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ABSTRACT 
Automated solutions for effective support services, such as 
failure diagnosis and repair, are crucial to keep customer 
satisfaction and loyalty. However, providing consistent, high 
quality, and timely support is a difficult task. In practice, 
customer support usually requires technicians to perform 
onsite diagnosis, but service quality is often adversely 
affected by limited expert technicians, high turnover, and 
minimal automated tools. To address these challenges, we 
present a novel solution framework for aiding technicians in 
performing visual equipment diagnosis. We envision a 
workflow where the technician reports a failure and prompts 
the system to automatically generate a diagnostic plan that 
includes parts, areas of interest, and necessary tasks. The plan 
is used to guide the technician with augmented reality (AR), 
while a perception module analyzes and tracks the 
technician’s actions to recommend next steps. Our 
framework consists of three components: planning, tracking, 
and guiding. The planning component automates the creation 
of a diagnostic plan by querying a knowledge graph (KG). 
We propose to leverage Large Language Models (LLMs) for 
the construction of the KG to accelerate the extraction 
process of parts, tasks, and relations from manuals. The 
tracking component enhances 3D detections by using 
perception sensors with a 2D nested object detection model. 
Finally, the guiding component reduces process complexity 
for technicians by combining 2D models and AR 
interactions. To validate the framework, we performed 
multiple studies to:1) determine an effective prompt method 
for the LLM to construct the KG; 2) demonstrate benefits of 
our 2D nested object model combined with AR model.  

1. INTRODUCTION 

Offering support services has become a key differentiator for 
customer satisfaction and retention in multiple industries. For 
example, manufacturers provide products along with support 
services and warranties to ensure that machines’ downtime is 
minimized.  However, operational complexities hinder the 
overall quality of services, such as limited experienced 
technicians, high turnover, steep learning curves of the 
manuals and few automated tools. Therefore, it is essential to 
develop automated methods and systems for technicians’ 
assistance that aim to high standards of support services.   

Building intelligent assistant systems present important 
technical challenges. First, knowledge bases are required to 
provide reasoning and extensibility, but traditional methods 
require extensive data and labels. Second, scene 
understanding is critical to guarantee the quality of visual 
guidance, but existing methods are not sufficient for 
environment variations of customer sites. Third, advanced 
user interfaces are required to be intuitive and useful, but 
Augmented Reality (AR) with 3D methods, though enabling 
rich human interactions, are slow with limited generalization. 

To tackle these challenges, we proposed a novel general 
framework for guided visual diagnosis. In our approach, the 
system assists technicians in their tasks, irrespective of their 
experience level and the complexity of the issues they 
encounter. The framework integrates methods that facilitate 
an automated, interactive and user-friendly approach.   

In summary, our approach comprises the following 
contributions:  

1. A novel general framework designed to automate the 
visual diagnosis process enabled by methods for 
diagnostic plan generation, tracking and AR guidance. 
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2. A method to automatically generate a diagnostic plan by 
querying a knowledge graph (KG). Our KG is created by 
leveraging LLMs for entity extraction of equipment 
parts and diagnosis tasks from unstructured sources. The 
KG also includes spatial entity relationship of diagnosis 
area extracted from images annotations. 

3. A method to automatically track and guide the diagnostic 
state using inputs from perception sensors in real-world 
environment. Our method uses a 2D object detection 
model combined with AR-based 3D positioning that 
overcomes intrinsic equipment challenges such as highly 
reflective areas, translucid, obstacles or occlusion. 

The paper is structured as follows: Section 2 describes related 
work on methods, technology and trends to develop guidance 
systems. Section 3 describes problem and definitions, 
followed by methodology and method details in Section 4 and 
5. Section 6 discusses the experiments and results. Finally, 
Section 7 concludes the paper and discusses future work. 

2. RELATED WORK 

Industrial research has been influenced by the proven success 
of AI-based computer vision and Augmented Reality (AR) in 
other domains. AI-based methods have been proposed for 
industrial problems such as defect detection, quality control, 
repair recommendations, etc. Limited assistants and service 
robots’ systems have been proposed to facilitate technician’s 
jobs. With the recent breakthrough of large language models 
(LLMs), new research have emerged to improve assistance 
technology. Related work is summarized as follows.  

2.1. Assistant Systems 

Automated support systems include two types of assistant 
tools: 1) remote assistance with video calls, and 2) AI-based 
chatbots [1]. Remote systems commonly require a human 
expert with limited interactivity, coordination, and 
collaboration. Chatbots have been widely used for text-based 
search on manuals or databases. Others, with more user 
interaction such as animations or simulations, are usually 
built for specific cases and products using databases, custom 
rules and 3D-CAD models. In [2], the authors proposed a 
visual assistant for inspection where technicians are guided 
to inspect a vehicle and detect surface defects. However, to 
our knowledge, no work has been done on visual assistance 
systems for diagnosis. Different from remote and chatbots 
solutions, our framework enables a near real-time visual-
based system to assist technicians on root cause analysis. 

2.2. AI-based Visual Systems 

AI-based visual systems have been widely incorporated to 
analyze images for defects detections in different types of 
equipment analysis.  In [2,3,4], authors demonstrated that 
deep learning-based methods have an acceptable 
performance in applications such as crack detection in roads, 

welding, buildings, etc.; and surface damages in railroads or 
vehicles. Common methods used in these systems are 1) 
classifiers such as ResNet, MobileNet, and Swin 
Transformers; 2) real time object detectors such as theYolo 
series, 3) instance segmentation models such as MaskRCNN, 
Yolo, and Segment Anything Model (SAM) [17,18]. 
Minimal work has been done on visual root cause detection. 

