize predictions that are far off the correct
RUL, thus leading to predictions that are more conservative,
a property that is often desired in RUL prediction models.
The L∞-loss is used to further penalize the worst prediction
of the mini-batch. The worst prediction is added to the final
loss, further driving the model from large incorrect predic-
tions, resulting in a conservative model.

3.3. TO Approach

The TO approach is based on training machine learning mod-
els on the entire time series data, such that the models can
learn to capture the dynamics of the degradation process. For-
mally, given the original dataset of the form

D =

{(
x
(i)
t , y

(i)
t

)T (i)

t=0

}N

i=1

(8)

where x
(i)
t ∈ Rd is the d number of sensor readings from

the system at time t for asset i = 1, . . . , N , and y
(i)
t is the

corresponding RUL at time t = 0, . . . , T (i). Here N is the
number of assets in the dataset, in this case, the number of
TIDs in the dataset and T (i) is the EoL for asset i. In the TO
approach, the machine learning models are trained to predict
RUL at time t, by feeding all time series data up until time t

to the model, i.e., a new dataset is constructed with tuples of
the form:

T =

{({
x(i)
τ

}t

τ=0
, y

(i)
t

)T (i)

t=0

}N

i=1

. (9)

The dataset in Equation (9), is referred to the “trajectory

dataset” because
{
x
(i)
τ

}t

τ=0
is the degradation trajectory of

asset i up until time t measured by the sensor signals x(i)
τ for

each time step τ = 0, . . . , t. These trajectories constitute the
training data for the TO machine learning models.

3.3.1. Deep Neural Network Models

The models chosen for RUL prediction are variants of deep
neural networks (LeCun, Bengio, & Hinton, 2015; Good-
fellow, Bengio, & Courville, 2016). In particular, they
are based on two main components, multilayer perceptron
(MLP) (Haykin, 1994; Cybenko, 1989; Hornik, Stinch-
combe, & White, 1989), and a type of recurrent neural
network (RNN) called long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997). These models are suit-
able for sequential data such as time series, and in particular
datasets of the form given by Equation (9).

MLP is the most fundamental type of artificial neural net-
work. It consists of an input layer, hidden layers, and an
output layer. As data are passed through each of the layers
in the network, they are transformed non-linearly using so-
called activation functions. The forward pass of the MLP is
described by:

h
(1)
i = g(1)

 n∑
j=1

w
(1)
ij xj + b

(1)
i

 ,

h
(ℓ)
i = g(ℓ)

 n∑
j=1

w
(ℓ)
ij h

(ℓ−1)
j + b

(ℓ)
i

 , ℓ = 2, . . . , L− 1,

yi = g(L)

 n∑
j=1

w
(L)
ij h

(L−1)
j + b

(L)
i

 ,

where h
(ℓ)
i is the i:th neuron in the ℓ:th layer, g(ℓ)(·) is the

activation function between after layer ℓ. Furthermore, w(ℓ)
ij is

the so-called weight matrix containing the learnable weights
connecting layer ℓ with layer ℓ− 1.

LSTM networks are a type of RNN that are capable of learn-
ing long-term dependencies in sequence prediction problems.
The key to an LSTM’s ability to retain information over long
periods is its unique architecture, which includes gates that
regulate the flow of information.

The LSTM unit consists of several components, which are

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

governed by a set of equations. These components include
the cell state (ct), the hidden state (ht), the input gate (it), the
forget gate (ft), the output gate (ot), and the candidate cell
state (c̃t). The equations that govern these components are as
follows:

ft = σ(Wfxt + Ufht−1 + bf) (10)
it = σ(Wixt + Uiht−1 + bi) (11)
ot = σ(Woxt + Uoht−1 + bo) (12)
c̃t = tanh(Wcxt + Ucht−1 + bc) (13)
ct = ft ⊙ ct−1 + it ⊙ c̃t (14)
ht = ot ⊙ tanh(ct), (15)

where, denoting d and h as the dimension of the input and the
number of hidden units, respectively:

• xt ∈ Rd is the input at the current time step,

• ht−1 ∈ (−1, 1)h is the hidden state from the previous
time step,

• W ∈ Rh×d, U ∈ Rh×h, and b ∈ Rh are the weight ma-
trices and bias vectors for the respective gates and candi-
date cell state,

• σ represents the sigmoid activation function, σ(x) =
(1 + exp{−x})−1,

• tanh represents the hyperbolic tangent activation func-
tion,

• ⊙ denotes element-wise multiplication (the Hadamard
product).

