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ABSTRACT

This paper addresses the clustering of flight phases of a light
aircraft for health monitoring using vibration data. The aim
is to improve diagnostic and prognostic functions. Grouping
condition monitoring data under similar operating conditions
is significant for predictive maintenance. Clustering also sup-
ports advanced analytics for fault detection and estimation of
remaining life. The proposed framework uses self-organizing
maps for flight phase clustering. The findings show that the
algorithm can recognize and classify flight phases in various
operational domains. Additionally, visualization of cluster
maps uncovers complex patterns and non-linear relationships
in sensor data under different flight conditions. As a follow-
up, analyzing the vibration properties within these estimated
clusters (regimes) provides insights from condition monitor-
ing data behavior during flight phases. The results confirm the
effectiveness of the method, but also confirm that determining
light aircraft regimes requires more focus due to their unique
flight patterns that are absent in commercial airliners. In this
context, this research has dealt with these unique patterns and
provided the foundation for a new model for clustering with
an attempt to contribute valuable insights into improving the
reliability and efficiency of light aircrafts.

1. INTRODUCTION

Clustering aircraft condition monitoring data across multiple
flight phases supports advanced analytics. Grouping data un-
der similar operating conditions is key to transfer valuable
data features to fault diagnosis and prognosis. Therefore, de-
termining flight phases has the potential to improve the air-
craft service life. In this regard, this study focuses on ob-
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taining features from flight data by taking into account flight
phases. Although the literature have paid attention to var-
ious aspects of aircraft health monitoring (Kordestani, Or-
chard, Khorasani, & Saif, 2023), little is known about the
specific methods for flight phase identification when it comes
to light aircraft. Much of the existing research focuses on
general aviation or commercial airliners (Bektas, 2023; Lyu,
Thapa, & Desell, 2024). This leaves a gap in the litera-
ture regarding light aircraft. Furthermore, the integration
of advanced clustering techniques like self-organizing maps
(SOM) with further predictive maintenance analytics remains
under-explored. This gap is significant because the operating
conditions and maintenance needs of light aircraft differ from
those of larger aircraft. Addressing such a gap can improve
reliability while reducing maintenance costs. This study com-
bines SOM and vibration analysis to address this. This is a
novel methodology specifically designed for light aircraft.

Flight data monitoring is a routine of data collection and
analysis applied in commercial operations (Gavrilovski et al.,
2016). Therefore, it deals with big data where it is not pos-
sible to manually review all the collected information by hu-
man experts (Oehling & Barry, 2019). Instead, the literature
has witnessed various studies on the use of data mining and
machine learning techniques to analyze flight data. In par-
ticular, transient flight phases can reveal more information,
and clustering can help discover hidden insights from both
frequent and infrequent flight phases. For this purpose, a pre-
vious study by (Bektas, 2023) grouped the phases of flight
data according to the most important sensor readings. How-
ever, this study was for an airliner with regular flight regimes.
However, the same tool introduced for self organizing maps
(SOM) training by Wittek and Gao (Wittek & Gao, n.d.),
called Somoclu, can also provide advanced visual inspection
for light aircraft.

With such clustering mentioned above, flight phases can be
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identified and an additional data transformation analysis can
be performed for a better feature engineering. Vibration anal-
ysis can play a critical role here, as it is a common condi-
tion monitoring scheme used in industry for machine systems
and is considered an effective tool for fault diagnosis and
prognosis (Amirat, Benbouzid, Al-Ahmar, Bensaker, & Turri,
2009; Yang, Tavner, & Wilkinson, 2009; Chen, Matthews, &
Tavner, 2015; Saidi, Ali, Bechhoefer, & Benbouzid, 2017).
Although these vibration-based methods have mostly found a
place in literature to detect rotating equipment malfunctions
with various techniques, (Yang et al., 2009; Ali, Fnaiech,
Saidi, Chebel-Morello, & Fnaiech, 2015; Saidi et al., 2017;
Ali, Saidi, Harrath, Bechhoefer, & Benbouzid, 2018), it has
been shown in previous studies that they can be used to un-
derstand the health of smaller aerial vehicles such as drones
(Bektash & la Cour-Harbo, 2020). This provides an appli-
cation potential for light aircraft. Therefore, following the
clustering phase, the study aims to gain a comprehensive un-
derstanding from the vibration analysis associated with flight
characteristics that differ in each regime. This will be done
by comparing the theoretical analysis of the Welch method
for the application of the Fourier transform (Power spectrum
estimation) (Welch, 1967) . The method is used as a slider of
a window to create a status display of flight performance.