2.3. Knowledge Graphs and Entity Extraction 

Advanced assistant systems generally include a form of 
Knowledge Base (KB) to draw information required for a 
wide range of assistive tasks. Knowledge bases (KB) and 
graphs (KG) have been studied extensively. Traditional 
approaches still require large amounts of data that make KB 
development process complex and slow. The main task of 
building knowledge bases and graphs is entities and relation 
extraction (RE) that enables reasoning based on the graph 
semantics. Popular approaches to extract entities and 
relationships include custom seq2seq models [1] and REBEL 
[6]. However, with advancements in LLMs, such as ChatGPT 
[7], entity tagging, and relation extraction has been  re-
evaluated to assess their potential performance for domain-
specific knowledge [8]. In [9,10], authors demonstrated that 
it is possible to achieve SOTA performance on relation 
extraction with minimal training data. In our case, we study 
the viability of using LLMs to extract industrial entities such 
as parts and diagnosis tasks with minimal data. 

2.4. Large Language Models 

Large language Models (LLMs) have been recently 
incorporated in chatbot-based systems and other downstream 
tasks such text classification, summarization, entity 
extraction, etc. [10]. LLMs have been trained on massive 
datasets for language reasoning and generation based on 
Transformer architectures. Multiple LLMs have become 
popular such as ChatGPT from OpenAI, Llama2 from Meta 
Research, Gemini from Google Research [18]. Training these 
models for a specific domain or task may be infeasible due to 
the amount of required data and hardware resources to 
achieve high performance. However, utilizing fine-tuning 
techniques, the models can be easily adapted with few 
samples.  For example, Prompt Fine-tuning is a popular 
technique which employs prompts to instruct the pre-trained 
model to understand the new context. As tailoring process, 
Prompt Elicitation facilitates the definition of the prompts, 
main model role, task, and response requirements. Examples 
of prompt types for fine-tuning are text completion, task 
summarization, information retrieval, question-answering. 

2.5. Scene Understanding 

Substantial research has been done on scene understanding, 
especially in areas like autonomous driving systems and 
service robots. Scene understanding approaches analyze and 
interpret the functional context and semantics of objects with 
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respect to the relationship with the 3D space and physical 
layout. According to [11,12], scene understanding methods 
solve problems like reasoning, finding hidden objects and 
completing objects. Understanding the scene structure is 
categorized into 1) object-oriented and 2) spatial-oriented. 
For instance, in [3], a relevant scene graph representation is 
proposed to captures the objects and their relationships on the 
layout, e.g. rooms, garden, etc. However, traditional 2D and 
3D approaches struggle with low accuracy and stability in 
scenarios involving transparent objects and high reflections. 
In contrast, our approach overcomes transparency and 
reflections by targeting well-defined key objects (parts) and 
their related objects of interest (parts/components) contained 
within a spatial layout as areas of interest. 

2.6. Augmented Reality Interaction 

With the proliferation of Augmented Reality (AR) libraries 
like Apple ARkit, Google ARCore, and WebAR, several AR 
approaches have been designed for navigation guidance, 
assembly tracking, and repair assistant[11].  However, there 
are minimal visual guidance for diagnosis. According to [13], 
most of the AR cases integrate overlay annotations to interact 
with the user. AR applications overlay the annotations using 
either 1) physical markers (for example lines over floor, or 
bar codes over objects) or 2) 3D object recognition to identify 
the target objects. The identification process involves three 
steps. First, a 3D scanner registers the environment. Second, 
3D object representations are generated, such as CAD 
objects, point clouds, etc. Third, an application uses these 3D 
representations to recognize the scanned objects.  However, 
the accuracy of 3D model is negatively affected by varying 
environments (background, area, lighting, layout, etc.). In 
practice, creating a comprehensive 3D environment is 
difficult and sometimes infeasible. In addition, 3D 
recognition is still a challenge for real time systems (i.e. 
under one second) [11,3]. Different from these approaches, 
we propose 2D object recognition combined with 3D 
positioning model that outperform traditional 3D detection. 

3. PROBLEM DEFINITION 

We define a visual equipment diagnosis VED as the process 
required to find the root cause of a failure f for a given 
equipment E. For example, “the refrigerator’s freezer is 
making a lot of noise” where “refrigerator” denotes E and 
“making a lot of noise” denotes f.  Since the failure f may 
often represent only a possible symptom of one or multiple 
underlying issues, the technician needs to conduct a 
comprehensive evaluation. For example, to identify the root 
cause of the freezer noise, the technician may need to check 
multiple parts such as the freezer, thermostat, motor, etc. In 
practice, based on experience or searching in equipment 
documents, the technician follows a sequence of steps S to 
diagnose the root cause. The steps involve troubleshooting 

tasks on related equipment parts. For example, as a first step, 
“check freezer interiors”, second “turn on and off the 
thermostat”, and third “check the motor”. 

3.1. Definitions 

Formally, we assume that the technician follows a diagnostic 
plan DP to identify the root cause of a failure f. DP is defined 
as the list of steps S that involves parts P and tasks T.  Let P 
be a list of parts related to the failure such as f®P. Let T be 
diagnostic tasks denoted as actions performed on P to 
determine a root cause such as T® f. Specifically,  the 
following definitions are considered: 

• Diagnostic Area: Let equipment E with 3D structure be 
composed of viewpoints V={v1,…,vn} where n>0. V 
denotes spatial planes of the equipment and is used for 
physical navigation. For example: front, back, side, etc. 
Let a viewpoint vi, be composed by areas A={a1,i…,am,n} 
where i>0, m>0 and n>0. A denotes a set of mutually 
exclusive splits within the viewpoint vi. For example, 
top, and bottom are possible areas of front viewpoint. 