Equations (10) to (15), have the following interpretations:

• Forget Gate ft ∈ (0, 1)h, Equation (10): Decides what
information from the previous cell state should be for-
gotten.

• Input Gate it ∈ (0, 1)h, Equation (11): Decides what
new information will be stored in the cell state.

• Output Gate ot ∈ (0, 1)h, Equation (12): Decides what
part of the cell state should output as the hidden state.

• Candidate Cell State c̃t ∈ (−1, 1)h, Equation (13): Cre-
ates a vector of new candidate values that could be added
to the cell state.

• Cell State ct ∈ Rh, Equation (14): The actual cell state
that keeps the long-term memory at the current time step
t.

• Hidden State ht, Equation (15): The final hidden state of
the LSTM, the output of the LSTM unit.

These interdependent equations help the LSTM manage the
flow of information and maintain relevant information over
time, addressing the vanishing gradient problem that can oc-
cur in ordinary RNNs.

3.3.1.1. MLP-LSTM-MLP Model The multilayer percep-
tron long short-term memory multilayer perceptron (MLP-
LSTM-MLP) architecture has, as the name suggests, three
main components: an initial MLP that transforms time series
through a non-linear mapping, followed by an LSTM which
can learn long-term the relationship between time steps, and a
final MLP that transforms the output of the LSTM. The MLP-
LSTM-MLP model architecture was introduced by (Chaoub,
Voisin, Cerisara, & Iung, 2021). In this paper, the model
was used for RUL prediction of simulated turbofan jet en-
gines. In Figure 4, a schematic of the architecture is shown.
The first part of the model is an MLP which takes as input,
the sensor signals for asset i at each time step x(i)(t) where
i = 1, . . . , N and t = 0, . . . , T (i). The sensor signal is
transformed by the MLP initial and fed into the LSTM. The
output of the LSTM (the hidden state of the ht) is fed into the
final MLP which finally outputs the predicted RUL y(i)(t) for
each time step. The hidden state of the LSTM is carried over
to the next prediction of the LSTM, which enables the model
to remember long-term relations in the time series data, a fea-
ture that is essential for prognostics.

LSTM LSTM ... LSTM

MLP MLP MLP

MLP MLP MLP

Figure 4. The MLP-LSTM-MLP architecture. An initial
MLP takes the sensor signals at each time step as input. This
is then fed into the LSTM model which outputs its hidden
state. The hidden state of the LSTM is fed into the final MLP
which outputs the predicted RUL.

3.3.1.2. Residual MLP-LSTM-MLP Model The residual
MLP-LSTM-MLP (ResMLP-LSTM-MLP) is a slight modifi-
cation to the MLP-LSTM-MLP architecture, where the initial
MLP is substituted with a residual MLP. The residual MLP
consists of several residual MLP blocks which is an MLP
with a residual skip connection. If x denotes the input data
and FMLP(·) denotes the transformation of the MLP, a resid-
ual skip connection is simply

FResMLPBlock(x) = FMLP(x) + x. (16)

Residual neural network (ResNet) was first described in
(K. He, Zhang, Ren, & Sun, 2016), and was invented to al-
low information to propagate more easily in deep neural net-

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

works. ResNets allows for creating deeper neural networks
while mitigating some issues with very deep neural networks
such as vanishing/exploding gradients. Deeper neural net-
works can potentially allow the model to learn better rep-
resentations of the data which leads to better performance.
In Figure 5 the ResMLP-LSTM-MLP architecture is shown
in a schematic. The initial step of the model uses a series
of MLPs with residual skip connections, forming residual
blocks. There are n blocks in the model. Similarly to the
MLP-LSTM-MLP model, this part of the model takes sensor
measurements at each time step as input. Then, the model
is identical to the MLP-LSTM-MLP model, with an LSTM
for modeling sequential data and a final MLP for outputting
RUL. See paragraph 3.3.1.1 for details.

LSTM LSTM ... LSTM

ResMLP ResMLP ResMLP

MLP MLP MLP

ResMLP

ResMLPBlock

ResMLPBlock

...

ResMLPBlock

MLP
blocks

Figure 5. The ResMLP-LSTM-MLP architecture.

3.3.2. Model Training Procedure

The models are trained using gradient descent on the loss
function, cf. Equation (7), and specifically, for deep
neural networks, the algorithm is called backpropaga-
tion (Rumelhart, Hinton, & Williams, 1986). The models
are implemented using the Python programming language
(Van Rossum & Drake, 2009) and the deep learning frame-
work PyTorch (Paszke et al., 2019). When training the
models, a number of so-called hyperparameters need to be
specified. A hyperparameter is not a parameter of the model
that is changed during training but still has an effect on the
training of the model. As such, it is important to find good hy-
perparameters for the model so that it converges. To achieve
this, one often employs hyperparameter search, a method
for finding suitable hyperparameters. The hyperparameters
search is implemented using the “ray” Python library (Liaw
et al., 2018). In particular, the Asynchronous Hyperband

Scheduler is used, a method for massively parallel hyperpa-
rameter search, described in (Li et al., 2020). In Table 2 the
hyperparameter settings for each model is presented.