The remainder of this paper is structured as follows: it first
presents the research procedures and data analysis in the
methodology section. As the study is conducted in the con-
text of light aircraft health monitoring, the methodology is
validated using real flight data from a light aircraft operat-
ing under different conditions and environments. Therefore,
the methodology section is followed by testing of the meth-
ods and findings of the research inquiry. The paper concludes
with a discussion of implications and further work.

2. METHODOLOGY
2.1. Self Organizing Maps

SOM is an unsupervised-learning method that transforms
complex and nonlinear relationships of an incoming sig-
nal pattern into simple geometric relationships on a low-
dimensional map (Kohonen, 1990). This compresses data
while preserving primary data relationships (Kohonen, 1998).
The SOM configuration used for clustering features a fi-
nite two-dimensional grid of regular nodes. Each node is
linked to a weight vector (W = {wy(t),...,wi(t)}), rep-
resenting a position in the input space. The nodes remain
fixed in the map space (M = {my,...,my}). Training in-
volves moving the weight vectors towards the initial input
data (X = {z(t) | t € {t,,...,ts}} ) (Kohonen, 2013).

Data points are mapped to their best matching (BMU), the
node whose weight vector is most similar to the input.

BMU(z(t))=n, € M (1

where the unit’s distance is lowest.

d(x(t), wy(t)) < d(x(t),w;(t))  Vw,(t) e W, (2)
Here, the nodes are organized on a 2D grid with two coor-
dinates. BMU weights along with the nearby nodes are ad-
justed toward the input vector. The adjustment magnitude de-
creases over iterations and with the distance from the BMU
as:

wy(t+ 1) = wy () + ah, () —wy(8)  3)

a (the learning factor) ranges between 0 < o < 1, and hy, (%)
(the neighborhood function) represents the distance between
neurons across iterations. This function decreases for nodes
farther from the BMU on the grid. A Gaussian function is
commonly used to describe the function.

hy, = exp(‘”;b(t‘)””), @)

Training repeats each epoch on the same dataset to improve
fit and stops when hy, (t) decreases enough. A batch for-
mulation is used in parallel implementations for updating the
weights.

gy he, ()2 (t)
Sy o, (1)

2.2. Power Spectral Density Estimation by Welch’s
method

w;(tr) &)

The next part of the framework uses the Welch method apply-
ing the Fourier transform to power spectrum estimation. The
method uses a sliding window to form a condition indicator
of flight performance.

The power spectral density (PSD, P,.(f)) or power spec-
trum is the measure of a signal’s power content falling within
given frequency bins. A periodogram, for a finite time series
xg, ..., LN _1, is defined as

Pelf) = 5 IX (0P (6)

X (f) is the Fourier transform of a sample sequence.

N-1
X(f)=> zn)e ¥ f=0..,N-1 (I
n=0

The time series can then be transformed into a spectrum of
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Figure 1. Representation of Proposed Aircraft Health Monitoring Methodology and Key stages
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Welch’s method, an adaptation of this conventional method
(Welch, 1967; Barbé, Pintelon, & Schoukens, 2009), is car-
ried out by splitting the time series into sequential segments.
The periodogram formula is used for each segment, and the
average is calculated (Smith III, 2011).

Here, the first and second segments can be given as

je{o0,1,..,L—1}
je{0,1,...,L -1}

1(7) = 2(4), ©)
x2(j) = =(j + D),
The next modification involves weighting the segments with a
window function. Applying these to the periodogram formula
provides the “modified” periodogram.

N 1| 2
B = 57 | D wnw(@e " (10)
§=0

where N is the number of observed data, £ = 1,...., K and
K is the total number of segments. U, on the other hand,
corresponds to a normalization factor for the power in the
window function (Proakis, 2001).

1
U= 3 w) (n

Eventually, PV (f), takes the mean of these modified peri-
odograms.

K
PL(f) = % > PR (12)
k=1

In Figure 1, the methodology is shown as a sequential work-
flow from data collection to clustering and vibration analysis.
This process ultimately leads to aircraft health monitoring in-
sights.

3. TESTING AND RESULTS

The data record, which is processed in this paper, comes
from a series of in-flight measurements on VUT-100 Co-
bra airplane manufactured by Evektor company. The cam-
paign started as a prequel to measurements using newly de-
veloped sensing skin within the AVATAR project. In this pre-
liminary phase, the aircraft was equipped with a network of
14 accelerometers distributed to various locations of the air-
craft. This network generated acceleration signal on 18 chan-
nels, because some of the accelerometers were triaxial. The
sampling frequency was set to 1000 Hz, taking into account
the engine ignition frequency typically in flight in the range
of 110-135 Hz. Apart from these acceleration signals, sig-
nals retrieved from AHRS (Attitude and Heading Reference
System) were also recorded, this time with 10 Hz sampling
frequency. These outputs concern some basic flight char-
acteristics, as is the height of the flight, speed, GPS posi-
tion, etc. Both types of input were recorded using the imc
CRONOScompact 400-11 data acquisition unit. Although the
data comes from one general service flight, it includes various
flight phases, which makes it sufficient to test the relevance of
the clustering method. The inclusion of multiple flight param-
eters across different phases ensures that clustering results are
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Figure 2. Flight Data Used in the Clustering and Estimated Component Planes: x and y-axes represent the grid of SOM neurons
where clustering estimated. Coloring of component planes indicates the value of the input variable for each neuron.

valid for similar operational conditions.