• Diagnostic Part.  Let P={p1,…,pk} where k>0 be the list 
of parts such as p1 is visible from one or more areas aj,i. 
e.g. filter at front-top, motor at back-bottom. 

• Diagnostic Task. Let T={t1,…,tk} where k>0. be the list 
of tasks to be performed by technician at the part pi  T are 
troubleshooting actions that aim to identify the  root 
cause. For example: verify temperature, turn on the 
switch, check the LED light, etc. 

• Diagnostic Step. Let S={s1,…,sk} where k>0  be a list of 
steps to be completed during the diagnosis. Each step si 
is defined as si = (pi, ti) where part pi is the part to check 
and the ti the task to perform. For example: step 1 is 
(thermostat, verify temperature), step 2 (switch, change 
temperature to 20 degrees), etc.  

• Diagnostic Requirements. Let R={r1,…, rk} where k>0 
be denoted as the expected requirement ri  of the visual 
observation to be satisfied at step si, and part pi. For 
example: size, coverage, color, orientation, etc. 

• Guidance Action: Let G={g1,… gl} where l>0 be a list 
of multi-modal messages  (visual, text, voice, etc.) that 
technicians need to follow. G is a function of the sampled 
observation q  at time l and its evaluation for a given step 
sj and requirements ri . For example, technician is guided 
by text messages like “move closer”, “open door”, etc.; 
and AR indicators like overlays, animations,  etc. 

3.2. Problem Overview  

Herein, given a failure f reported on an equipment E, the 
guidance problem for a visual equipment diagnosis GVED, 
is defined by the following two subproblems: 

1) Determine a diagnostic plan DP from unstructured 
sources e.g. manuals, reports. DP denotes a sequence of 
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steps S to diagnose parts P with diagnostic tasks T. Each 
part pi is physically located and visible at least one area 
aj,i within at least one viewpoint vi.  See Eq. 1. 

DP = {s1,…,sk} 

          Where          (1) 
si = (pi, ti) 

pi Ì area aj,i Ì viewpoint vi;  k>0, i>0 and j>0. 

2) Determine a diagnostic state DS from observations of the 
DP executed by the technician. DS is denoted as a 
function of the guidance G for a given observation ql of 
the step si whose outcome determines the expected state 
such as G®DS. Let observations ql be inputs from a 
variety of sources (visual, position, motion, etc.) that  
represent the state of step si or transition to si+1.See Eq.2.  

𝐷𝑆(𝜃! , 𝑠") = )
𝐺(𝜃! , 𝑠"#$, 𝑟"#$)	𝑖𝑓	𝑠" 	𝑖𝑠	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

	
𝐺(𝜃! , 𝑠" , 𝑟")	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																						

      (2) 

Where   
  ql  = {image, motion, pose} 

" i>0 is the step and l>0 is the sample time. 

3.3. Constraints 

1. Diagnostic Plan DP generation is subject to uncertain 
content of diagnosis and troubleshooting details.  For 
example, manuals or reports may include variations or 
limited information of parts, task, causes, solutions, etc.  

2. Diagnostic State DS detection is subject to four main 
constraints. First, visual equipment conditions may be 
uncertain due to encounter with intricate conditions due 
to installation field (factories, stores, etc.) and day-to-day 
usage. Second, industrial equipment usually has 
translucid materials e.g. glass or reflective surfaces e.g. 
aluminum. Third, technician’s behavior and system state 
are uncertain due to human reasoning, actions and 
motions. Fourth, state detection requires fast response 
times for effective user interaction (less than a second). 

In summary, we propose a solution that involves: 1) 
generation of a diagnostic plan DP from documents 
(manuals, reports, etc.) stated in Eq.1.; and 2) detection of the 
diagnostic state DS from perception inputs (video, motion, 
pose) to track and guide technician actions stated in Eq.2. 

4. METHODOLOGY 

We propose a general framework that enables automated 
diagnosis of equipment and ensures quality of visual 
diagnostic from a non-expert technician. To assist the 
technician during the process, our approach automates three 
mechanisms:1) generate a diagnostic plan, 2) track technician 
actions and motion; 3) guide the technician to troubleshoot 
the related parts that are possibly causing the failure.  

4.1. Guided Visual Diagnosis Framework Overview 

Figure 1 illustrates our approach that comprises three main 
components: planning, tracking and guidance. The summary 
is described as follows: 

1. Planning: To improve the slow process (e.g. days, 
weeks) of manual work needed to construct diagnostic 
plans for a large list of possible failures, we proposed an 
automated method to generate them in minutes. Figure 
1-a shows the method that automatically builds the 
diagnosis plan by querying a knowledge-graph (KG) 
constructed by leveraging LLMs. To generate the 
diagnostic plan DP, the knowledge-graph is traversed to 
find the node with the reported failure and enumerate a 
sorted list of steps using its related neighbors (parts, 
areas, viewpoint, and tasks).  The output plan with parts 
and task is sent to the diagnostic tracking process. 

2. Tracking: To accurately assist and track the technician’s 
progress at the field, e.g. customer store, factory, etc.; we 
proposed a multi-modal scene understanding method. 
Figure 1-b shows our method that combines 2D object 
detection with 3D perception inputs e.g. camera and 
motion sensors. The method analyzes the sensor inputs 
to detect semantics of spatial layout with respect to parts 
P and requirements R to evaluate i.e. viewpoints, areas 
of interest, size, orientation, position and coverage. The 
combination of the 2D nested object with 3D position 
readings ensure the correctness of the observation e.g. 
distance to the equipment, orientation, etc. The 
detections are sent to the AR Guidance component. 