3.3.3. Uncertainty Estimation

Uncertainty estimation in deep neural network models can be
achieved through various means and techniques. One such
technique is called “Monte Carlo dropout” and was intro-
duced in (Gal & Ghahramani, 2016). Monte Carlo dropout
relies on a deep learning regularization technique called
“dropout”, first described in (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014). Dropout is applied to lay-
ers in a deep neural network, and means that some neurons
in the layer are randomly dropped out with some probability
p ∈ (0, 1). This means that these neurons are zeroed-out in
the forward pass and therefore do not contribute. As a con-
sequence, the network cannot rely on particular neurons to
be activated during the forward pass and needs to learn re-
dundant representations of the data This has several potential
benefits:

• Reducing overfitting,
• Increasing robustness,
• More efficient representations.

Usually, when the training is completed, the dropout proba-
bility is set to p = 0, such that all neurons are activated at
inference time. However, one can leverage the natural vari-
ance induced by keeping p > 0 at inference time and interpret
this variance as an estimation of the uncertainty of the model.
This is the core idea of Monte Carlo dropout uncertainty es-
timation. At inference time, the dropout probability is kept
at the same level as during training, and k forward passes are
made to achieve a spread in predictions. By calculating the
mean of the predictions, the “mean prediction” is constructed
as a point estimate of the model. In addition, assuming the
predictions of the model are normally distributed, the 95%
confidence interval is calculated in the following manner:

I95% = (µ− 1.96σ, µ+ 1.96σ) (17)

where µ and σ are the mean and the standard deviation of the
predictions of the model, respectively. 1.96 is the 97.5th per-
centile of the standard normal distribution, meaning 95% of
the area under the standard normal distribution curve lies in
the interval [−1.96, 1.96]. Dropout is applied to the final lay-
ers of the model, specifically in the final MLP of each model.

3.4. FO Approach

The FO approach focuses on transforming the data into an
aligned two-dimensional (tabular) problem so that compatible
ML-methods can be implemented.

The work of (Wold, Kettaneh-Wold, MacGregor, & Dunn,
2009) is seminal in advancing feature-based ML for industrial

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Hyperparameter MLP-LSTM-MLP ResMLP-LSTM-MLP
Number of epochs 500 500
Batch size 2 2
Effective batch size 28 28
Initial MLP hidden sizes [128, 64, 64] [128, 64, 64]
LSTM hidden size 32 32
Output MLP hidden sizes [64, 32] [64, 32]
Learning rate 0.001 0.001
Optimizer weight decay 0.001 0.001
Dropout rate 0.5 0.5
Number of residual blocks N/A 4

Table 2. The hyperparameters for the two models are presented above.

processes, laying the foundation for what is now referred to
as batch data analytics (BDA), and serving as a cornerstone
in the evolution of data-driven industrial analytics.

Furthermore, (Rendall, Chiang, & Reis, 2019) provides an in-
sightful and comprehensive review of the modeling complex-
ities and implementation challenges associated with these
methods, offering a nuanced understanding of their intrica-
cies and practical applicability.

The works of (Mählkvist, Ejenstam, & Kyprianidis, 2022,
2023) have demonstrated the effective implementation of a
feature-based approach within industrial systems, highlight-
ing the applicability and efficiency of data-driven methodolo-
gies in optimizing process performance.

3.4.1. Data Pre-processing

There are two steps to the pre-processing of the FO approach.
These are, in order of implementation, feature generation and
missing value removal.

Feature generation, is step based on statistical pattern analysis
(SPA), relies on the works of (Wang & He, 2010; Q. P. He &
Wang, 2011) and extracts the mean, variance, skewness, and
kurtosis. Mean, variance, skewness, and kurtosis collectively
provide a comprehensive characterization of a dataset’s dis-
tribution. The mean indicates the central tendency, offering a
measure of the dataset’s average value. Variance measures the
dispersion, showing how much the data points spread around
the mean, which helps in understanding the variability within
the dataset. Skewness assesses the asymmetry of the distribu-
tion, revealing whether data points are more concentrated on
one side of the mean. Kurtosis evaluates the ’tailedness’ of
the distribution, indicating the presence of outliers and the
sharpness of the data peaks. Together, these metrics offer
a detailed summary of the central value, spread, symmetry,
and extremity, thereby providing a robust indication of the
dataset’s characteristics.