The flight data used in the clustering and estimated compo-
nent planes are shown in Fig. 2 where the x and y-axes rep-
resent the grid of SOM neurons. Each subplot here has a
structure representing a specific flight data parameter mapped
into a component plane. Clusters here formed using the SOM
and the Euclidean distance between neurons on a 2D grid.
Each neuron represents a weight vector, and clustering oc-
curs when nearby neurons exhibit similar weight vector pat-
terns across input parameters. For better explanation of these
patterns and/or thresholds, Fig. 3a provides the U-matrix is
used to visualize the distance between neurons and the thresh-
old between them. The regions with higher distances indicate
cluster boundaries. The flight parameters used for clustering
have a significant impact in identifying distinct flight regimes.
AHRS Heading Angle (a) reflects characteristic patterns for
different maneuvers and phases. Engine RPM helps identify
phases like takeoff, cruise, and landing. Filling Pressure (c)

shows changes in flight conditions. IAS (d) and Speed (e-f)
indicate aircraft performance, while altitude readings (g-h-i)
reflect vertical profiles and transitions. With these parame-
ters as inputs, Fig. 2 represents component maps qualify-
ing as an emergent self-organizing map for this input data.
Here, the Somoclu library, an open-source tool for training
self-organizing maps (SOMs) (Wittek & Gao, n.d.), is used
to identify flight regimes based on the given data.

Based on these output component planes, some clusters with
plain colors there are visually recognizable clusters. One of
these is on the top-right of the maps, specifically in speed
indicators (d-e-f). Additionally, the altitude indicators have
plane map has a matching cluster in light yellow in the same
region. On the other hand, AHRS and Filling pressure com-
ponent maps hint another cluster in the bottom-right coloring
with a match in Speed indicators. While the rest of the maps
have certain indicators of divergence, some content splitting
borders may still be observed. A boundary of colors in the
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(a) U-Matrix without Labels

(b) SOM U-Matrix with Regime (Clustering) Labels

Figure 3. Regime clusters estimated by SOM

vertical center can be seen in the speed and altitude indica-
tors,because the coloring assigned to these areas are nicely
separated. Therefore, the overall component plane map re-
sults show that the two clusters of flight phases that remain
in drift in the center have separated. However, specific color
changes in each component planes might shed new light on
the distinction between these relatively similar groupings.
Clusters in these might be locally meaningful and can only
be considered consistent at the neighborhood level. After all,
some color groupings may represent a subset of a flight phase,
mostly inactive content or an irregular flight behavior that can
be commonly observed in light aircrafts. Overall, looking at
the results in Fig. 2, it is clear that there is more or less tur-
bulence in all maps , however, there are some lines or regions
mentioned above that provides insights to form clusters.

It is also worth mentioning that SOM maps reward the stabil-
ity of flight data at one stage, while others change over time.
These can be observed in more detail from the combined dis-
tance matrix (U-matrix) in Fig. 3a which provides both with
and without label coloring. The aim is to provides a better
visualization of network topology by using the average Eu-
clidean distance between neurons.

For neuron j with neighbors N(j), the height value of U-
matrix is:

1

“TRGY 2 )09
iEN(5)
In the Fig. 3b, there are four regime labels presented. The
main reason for this is that the majority ( 97%) of the flight
phases recorded in a Sample Flight Data are in four regimes
(Matthews, n.d.; Bektas, 2023). Additionally, focusing on
these basic regimes in a typical airliner can enable a better un-
derstanding and monitoring of light aircraft operational con-
ditions.