3. Guidance: To enrich technicians’ experience and reduce 
complexity, time and number of visits required for 
diagnosis services, we proposed AR-based guidance. To 
make the actions intuitive for technicians, Figure 1-c 
shows that our component utilizes AR indicators 
according to the progress of the diagnostic plan DP using 
icon overlays, edge alignment, navigation indicators. 

 
Figure 1. General Framework for Visual Diagnosis Guidance 
based on AI and AR Methods. 
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4.2. Guided Diagnosis Use case 

Our vision of a guided diagnosis system is to enable effective 
maintenance and repair of complex equipment such as 
industrial machinery for medical devices, energy, 
manufacturing, etc. regardless of technicians’ domain 
experience. Industrial machinery is commonly designed with 
complex components including high reflective and translucid 
areas as shown in Figure 2. The assistant system assumes a 
technician using a mobile device e.g. a phone or tablet. The 
proposed process consists of three steps. First, the technician 
informs the failure to diagnose. Then, the system 
automatically generates the diagnostic plan DP to be 
performed. Second, the camera live feed and AR 
environment are activated, and 2D/3D detector and AR 
tracking also start running to guide the technician. Third, the 
system guides the technician to follow the steps in the plan. 
Perception sensors are sampled l times per second and 
compared to the requirements R. Depending on the evaluation 
of the observed conditions ql, the system generates guidance 
actions e.g. move to…, go closer, etc. to find the area-part of 
si or continue to next step si+1. If the area-part is successfully 
found, it is recorded automatically. The process terminates 
once all steps are completed. Figure 3 illustrates the use case. 

5. METHODS IN DETAIL  

5.1. Plan Generation Method 

The task is to determine the diagnostic plan DP that the 
technicians need to follow for a given failure f. The method 
automatically builds the diagnosis plan using two 
components: a) Knowledge Graph Builder (KG) by 
leveraging LLMs and b) Plan Generator by querying the 
constructed graph. Figure 4 shows the proposed method, and 
the details are explained in the following sections.  

5.1.1. Knowledge-Graph Builder 

To construct a knowledge graph, the component uses free text 
from existing manuals, and reports where elements are 
examined when a problem is reported. To achieve this, we 1) 
leveraged ontology design to define main concepts for 
building the KG, 2) used a LLM to extract part-task entities 
from documents, and 3) developed an algorithm to extract 
spatial entities from image annotations.  

 
Figure 2. Example of Industrial Machinery for Services like 
Medical, Food, Consumer, Electronics, etc. [19] 

 
Figure 3. Example of the proposed Use Case for Guided 
Visual Equipment Diagnosis 

a. Ontology design: Our ontology enables reasoning with 
categories of {parts P, tasks T, areas A, viewpoints V, 
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extracted from text using a LLM described below. 
{Viewpoint, area and part relationship} are extracted 
from the image annotation dataset described below. 
Figure 4-a1 shows the classes and relations required to 
create the diagnostic plan DP for the failure f. 

b. LLM-based Entity Extraction: To automate the 
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extract the annotations, and the portion of the images 
related. Then, we compute the intersection of union 
(IoU) to automatically determine the area and viewpoint 
of the part. Finally, we use the extracted triplets 
(viewpoint, area, part) to add to the knowledge graph as 
seen in Figure 4-a3. 
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Figure 4. Functional Design for Diagnostic Planning 
Component. 

The list is sorted by viewpoint to minimize the movement 
during the diagnosis. Figure 4.b shows the plan generator 
modules. 

5.2. Diagnostic State Detection Method 

With the goal of understanding the diagnosis state performed 
by the technicians, we proposed scene understanding 
methods that uses perception sensors (camera and motion) to 
determine the visible objects, and their size, orientation, 
position, and the relation with respect to the checklist plan. 
To achieve this, the component uses 2 main modules: 2D area 
detection (Nested Object Detection) and 3D positioning. 
Figure 5 shows the diagnosis tracking modules and flow. 

5.2.1. Nested Object Detection 

The task involves detecting spatial information to assess the  
diagnostic state with respect to the technician, equipment, 
and environment including the viewpoint (e.g. top, middle, 
etc.) and areas of interest (e.g. controller, refrigeration, etc.) 
to initiate checklist AR guidance. Traditional object detectors 
should work off-the-shelf; however, certain  characteristics 
of the machines, such translucid areas, reflection, and 
uncertain conditions, hinder achieving good accuracy with 
these models.  

We proposed a nested object detector to boost detection 
accuracy, especially for translucid or high reflective surfaces 
in which conventional detectors fail. We defined nested 
annotations of parts, areas, and viewpoints with the following 
definitions: 

 
Figure 5. Functional Design for Diagnostic Tracking 
Component. 

a. Definitions 
• Spatial Objects (Viewpoint+Areas): Defined as 

spatial identification of the object (part) with respect 
to the 3D planes of the equipment viewpoints V and 
areas A. The detector is trained with labels such as 
{(front, top), (front, middle)}. 

• Parts: Areas of interest that the technician needs to 
evaluate. For example, filter, container, handle, etc. 

• Key Anchor Objects: We named anchor objects 
(KaO) as those objects well defined by shape, 
contrast, light, color, etc. Key anchor objects include 
a set of 1 or more objects nested on the target 
viewpoints-areas, where KaOj,i Î A Î V, i>1 and j>1. 
The key anchor objects are selected to propagate loss 
function activation for area and viewpoint classes. 

• Spatial relationships: We use viewpoint + area 
detections to localize the part and guide the 
technician. 