In data preprocessing, missing values are handled by setting a
threshold to determine which features to retain. In this work,
features with less than 75% of their values present are re-
moved. After excluding these features, all rows containing

any remaining missing values are also removed. This process
ensures that the dataset used for training the models in the FO
approach is fully populated and complete, which is essential,
as these models cannot be trained on datasets with missing
values.

3.4.2. Model Selection

For the FO approach, two models are used. The two models
possess two defining characteristics that are relevant when de-
termining which model works best for any dataset. First, the
models can be either parametric or non-parametric. Second,
can the models accommodate non-linearity. For the FO ap-
proach: RFR and SVR are used, with the former being non-
parametric and the latter being parametric and both being able
to accommodate non-linear data.

3.4.2.1. RFR RFR, also known as random forest regres-
sion, is an ensemble learning method used for regression
tasks. This technique functions by constructing a multitude
of decision trees during the training phase. Each tree in the
forest relies on the values of a random vector, which is sam-
pled independently and follows the same distribution across
all trees (Breiman, 2001). The parameters for RFR include
the maximum number of features and the number of estima-
tors, which represent the number of trees in the forest. The
selection of the number of trees is crucial as it affects the
model’s performance, with a larger number of trees often pro-
viding better generalization at the cost of increased computa-
tional time

3.4.2.2. SVR SVR enhances the traditional support vector
machine regressor by employing kernels to expand the fea-
ture space, thereby accommodating non-linear characteristics
(Boser, Guyon, & Vapnik, 1992; James, Witten, Hastie, &
Tibshirani, 2013). radial basis function (RBF) kernel, also
known as the Gaussian kernel, maps the input features into
an infinite-dimensional space. It measures the similarity be-
tween data points based on their distance, allowing the cap-
ture of complex, non-linear relationships. The RBFkernel

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

is particularly powerful for handling data that is not linearly
separable (James et al., 2013).

3.4.3. Hyperparameter estimation

A train-test split is employed to ensure training is conducted
without data leakage. In this process, the dataset is divided
into two distinct subsets: the training set and the test set. The
training set is used exclusively to train the model, allowing
the algorithm to learn patterns and features without any influ-
ence from the test data. The test set, kept entirely separate,
is utilized to evaluate the model’s performance, providing an
unbiased measure of its ability to generalize to unseen data.
This separation is crucial for preventing data leakage, which
can lead to overly optimistic performance estimates and poor
generalization. By employing a train-test split, the integrity
of the model evaluation process is maintained, ensuring ac-
curate and reliable assessment of the model’s true predictive
capability.

Hyperparameter estimation is performed using random grid
search, where parameters are selected randomly from a list
or defined distribution over a set number of iterations. For
each model, 100 search iterations are conducted. Further-
more, (Bergstra & Bengio, 2012) demonstrates the benefits of
the random approach, highlighting its ability to reduce com-
putational resources while achieving results that are equal or
superior to those obtained through the conventional exhaus-
tive grid search.

The log-uniform distribution is used to define the hyperpa-
rameter range for many of the parameter is particularly use-
ful for parameters that cover several orders of magnitude, as
it helps in exploring a wide range of scales effectively. The
log-uniform distribution is defined as

U(x; a, b) =


1

x [ln b− ln a]
if a ≤ x ≤ b

0 otherwise
(18)

where U is the log-normal distribution and a, b are the lower
and upper bound, respectively.

Similarly, when dealing with hyperparameters that require
discrete integer values within a specific range, the random
integer distribution is employed. This distribution is particu-
larly beneficial in exploring discrete parameter spaces effec-
tively. The random integer distribution is defined as

R(k;m,n) =
1

n−m+ 1
(19)

for any k = m, m + 1, . . . , n. R is the uniform distribu-
tion and m, n are the lower and upper bound, respectively,
representing the inclusive range of possible integer values.

The hyperparameter distribution for the FO models is dis-
played in Table 3.

Table 3. Hyperparameter distributions

Model Parameter Scope
RFR Number of Estimators R(10, 1000)
RFR Maximum Depth R(1, 100)
RFR Maximum Features R(1, 100)
SVM C U(0.1, 1000)
SVM γ U(0.001, 1)
SVM ϵ U(0.01, 0.1)

3.4.4. Resulting hyperparameters

The hyperparameters of the best models are shown in Table 4.

