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Unsupervised Domain Adaptation (UDA)

Li X., Et al.(2019). Multi-layer domain adaptation method for rolling bearing 
fault diagnosis. Signal processing, 157, 180-197.
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Unsupervised Domain Adaptation (UDA)
Problems:

 Domain alignment might struggle when there is a large gap between source and target
domain

 Real-world data often exhibit high variability in operational conditions and failure modes

 UDA models risk overfitting to source data when target domain information is insufficient
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Unsupervised Domain Adaptation (UDA)
Problems:

 Domain alignment might struggle when there is a large gap between source and target
domain

 Real-world data often exhibit high variability in operational conditions and failure modes

 UDA models risk overfitting to source data when target domain information is insufficient

Our work:

Use Data Augmentation to generate realistic synthetic data in the target 
domains to help UDA to better aligns the domains
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Data Augmentation
Artificially generating new data from existing data

Label: Cat Label: Cat

RUL: 10 Cycles RUL: 10 Cycles 
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Data Augmentation – Cycle GAN

Cycle GAN

Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial 
networks." Proceedings of the IEEE international conference on computer vision. 2017.

 No need for paired data

 No need for labels
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Data Augmentation – Cycle GAN

Cycle GAN

Pu, Ziqiang, et al. "Sliced Wasserstein cycle consistency generative adversarial 
networks for fault data augmentation of an industrial robot." Expert Systems with 
Applications 222 (2023): 119754.

Saravanan, et al. "TSI-GAN: Unsupervised Time Series Anomaly Detection Using Convolutional Cycle-
Consistent Generative Adversarial Networks." Pacific-Asia Conference on Knowledge Discovery and 
Data Mining. Cham: Springer Nature Switzerland, 2023.

Machine A Machine B

Schockaert, Cedric, and Henri Hoyez. "Mts-cyclegan: An adversarial-based deep mapping 
learning network for multivariate time series domain adaptation applied to the ironmaking 
industry." arXiv preprint arXiv:2007.07518 (2020).

*
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Experimental setup
Dataset: NASA C-MAPSS

Saxena, A., et al. (2008). Damage propagation modeling for aircraft engine run to failure 
simulation. In 2008 international conference on prognostics and health management (pp. 1–9)Preprocessing:

- Normalization in [-1;1]
- Sliding window of length 50
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Experimental setup - DANN
Domain Adaptation (1)

Inspired from Nejjar, Ismail, et al. "Domain adaptation via alignment of operation profile for Remaining Useful 
Lifetime prediction." Reliability Engineering & System Safety 242 (2024): 109718.
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Experimental setup - CORAL
Domain Adaptation (2)

Sun, Baochen et al. "Correlation alignment for unsupervised domain adaptation." Domain 
adaptation in computer vision applications (2017): 153-171.
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Experimental setup - Metrics
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Results – Data Augmentation Quality
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Results – RUL Prediction
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Results – RUL Prediction

Single to Multiple Op. Conditions

No improvement / Worsen
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Results – RUL Prediction

Multiple to Single Op. Conditions

Improvement
(no improvement ?)
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Results – RUL Prediction

Likely the same conclusions
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Results – RUL Prediction

Likely the same conclusions
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Dorian Joubaud
Doctoral Researcher
dorian.joubaud@uni.lu
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