Figure 6 displays the example of the object definitions above. 
We show the areas of interest: top, middle (mid) and bottom 
for a viewpoint front: front-top, front-mid, front-bottom.  

a. Training: We selected and labeled visual semantics with 
nested objects (parts, key anchor objects-parts) and outer 
target objects (viewpoint + area). Our task is to detect the 
viewpoints-area for navigation and parts for diagnosis. 

a. Inference: During the diagnosis, we run the inference 
every three frames per second. We select detections with 
confidence score greater than 0.5. 
• To improve viewpoint-area detection, anchor 

objects are used to imply and inhere confidence 
score where viewpoint-areas are compromised by 
reflection or translucid areas. 

• The detected bounding boxes  are utilized to 
determine the relative size, 2D position and 
coverage within the scene. We leverage the result of 
object detection (bounding boxes of object of 
interest) to calculate object size within the image 
frame and estimate their expected area coverage. 

• Finally, to determine the 2D spatial semantics of the 
object, we used objects localization and orientations 
in the scene to validate requirements.  

 

 
Figure 6. Example of Nested Objects for Boosting 
Activation of Areas and Viewpoint Classes. 
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5.2.2. 3D Positioning Detection 

As presented in Figure 5-b, 3D Positioning method utilizes 
motion sensor readings to determine the orientation and 
perspective in terms of roll and pitch. The proposed method 
leverages the accelerometer and gyroscope sensors available 
on handheld devices.  The goal of this module is to detect the 
orientation and alignment of the camera relative to the area 
of interest (i.e. while holding the handheld device). Sensor 
readings are integrated with the object detection outcomes 
(bounding boxes of object of interest) to determine distance 
to the object, its size, orientation and whether it is centered in 
the frame.  For example, in an area of interest, valid sensor 
readings should indicate a 90-degree vertical alignment view, 
allowing orientation markers to indicate if the camera’s 
orientation is correct or not. 

6. EXPERIMENTS AND RESULTS 

We performed experiments to study the feasibility of our 
proposed framework in the key methods: 1) plan generation 
for diagnosis, and 2) state detection for tracking and guiding. 

6.1. Plan Generation Method 

To evaluate the performance of the generated plan for 
diagnosis, we did a study of the entity relation (ER) extraction 
using LLM. Entity extraction of parts and tasks is the core 
component to construct the knowledge graph and directly 
represents the performance that can be achieved for the 
generation. Once the extraction is done, we assume that 
querying the graph is straightforward. We emphasized 
extraction performance to gauge the effectiveness of the plan 
generation. Traditional approaches required extensive 
datasets to achieve acceptable performance in ER problems 
as mentioned in Section 2. Therefore, our goal is to measure 
achievable performance using small datasets while 
leveraging LLM.   

6.1.1. Dataset settings 

We used troubleshooting sections from publicly available 
manuals of two types of equipment: smart refrigerator [14], 
and vending machine [15]. The troubleshooting descriptions 
were extracted from their manuals which commonly specifies 
parts related to the failure and tasks to identify the root cause. 
We constructed a testing dataset of 100 records for each 
equipment. Figure 7 shows a snapshot of a type of equipment 
and descriptions used. Additionally, we used private 
industrial machinery datasets to evaluate our methods. 
However, due to confidentiality restrictions, we have only 
reported public datasets and results. 

6.1.2. Experiment Settings 

We prepared 3 types of experiments using a LLM model.  

 
Figure 7. Examples of Troubleshooting Description for a 
Refrigerator and Vending Machine. 
 

Specifically, given the known performance and popularity of 
ChatGPT, we evaluate GPT 4.0 models as a completion task 
with different prompting approaches.  The goal is to study the 
minimum data requirements that maximize the precision of 
entity relation extraction. To evaluate that, the experiment 
design consists of prompt elicitation as follows: 

1. One-shot prompt (P-1S). Prompts designed to provide 
a troubleshooting description from manuals. We instruct 
the system to extract parts and task related to the 
description.  

2. One-shot prompt with example (P-1SE). Prompts 
designed to provide a troubleshooting description from 
manuals. We instruct the system to extract parts and task 
related to the description along with an example of parts 
and task extracted from the given description.  

Additionally, we also analyzed the impact of extended 
context. To do this, prompts are designed in two ways: 

a. Specific context: For each description record, we 
instantiate a new a session with ChatGPT which ensures 
no previous context of our manuals can be related during 
the model completion. 

b. Extended context: We instantiate a single session for 
the testing dataset which facilitates model completion to 
use previous context of our manuals. 

Experiments with extended context prompt with the postfix 
“+” such as P-1S+ and P-1SE+. For example, P-1S+ refers 
to the experiment with one-shot prompt with extended 
context. Figure 7 shows examples of the prompt descriptions. 

6.1.3. Evaluation Method 

Evaluating ChatGPT results is complicated due to 
hallucinations and semantically similar response with 
different words. To overcome this challenge, we used 
ChatGPT as an evaluator instructed with a classifier prompt. 
The role was to determine if the extraction is correct or not 
(Yes/No).  If the extraction was incorrect, ChatGPT was asked 
to determine if the extraction may be related, implied or 
inferred from the text with Yes/No response. If the subsequent 
response was Yes, we assumed the extraction result was a 
hallucination, otherwise we treat the extraction as incorrect.  

Equipment: Refrigerator
Failure: Cooling systems is 
running to much. 
Troubleshooting Description:
The doors are opened, or food
containers are obstructed areas.
Verify doors alignment and
containers organization. The
amount of food or warm food
required the compressor to run
longer. Verify food temperature
volume in containers. Test
thermostat operations.