3.5. Evaluation Metrics

The main evaluation metrics are the RMSE (defined in Equa-
tion (5)), mean absolute error (MAE) defined as

MAE =
1

n

n∑
i=1

|yi − ŷi|, (20)

and coefficient of determination (R2) defined as

R2 = 1− SSres

SStot
, (21)

where

SSres =

n∑
i=1

(yi − ŷi)
2
, (22)

SStot =

n∑
i=1

(yi − ȳ)
2
. (23)

Here, ȳ is the mean of the model outputs. The RMSE and
MAE are non-negative real numbers where an RMSE/MAE
of zero means a model that perfectly agrees with the ground
truth. RMSE is penalizing outliers more heavily whereas the
MAE is a linear measure is more lenient on large deviations.
The R2 measures the proportion of variation in the model vs.
the variation in the data. A model that outputs the mean of
the true target will get an R2-score of zero, whereas a perfect

Table 4. Hyperparameter results

Model Parameter Best Model
RFR Number of Estimators 155
RFR Maximum Depth 16
RFR Maximum Features 46
SVM C 0.24
SVM γ 0.1596
SVM ϵ 0.089

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 5. Model evaluation using RMSE, R2, and MAE met-
rics. NN and ResNN are placeholder names for the lengthy
MLP-LSTM-MLP and ResMLP-LSTM-MLP models.

Model RMSE R2 MAE
NN 0.131781 0.592906 0.080010
ResNN 0.130005 0.603803 0.078494
RFR 0.105280 0.740174 0.078300
SVM 0.105383 0.739666 0.074822

model will get a score of one. The R2 can be negative since
the model can be arbitrarily bad.

4. RESULTS & DISCUSSION

4.1. Comparison of Machine Learning Model Perfor-
mance

This section contains a detailed comparison of the MLP-
LSTM-MLP, ResMLP-LSTM-MLP, RFR, and SVR models
in terms of accuracy and reliability in predicting RUL. Com-
parative analysis showed that each model, influenced by the
nature of the pre-processed data, offered varying degrees of
accuracy in RUL predictions. The MLP-LSTM-MLP and
ResMLP-LSTM-MLP are designed for sequence data, and
RFR and SVR, tailored for statistical features, demonstrated
distinct performance profiles.

The RMSE score of each model is presented in Table 5. It
shows that the FO-models outperform the TO-models, with
RFR being the best performing model. The assumption in
the FO-approach seems to have a beneficial impact on the
models’ interpretation of the data.

The relationship between actual and predicted RUL can be
observed in Figure 6, which contains four subplots, one sub-
plot per model, and shows how the predicted RUL for the test
batches differ from the actual RUL. On the horizontal axis,
the TIDs are shown sorted in descending order according to
true RUL. The vertical axis, the RUL is shown, where the
blue solid markers represent the actual RUL and the x-shaped
orange markers represent the predictions made by the vari-
ous models. One can observe that the FO based models are
closer to the true predictions and slightly more likely to un-
derestimate RUL as compared to the TO based models. The
TO based models also seem to be more sensitive to outliers,
with more predictions far from the true RUL.

In order to make comparison more tangible, Figure 7 was de-
signed to show the sample volume and distribution over bins
of actual RUL for all models. The figure consists of two sub-
plots, the upper figure Figure 7a, showing the sample volume
of the bin, and the lower figure Figure 7b, depicting a box-
plot for each model. Each bin is of size 0.1, starting from 0
and incrementally increasing up to 0.7, resulting in 7 inter-
vals. Each interval contains the samples that have their actual
RUL with that interval. Each model has a box in each interval

describing the distribution of that model in that interval. The
top-subplot show an overview with a wider y-axis, while the
bottom-subplot focuses in on a narrow, more relevant, part
of the y-axis. The y-axis show the distribution of the RUL
residual of the model in that interval.

Initially, from high actual RUL, the TO models have a resid-
ual closer to 0, compared to the FO models (looking at in-
tervals from 0.4 to 0.7). At this stage, the FO models catch
up, and have comparable performance from 0.2 to 0.4. In the
interval from 0.1 to 0.2, the FO models have superior perfor-
mance compared to the TO models. In the final interval, from
0 to 0.1, the FO models are generally overestimating RUL
with relatively low spread. On the other hand, the TO models
are also overestimating, although to a lesser extent, and has a
larger spread.

Looking at Figure 7, it is challenging to discern that the FO
outperform the TO, without referencing Table 5. Looking at
the number of samples in the intervals, the FO models per-
form better in the high population intervals (such as interval
0.1 to 0.2), while the TO models perform better in low popu-
lation intervals (such as interval 0.5 to 0.6).