After the SOM model providing a near-optimal clustering of
the flight phases, the Welch method was applied per regime
to provide for spectral density estimation in each of these
regimes. First, an acceleration signal is selected without any
specific preference. Due to confidentiality, the data label and
sensor location are not disclosed here. It is important to
note that even though this signal is valuable to illustrate vi-
bration signal regime changes related to health monitoring,
this specific data may not be applicable for all diagnosis and
prognosis scenarios. Then, the selected signal is segmented
by dividing the recorded time series and grouping them se-
quentially into windows (also known as cycles). This allows
the Welch framework to be applied these cycles individually.
Here, the segments are continuous (per regime) and the over-
lapping technique ensures that temporal coherence is main-
tained throughout the calculation. However, some transitional
regimes, occurring during both the early and late near-ground
phases, are added up but remain continuous. So, each seg-
ment corresponds to the same flight condition and the results
maintain this continuity to avoid any disruptions that could
lead to inconsistencies in the power spectrum analysis. By us-
ing overlapping-continuous windows, the analysis preserves
the integrity of the data across flight regimes and the accuracy
of the aircraft’s operational state representation.

In Fig. 4, there are four subplots (arranged in a 2x2 grid), each
showings the power spectral density estimations across clus-
tered flight phases. Each power spectrum is calculated by di-
viding the Welch-cycles (not to be confused with the windows
above) into overlapping segments. A modified periodogram
is then estimated for each segment. Then, these periodograms
are averaged to produce the power spectrum density (PSD).
The upper left subplot for clustered PH 0, shown in purple
plot, is flat with minimal changes. This reflects stable con-
ditions or minimal variation, which can be associated with
regimes such as taxi and distribution. On the other hand, the
bottom-right subplot (Clustered PH 3, orange graph) exhibits
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Figure 4. Power Spectral Density Estimations per Clustered Regimes - Flight Phases (PH)

the most significant variations, with peaks and higher values.
Only the early and the late stages are relatively low here, and
this might require further analysis. Since the signals used as
input for clustering are not directly related to the signal here,
an extended cluster analysis taking into account the vibra-
tions might provide better grouping. However, these are also
transitioning regimes, and the low PSD values can be con-
sidered normal. These speculations might be better tested in
the context of the diagnosis and prognosis applications. Un-
derstanding the statistical properties of these periodograms
is very important for studying aircraft health monitoring and
flight anomalies. When considered on a regime basis, a very
stable and normal health level can be seen in these graphs. On
the other hand, if the regime factor is not included in the anal-
ysis, and for example regime O is considered normal, regime
3 has the potential to be associated with deterioration of over-
all system performance. Therefore, the flight phase clustering
is a must in aircraft health monitoring.

The remaining subplots (PH 2.0, green plot and PH 3.0, or-
ange plot) in 4 shows similar trends. From a short review
of these figures, it can be concluded that they have moderate

variations with some noticeable peaks. This might indicate
a moderate level of signal activity or anomalies. However
some numerous peaks might be associated to the nature of
light aircraft operations which do not follow regular flight
phases. These peaks might require some extra clustering to
be excluded in these regimes, or simply setting a threshold for
algorithms to account for them. To that end, Fig. 5 provides
maxima and mean progress for each cycle of power spectrum
estimation. Both of these statistical measures could provide
a comprehensive insights of the system’s health level. They
also highlight both extreme and average levels across differ-
ent operating conditions.

4. CONCLUSIONS

This study introduced a framework for identifying flight
regimes for light aircraft health monitoring systems. Through
the use of Self-Organizing Maps, the framework could dif-
ferentiate flight phases. This provided a structured approach
for health monitoring. The Welch method was then applied
to transform a flight vibration signal from the same flight.
These transformed signals revealed patterns not visible in the
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Figure 5. The progress of max(spec) and mean(spec) from four different Flight Phases (PH)
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raw data. Minimal differences were observed with two of the
clustered regimes. However, more clustering might be nec-
essary for additional regimes or anomalies due to the high
magnitude of some cycles. This indicates that certain cycles
may need further segmentation beyond the identified regimes.

The results highlight the value of Self-Organizing Maps as
a useful tool for flight regime clustering. This provides a
foundation for future methods for alternative unsupervised
methods. Advanced data transformation techniques were also
crucial in uncovering hidden patterns in the estimated clus-
ters. This has the potential to improve flight data analysis and
health management in regime level. Overall, the clustering
approach with data transformation techniques provides a ro-
bust approach to analyze and segment flight data. This hold
promise to improve the reliability of light aircraft operations.

The research provided insights into the unique flight patterns
of light aircraft, which is different from typical commercial
airliners.The findings highlight the need for tailored cluster-
ing methods to suit the specific operational conditions of light
aircrafts. This presents opportunities for predictive mainte-
nance and fault diagnosis capabilities. This method, while
designed for light aircraft, can also be useful for larger com-
mercial aircraft. SOM-based clustering has the potential to
handle the complex data sets typical in commercial aviation.
It can improve fault detection and predictive maintenance by
grouping flight phases effectively. This can lead to more ac-
curate health monitoring and life-cycle predictions, benefiting
both safety and cost. Therefore, future research can build on
this framework to further advance aircraft health monitoring.
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