Equipment: Vending machine
Failure: Coin mechanist not 
accepting coins. 
Troubleshooting Description:
Coin mechanism harness to
control board is cut or
disconnected. Check changer
harness. Shor in coin mechanism.
Unplug all harnessing from
control board and test coin
mechanism connection
acceptance, if accept, re-plug and
test acceptance again.
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6.1.4. Evaluation Metrics 

We used 3 main metrics: 

1. Precision:  True Positives are defined as extractions that 
were classified correctly as mentioned in the description. 
False Positive are defined as extractions that were not 
mentioned in the description.  

2. Hallucination Rate (HAL-R): Hallucination is defined 
as the extraction that could be implied, referred or related 
as a potentially correct answer even though it is not 
explicit in the description.  

3. Precision + HAL-R: We redefined True Positive as the 
traditional true positive that also accounts for the correct 
hallucinations, defined as TP = TP + HAL.  False 
Positives are extractions that are neither mentioned and 
are not hallucinations. 

6.1.5. Results  

The results in Tables [1,2] show that our proposed KG 
construction method is feasible. Specifically, precision is 
above 92.83% for part extraction and 84.59% in tasks. When 
considering hallucination as true positives, then 
Precision+HAL is at least 95.34% for parts and 92.74% in 
tasks.  Figure 8 shows examples of the input and output 
obtained in the experiments. Results summary is as follows:  

1. Prompt Comparison: Based on the three types of 
prompts studied, the results show: 

• One shot result: Providing instructions helps but 
providing a relevant example along with the 
instruction boost the precision. For example, a 
maximum gain of 18.02% was achieved between P-
1S+ and P-1SE+ of refrigerator experiments. 
Overall, all the experiments with instruction and 
example tuning increased their precision and 
reduced hallucination. 

• Extended context results: Including extended 
context (P-1S+ and P-1SE+) does not exhibit any 
consistent pattern. We hypothesize that this is 
because previous descriptions do not necessarily 
have overlapping information that may improve the 
performance. 

2. Hallucination Comparison. The hallucination gain 
confirms our premise of using pre-trained LLMs help to 
infer or imply information when it is not provided in the 
context. For example, we observe a gain due to 
hallucination up to 11.22% for parts and 15.62% for task 
in the refrigerator. However, the gain from hallucination 
also depends on type of equipment. As mentioned, 
above, vending machines are less common equipment, 
and we only observed a gain up to 6% from 
hallucination. 

 

 

 

Figure 8. Examples of experiments input and outputs. 

Finally, we conclude that acceptable performance is achieved 
by fine-tuning prompts with few instructions and relevant 
examples of the context. This technique minimizes the 
uncertainty of the equipment context in the pre-trained 
model. At the same, it is recommended to tailor the prompt 
with instructions for finding related and inferred entities, 
which will benefit finding correct hallucinations from 
common equipment. 

6.2. Diagnostic State Detection Method 

To evaluate the performance of the Diagnostic State DS 
detection, we designed experiments focusing on our proposed 
2D area detection with nested parts. Area detection serve as 
a crucial component to evaluate the feasibility and 
effectiveness of tracking diagnostic steps and guidance 
indicators. Once the areas of interest and parts are identified, 
the system automatically use 3D positioning to determine the 
appropriate guidance actions. Traditional approaches have 
struggled to detect areas of interest across varying conditions 

System Prompt:
Given a refrigerator failure, your role is to
determine parts and diagnosis task to find a root
cause of a failure. List the parts and task as
{(part=?,task=?)}

User Prompt:
For this description: Refrigerator cooling system run
too much. The doors are opened, Test thermostat
operations. Which parts and tasks should I
troubleshoot to find the root cause of this failure?

LLM Output:
{(part=Refrigerator cooling system, 
task=Check if it's running too much), 
(part=Refrigerator doors, 
task=Check if they are opened or closed properly), 
(part=Thermostat, 
task=Test its operations)}

One-shot Prompt One-shot Prompt + Example
System Prompt:
Your role is to determine parts and diagnosis task to find a root
cause of a failure. For example: Refrigerator cooling system
run too much. The doors are opened, … Test thermostat
operations. Extract the parts and task to diagnose the failure.
List the parts and task as {(part=?,task=?)}. For example:
{(part=doors, task= check opening),…,(part = thermostat, task
=test operation)}”.
User Prompt:
For a given description: Refrigerator temperature is low, check
thermostat and verify the temperature can be adjusted, if it is
not working if verify compressor is working. Turn on and off
compressor. Which parts and tasks should I troubleshoot to
find the root cause ?

LLM Output: 
{(part=thermostat, 
task=check and verify temperature adjustment), 
(part=compressor, 
task=verify operation), 
(part=compressor, task=turn on and off)}

Table 1. Results of Parts and Tasks Extraction 
 for a Smart Refrigerator 

 Part Extraction Task Extraction 

Prompt 
Type 

Precision 
(%) 

HAL-R 
(%) 

Precision
HAL+(% 

Precision
(%) 

HAL-R  
(%) 

Precision
HAL+ % 

P-1S 77.33 6.22 83.56 71.56 15.56 87.11 
P-1S+ 74.81 6.11 80.92 68.32 16.41 84.73 
P-1SE 
 

94.49 2.94 97.43 84.56   7.35 91.91 

P-1SE+ 92.83 2.51 95.34 84.59   7.89 92.47 

 
 Table 2. Results of Parts and Task Extraction 

 for Vending Machine 
 Part Extraction Task Extraction 

Prompt 
Type 

Precision 
(%) 

HAL 
(%) 

Precision
HAL+(%) 

Precision 
(%) 

HAL  
(%) 

Precision
HAL+(%) 

P-1S 88.22 3.7 91.91 89.74 6.62 96.36 
P-1S+ 88.41 3.64 92.05 89.74 6.62 96.36 
P-1SE 
 

95.26 2.19 97.45 93.43 3.64 97.08 

P-1SE+ 94.12 2.09 97.21 94.08 1.74 95.82 
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of  equipment installment, lighting and materials Our 
approach also rely on small datasets while leveraging LLM.   