4.1.1. Outlier Sensitivity

As can be observed in Figure 6, the models exhibit different
behavior regarding outliers. E.g., the most deviating predic-
tion for MLP-LSTM-MLP and ResMLP-LSTM-MLP is TID
638 which can be observed in the top right corner in Figure 6.
The impact of TID 638 on RFR and SVR predictions is not
nearly as severe. To assess the sensitivity to outliers, one can
observe in Table 6that if TID is removed from the dataset, the
evaluation results change drastically.

Model RMSE R2 MAE
NN 0.106114 0.733590 0.073870
ResNN 0.104815 0.740072 0.072448
RFR 0.105484 0.736744 0.078348
SVM 0.101302 0.757203 0.072777

Table 6. Evaluation of the models without TID 638. The
evaluation metrics are the RMSE, coefficient of determina-
tion R2, and MAE. Here, NN and ResNet are shorthand nota-
tions for the rather lengthy MLP-LSTM-MLP and ResMLP-
LSTM-MLP model names, respectively.

4.1.2. Uncertainty Estimation Results

As mentioned in Section 3.3.3, the TO-models are endowed
with uncertainty estimation capabilities, through Monte Carlo
Dropout. In the final evaluation, the uncertainty estimation is
transformed into a point-estimate for predicted RUL by tak-
ing the mean of all predictions. For each sample, ten forward
passes are used to create a spread of predictions. The model
uses a dropout rate of 20 % in the last MLP-layer. In Fig-

10

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

630

640
906

258
702
627

824

341

893

247
911

186

560626249522

185

943
33

252

410

876

673

706

484

917

234

315

369

429

386

509

71

611

490

177

584
242

85

864
975

195

472
494

514

537

116

828

585

563

912

97
237

781

777

809

601

226

293

399
463

665

106

78

499

746

884
207

921

844

419

60590

111

518

268

283

22

990

995

807

896

785

1013

41

575
214

265

819
502

515

345

412

422

36664

1006

117

67

146

436

902

913
692600
352

1000

299

793

13

891

14059
441

831

540

14

704

792
506
447

489

246

289

104886

536

821
30829

638767
101

668
451

300
714

582462

RFR

0 20 40 60 80 100 120 140

630640

906

258
702

627

824
341893
247

911
186

560626
249

522

185
94333

252410

876673

706

484

917

234

315

369

429

386

509

71

611

490

177584

242

85
864

975

195472
494

514
537

116

828

585

563
912

97237

781

777

809

601
226

293

399463

665106

78

499746

884

207

921

844

419

60590

111

518

268

283
22

990

995

807

896

785

1013

41

575
214

265819

502
515
345412
422

36
664

1006

117

67

146

436

902

913
692
600352

1000

299

793

13

891
14059
441
831

540

14

704

792

506

447

489

246

289

104
886

536

821

308

29

638

767

101

668

451

300

714

582

462

SVM

0 20 40 60 80 100 120 140

630

640

906258

702

627

824

341
893
247
911
186

560

626
249

522

185

943

33252

410
876

673

706

484
917

234

315
369
429386
509

71

611

490

177
584

242

85
864

975

195

472
494

514
537

116

828

585

563912

97237

781

777

809

601

226

293

399463

665

106

78

499

746
884

207921

844

419

60

590111

518

268283
22

990

995

807

896

785

1013

41

575

214
265
819502515345412422

36664

1006

67

117

146

436

902

913

692

600

352

1000

299

793

13

891
140
59

441

831

540

14

704

792506

447

489
246

289

104

886
536

82130829

638

767
101

668451

300
714
582
462

NN

0 20 40 60 80 100 120 140

630

640

906
258
702

627

824

341

893

247

911

186
560
626
249

522

185

943

33

252

410

876

673

706

484

917

234

315

369

429
386

509

71

611

490

177
584

242

85864

975

195

472

494

514537

116

828

585

563912

97
237

781

777

809

601

226

293

399463

665

106

78

499

746

884
207
921

844

419

60
590111

518

26828322

990

995

807

896

785

1013

41

575

214

265

819502
515345412422

36
664

1006

67

117

146

436

902

913

692

600

352

1000

299

793

13

89114059

441

831

540
14

704

792506

447

489
246

289

104

886

536

82130829

638

767101

668451

300
714
582
462

ResNN

Figure 6. RUL predictions for the various models. On the horizontal axis, the TIDs sorted by RUL in descending order are
shown. On the vertical axis RUL is shown, the true RUL is shown as a solid line and the predictions are shown as scatter points.

ure 8 the RUL predictions for TID 13 (in the test set), with
uncertainty estimation is shown, using the MLP-LSTM-MLP
model.

5. CONCLUSIONS

In this paper, methods for RUL prediction of resistance heat-
ing wires undergoing cyclical testing is investigated. The pa-
per explores two contrasting approaches; “feature-oriented
(FO)” and “trajectory-oriented (TO)”. In the FO approach,
statistical measures are derived from the time series data in
order to convert the data into a tabular form. This tabular
dataset can then be used for training machine learning mod-
els suitable for tabular data. On the other hand, the TO ap-
proach trains the machine learning models on the full time
series data, and thus needs models capable of handling such
data. A natural choice is various deep learning techniques, in
particular, variants of RNNs.

The results show that the FO based methods are performant
and robust to outliers. In particular, the RFR model has the
best test dataset performance according to the chosen evalua-
tion metrics. The TO based methods are less biased across
various levels of degradation, which is a desirable trait in
PHM systems. The FO-based methods are, generally, sys-
tematically underestimating RUL at high true RUL and over-
estimating RUL at low actual RUL. This is still somewhat
present in the TO based models but to a lesser degree.

Moreover, when removing one particularly strong outlier, one
can observe that the RFR model is no longer outperform-
ing the other models and the scores are much more closely
aligned between the approaches.

These insights hold significant promise for enhancing predic-
tive maintenance strategies and operational efficiency in in-
dustries relying on components like resistance heating wires.

ACKNOWLEDGMENT

This research work has been funded by the Knowledge Foun-
dation within the framework of the ARRAY (Grant Num-
ber 20170214) and INDTECH (Grant Number 20200132)
Research School projects, participating companies and
Mälardalen University. The authors also give their thanks
to the RISE internal project DIGIPROD for supporting this
work.

REFERENCES

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(2).

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A
training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on Computa-
tional learning theory (pp. 144–152).

Breiman, L. (2001). Random forests. Machine learning,
45(1), 5–32. (Publisher: Springer)

Chaoub, A., Voisin, A., Cerisara, C., & Iung, B. (2021).
Learning representations with end-to-end models for
improved remaining useful life prognostics. CoRR,
abs/2104.05049. Retrieved from https://arxiv
.org/abs/2104.05049

Cybenko, G. (1989). Approximation by superpositions of
a sigmoidal function. Mathematics of Control, Sig-
nals and Systems, 2(4), 303–314. Retrieved from
https://doi .org/10 .1007/BF02551274
doi: 10.1007/BF02551274

Gal, Y., & Ghahramani, Z. (2016, 20–22 Jun). Dropout
as a bayesian approximation: Representing model
uncertainty in deep learning. In M. F. Balcan &
K. Q. Weinberger (Eds.), Proceedings of the 33rd in-

11

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

0

5

10

15

20

25

Co
un

t

[0, 0.1] (0.1, 0.2] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.2, 0.3] (0.6, 0.7] (0.7, 0.8]
Actual RUL Intervals

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

re
sid

ua
l

model
RFR
SVM
NN
ResNN

(a) The number of observations/samples in each bin in the below plot. Most test samples have 50 % RUL or
less. 0

5

10

15

20

25
Co

un
t

[0, 0.1] (0.1, 0.2] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.2, 0.3] (0.6, 0.7] (0.7, 0.8]
Actual RUL Intervals

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

re
sid

ua
l

model
RFR
SVM
NN
ResNN

(b) The four models’ predictions in eight intervals of width 0.1 (10 % RUL) on the x-axis. The y-axis
represents the error (or residual) i.e., the difference between the true and predicted RUL, e = y − ŷ.

Figure 7. Models’ RUL predictions within intervals of 0.1 width. The top plot shows the number of samples within each
interval, and the below shows the prediction residual vs. actual RUL intervals.

ternational conference on machine learning (Vol. 48,
pp. 1050–1059). New York, New York, USA:
PMLR. Retrieved from https://proceedings
.mlr.press/v48/gal16.html

Galar, D., Goebel, K., Sandborn, P., & Kumar, U. (2021).
Prognostics and remaining useful life (rul) estima-
tion: Predicting with confidence (1st ed.). CRC Press.
Retrieved from https://doi.org/10.1201/
9781003097242 doi: 10.1201/9781003097242

Goodfellow, I., Bengio, Y., & Courville, A. (2016).
Deep learning. MIT Press. (http://www
.deeplearningbook.org)