6.2.1. Dataset settings 

We collected few samples from public sources for two types 
of equipment: refrigerator and vending machine. We collect 
200 images which were manually annotated for each type of 
labels: a) viewpoints e.g. front and left; b) target areas e.g. 
top, middle and bottom; c) parts such as control panel, water 
dispenser, product dispenser, etc. ,as shown in Figure 9. Each 
dataset was split into training, validation and testing and we 
also applied common data augmentation techniques to 
increase the dataset size. We also used private datasets, but 
we do not reported due to confidentiality  restrictions. 

6.2.2. Experiments settings 

To evaluate the performance of the models, we defined two 
types of experiments: 

1. Equipment Areas (Baseline): A model using only the 
target areas that enable tracking of technician and 
navigation assistant to complete the diagnostic plan. This 
experiment represents a traditional approach for training. 

2. Proposed Nested Areas (Nested Areas): A model using 
nested object represented by parts Ì areas Ì viewpoints.  

It is important to mention that a model focused solely on parts 
is inadequate for navigation purposes. In equipment featuring 
glass doors or windows, parts are commonly visible from 
multiple areas and viewpoints, making a part-centric model 
unsuitable for tracking visual observation and motion. 

6.2.3. Evaluation Method 

The proposed models were trained using Yolo detection 
networks. The Yolo’s family is renowned for its real time 
capabilities, thus satisfying the requirement of sampling 
diagnostic states close to real-time for effective human 
interaction. We built models for object detection by training 
Yolo Object detector.  We choose Yolo networks that are 
known to be low latency detectors with acceptable accuracy 
(>80%). We evaluated each experiment using the two 
versions of Yolo network: Yolov7 and Yolov9 [17,18].  

 
Figure 9. Examples of Visual Dataset with Viewpoint+Areas 
of Refrigerator and Vending Machine 

6.2.4. Metrics 

The experiments are evaluated the traditional object detection 
metrics: Precision, Recall and Mean Average Precision 
(mAP). Precision and Recall measures  the accuracy and 
completeness of object detection, respectively. Meanwhile, 
mAP combines Precision, Recall and confidence score into a 
single metric, which then averaged across all the classes to 
provide an overall measure of detection performance. 

6.2.5. Results 

Our goal was to boost performance in challenging areas of 
the equipment, specifically subject to glass or reflective 
areas. Therefore, we used a refrigerator and vending machine, 
which often features reflection and translucid areas.  Table 3 
and 4 provide a comparison between our proposed method 
and baseline approach. We can summarize the results as 
follows: 
 
1. Refrigerator Results. The results indicate that our 

model effectively balances recall and precision 
performance, particularly in the bottom area. 
Specifically, in the YoloV7 column, refrigerator front-
bottom area initially had a low recall of 56.20% and 
improved to 71% with our method. As seen in Figure 8, 
front-bottom picture is a problematic aluminum surface.  
Additionally, we observed the mAP50 improved 10.30% 
for both bottom and top areas, while the middle area 
remains with similar performance level. We conclude 
that the middle part is well defined, showing a sufficient 
difference compared to top and bottom areas, as 
illustrated in Figure 8. 

2. Vending machine Results. The results highlights that 
the middle area is particularly problematic. See Figure 8 
in middle area picture is a translucid area that can be 
confused reflections. In the YoloV7 column, the recall 
rate of 56.20%   improved up to 75% with our method. 
Similarly, mAP50 shows overall improvement across all 
the areas.  

 

Front-Top Front-Bottom

Refrigerator

Vending 
Machine

Front-Middle

Table 3. Results of Area Observation State of a 
Refrigerator 

 
  Yolov7 Yolov9 
Exp. 
type 

Object 
class 

Precisi
on (%) 

Recall 
(%) 

mAP50 
(%) 

Precisi
on (%) 

Recall 
(%) 

mAP50 
(%) 

Baseline Front-
Top 

84.60 71.00 67.10 97.50 100.00 99.30 

Front-
Middle 

69.20 56.20 43.80 96.70 94.50 96.20  

Front-
Bottom 

79.07 72.30 66.07 82.10 100.0 98.80 

Nested 
Areas 

Front-
Top 

86.00 69.50 70.00 100.00 100.00 99.50 

Front-
Middle 

92.10 75.00 74.40 97.60 100.00 98.60 

Front-
Bottom 

89.05 72.25 79.97 88.20 93.80 93.70 
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3. Network comparison. We observe the YoloV7 network 

benefited the most from our method. Meanwhile, both 
methods exhibit excellent performance with YOLOv9, 
with nearly all scores above 95%, leaving little room for 
improvement with the nested approach. This significant 
improvement for small objects with YOLOv9 is 
attributed to its new architecture design. As reported by 
the authors [17], YOLOv9 introduces a new tool called 
Programmable Gradient Information (PGI), which adds 
a sidetrack to help the model retain and utilize crucial 
details.  In our context, small objects are often nested  
within areas, which may explain why the gain was 
smaller with our method. Overall, the method shows an 
improvement in the complicated areas by up to 2.4 %.  

Finally, we implemented a prototype as mobile App. Figure 
10 shows screenshots of our system which was successfully  
validated with internal machinery and technicians. 