Haykin, S. (1994). Neural networks: a comprehensive foun-

dation. Prentice Hall PTR.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual

learning for image recognition. In 2016 ieee confer-
ence on computer vision and pattern recognition (cvpr)
(p. 770-778). doi: 10.1109/CVPR.2016.90

He, Q. P., & Wang, J. (2011). Statistics pattern analy-
sis: A new process monitoring framework and its ap-
plication to semiconductor batch processes. AIChE
Journal, 57(1), 107–121. Retrieved 2022-09-07, from
http://onlinelibrary .wiley .com/doi/
abs/10.1002/aic.12247 doi: 10 .1002/aic
.12247

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

12

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 8. RUL predictions for TID 13 with uncertainty esti-
mation using the MLP-LSTM-MLP model.

memory. Neural computation, 9(8), 1735–1780.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-

layer feedforward networks are universal approxima-
tors. Neural Networks, 2(5), 359-366. Retrieved
from https://www .sciencedirect .com/
science/article/pii/0893608089900208
doi: https://doi.org/10.1016/0893-6080(89)90020-8

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013).
An introduction to statistical learning (Vol. 112).
Springer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553), 436–444. Retrieved from
https://doi.org/10.1038/nature14539
doi: 10.1038/nature14539

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Hardt,
M., Recht, B., & Talwalkar, A. (2020). A system for
massively parallel hyperparameter tuning.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E.,
& Stoica, I. (2018). Tune: A research platform for
distributed model selection and training. arXiv preprint
arXiv:1807.05118.

Mählkvist, S., Ejenstam, J., & Kyprianidis, K. (2022, March).
Consolidating Industrial Batch Process Data for Ma-
chine Learning. In (pp. 76–83). Retrieved 2022-
12-10, from https://ecp.ep.liu.se/index
.php/sims/article/view/330 doi: 10.3384/
ecp2118576

Mählkvist, S., Ejenstam, J., & Kyprianidis, K. (2023).
Cost-sensitive decision support for industrial batch pro-
cesses. Sensors, 23(23), 9464. (Publisher: MDPI)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., . . . Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learn-

ing library. In Advances in neural information pro-
cessing systems 32 (pp. 8024–8035). Curran As-
sociates, Inc. Retrieved from http://papers
.neurips .cc / paper / 9015 -pytorch -an
-imperative -style -high -performance
-deep-learning-library.pdf

Pecht, M., & Kang, M. (2018). Prognostics and health man-
agement of electronics : fundamentals, machine learn-
ing, and internet of things (Second edition. ed.). Hobo-
ken, New Jersey: John Wiley & Sons.

Rendall, R., Chiang, L. H., & Reis, M. S. (2019,
May). Data-driven methods for batch data anal-
ysis – A critical overview and mapping on the
complexity scale. Computers & Chemical En-
gineering, 124, 1–13. Retrieved 2022-11-11,
from https://linkinghub.elsevier.com/
retrieve/pii/S0098135418311104 doi: 10
.1016/j.compchemeng.2019.01.014

Rumelhart, D. E., Hinton, G. E., & Williams, R. J.
(1986). Learning representations by back-propagating
errors. Nature, 323(6088), 533–536. Retrieved from
https://doi.org/10.1038/323533a0 doi:
10.1038/323533a0

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: A simple way to
prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56), 1929–1958. Re-
trieved from http://jmlr.org/papers/v15/
srivastava14a.html

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference
manual. Scotts Valley, CA: CreateSpace.

Wang, J., & He, Q. P. (2010, September). Multivari-
ate Statistical Process Monitoring Based on Statistics
Pattern Analysis. Industrial & Engineering Chem-
istry Research, 49(17), 7858–7869. Retrieved 2022-
09-16, from https://pubs.acs.org/doi/10
.1021/ie901911p doi: 10.1021/ie901911p

Wold, S., Kettaneh-Wold, N., MacGregor, J., & Dunn,
K. (2009). Batch Process Modeling and
MSPC. In Comprehensive Chemometrics (pp.
163–197). Elsevier. Retrieved 2022-09-07,
from https://linkinghub.elsevier.com/
retrieve/pii/B9780444527011001083 doi:
10.1016/B978-044452701-1.00108-3

Yoro, K. O., & Daramola, M. O. (2020). Chap-
ter 1 - CO2 emission sources, greenhouse gases,
and the global warming effect. In M. R. Rahim-
pour, M. Farsi, & M. A. Makarem (Eds.), Ad-
vances in carbon capture (pp. 3–28). Wood-
head Publishing. Retrieved from https://www
.sciencedirect .com/science/article/
pii/B9780128196571000013 doi: https://doi
.org/10.1016/B978-0-12-819657-1.00001-3

13