7. CONCLUSION 

We presented a novel framework designed to automate and 
facilitate the guidance for technicians performing onsite 
support services. Our design exploits cutting-edge 
technologies such as LLMs to eliminate human-intensive 
tasks and AR/2D detectors to enhance human interaction. The 
proposed methods enable a general framework which is 
applicable to a wide range of equipment diagnosis. To offer 
such as extensibility, we create a knowledge graph. We 
leverage ChatGPT to extract parts and task combined with 
image annotations to map spatial definition of the parts. Our 
2D object detection model combined with 3D positioning 
overcomes intrinsic machinery challenges such as translucid 
areas and high reflection. Our experiments show the 
feasibility of our proposal. We implemented a prototype and 
conducted a system validation with real technicians. We plan 
to extend our approach in two dimensions: 1) detection 
models for diagnosis, and 2) user experience. We will 
investigate diagnosis recommendation methods from our 
sequence of images. Finally, we will explore techniques to 
make remote assistance more effective and immerse such as 
virtual reality (VR) and haptic devices. 

  
Figure 10. Screenshot of our System Prototype Implemented 
for Guided Diagnosis for Refrigerators. 

REFERENCES 
[1] Shalaby, W., Arantes, A., GonzalezDiaz, T.,; Gupta, C. (2020, June). 

Building chatbots from large scale domain-specific knowledge bases: 
Challenges and opportunities. In 2020 IEEE (ICPHM) (pp. 1-8). IEEE 

[2] Gonzalez, Teresa. et. al Guided Visual Inspection enabled by AI-based 
Detection Models. (2021).  1-8. 10.1109/ICPHM51084.2021.9486573.  

[3] Hütten, N.; Alves Gomes, M.; Hölken, F.; Andricevic, K.; Meyes, R.; 
Meisen, T. Deep Learning for Automated Visual Inspection in 
Manufacturing and Maintenance: A Survey of Open- Access 
Papers. Appl. Syst. Innov. 2024, 7, 11.  

[4] Jang, J.; Shin, M.; Lim, S.; Park, J.; Kim, J.; Paik, J. Intelligent Image-
Based Railway Inspection System Using Deep Learning-Based Object 
Detection and Weber Contrast-Based Image 
Comparison. Sensors 2019, 19, 4738.  

[5] Cabot, P., Navigli, R. REBEL: Relation Extraction By End-to-end 
Language generation. In Findings EMNLP 2021 

[6] Gilardi, F., Alizadeh, M., & Kubli, M. (2023). Chatgpt outperforms 
crowd-workers for text-annotation tasks. Proceedings of the National 
Academy of Sciences 2023 

[7] Wang, C., Liu, X., Song, D. (2020). Language models are open 
knowledge graphs. arXiv preprint arXiv:2010.11967. 

[8] Wadhwa S, Amir S, Wallace BC. Revisiting Relation Extraction in the 
era of Large Language Models. Proc Conf Assoc Comput Linguist 
Meet. 2023 Jul;2023:15566-15589 

[9] Wang, K., Lin, Y., Weissmann, B., Savva, M., Chang, A. Ritchie, D. 
(2019). PlanIT: planning and instantiating indoor scenes with relation 
graph and spatial prior networks. ACM Transactions on Graphics. 38.  

[10] Lasitha Vidyaratne1, Xian Yeow Lee1, Aman Kumar1, Tsubasa 
Watanabe2, Ahmed Farahat1, Chetan Gupta, ICPHM 2024 

[11] Ha H, Song S. Semantic abstraction: Open-world 3d scene 
understanding from 2d vision-language models. In6th Annual 
Conference on Robot Learning 2022 Aug 15. 

[12] Mendoza-Ramírez, C.E.; Tudon-Martinez, J.C.; Félix-Herrán, L.C.; 
Lozoya-Santos, J.d.J.; Vargas-Martínez, A. Augmented Reality: 
Survey. Appl. Sci. 2023, 13, 10491 

[13] I. Permozer and T. Orehovački, Utilizing Apple’s ARKit 2.0 for 
Augmented Reality Application Development, (MIPRO), 2019 

[14] Refrigerator Manual, URL: https://www.lg.com/us/support/manuals-
documents,  Visited 07/2024 

[15] Vending Machine manual, https://www.royalvendors.com/customer-
service/technical-info/manuals/manuals-vendors/, 07/2024 

[16] Wang, Chien-Yao & Bochkovskiy, Alexey & Liao, Hong-yuan. 
(2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art 
for real-time object detectors. 

[17] Wang, Chien-Yao et al. “YOLOv9: Learning What You Want to Learn 
Using Programmable Gradient Information.”  (2024). 

[18] Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M.A., Socher, R., 
Amatriain, X., & Gao, J. (2024). Large Language Models. 

[19] JRAutomation Product Brochure 2024, https://www.jrautomation.com/ 

Technician confirmation of the 
diagnostic plan

System guidance 
to complete a 

diagnostic step

1

2

Move closer to part: control Pannel

Control Panel: Check status of temperatureTable 4. Results of Area Observation State of a Vending 
Machine 

 
  Yolov7 Yolov9 
Exp. 
type 

Object 
class 

Precisi
on (%) 

Recall 
(%) 

mAP50 
(%) 

Precisi
on (%) 

Recall 
(%) 

mAP50 
(%) 

Baseline Front-
Top 

  97.30 89.70 90.20 97.50 100.00 99.30 

Front-
Middle 

100.00  0.71   0.715   96.70 94.50 96.20 

Front-
Bottom 

100.00  56.20 56.80 82.10 100.00 98.80 

Nested  
Areas 

Front-
Top 

  95.10 100.00 98.60 100.00 100.00 99.50 

Front-
Middle 

   97.80 71.00 71.20 97.60 100.00 98.60 

Front-
Bottom 

   92.30 75.00 75.40   85.90 100.00  98.40 
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