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ABSTRACT 

In an effort to effectively develop more complex spacecraft 

fault management (FM) systems new technologies are sought 

to enable rapid diagnostic model generation and validation, 

and provide tools to perform FM analyses Model-based 

Systems Engineering approaches to FM system development 

are uniquely suited to be combined with model-based tools 

currently utilized in the design of other parts of flight 

systems. Combined tools utilizing information from a 

common system model can reduce design inconsistencies and 

gaps in analyses. Tighter integration of FM with other 

system-level and subsystem-level hardware/software 

development activities allows crucial redundancy and sensor 

placement trades to be performed earlier and throughout the 

mission lifecycle. 

Our work has been towards the integration of a model-based 

fault management tool suite called MONSID®, with JPL’s 

Computer Aided Engineering for Systems ARchitecture 

(CAESAR ) platform as a way to improve FM system 

modeling and analysis. MONSID relies on application-

specific models of the system being monitored. MONSID 

models consist of interconnected elements representing 

system hardware and measurement/command input points, 

called the topology. Model topology design is currently a 

manual process and often relies heavily on paper 

documentation such as hardware/software specs, engineering 

drawings, and interface control documents. CAESAR is a 

semantically- driven toolchain for model-based system 

engineering. At the core is a system model expressed in the 

Ontological Modeling Language (OML). It is intended to 

support semantic modeling, consistency validation, and 

continuous integration. 

A goal of the combined toolset is to automate FM model 

development by directly extracting models from CAESAR 

and then analyzing them in MONSID. Analyses currently 

available in MONSID include model topology inspection and 

validation and fault isolation capability based on sensor 

placement. While we have focused on two specific tools, the 

integration approaches can be leveraged by other 

semantically driven model-centric platforms and tools. 

This paper describes the evolution of our integration 

approaches as we evaluated different insertion points in the 

CAESAR toolchain with respect to MONSID model 

requirements. The MONSID-CAESAR tool is demonstrated 

on a simplified example of a spacecraft heat reclamation 

system. Results of the generated MONSID model are 

discussed, including levels of automation achieved and 

information surfaced to the users about the extracted model 

topology. 

1. INTRODUCTION 

New technologies are sought to effectively manage and 

streamline increasingly complex fault management (FM) 

systems, enable rapid diagnostic model generation and 

validation, and provide tools to perform FM analyses and 

trades e.g., fault isolation capability, FM model validation, 

and sensor placement.  

Traditional fault detection systems monitor signals for known 

out of limit levels (e.g. over temperatures, excessive rates, 

stale data). Such monitors are designed to detect specific fault 

conditions. In contrast, the model-based fault detection 

approach utilized in this work relies on exposing deviations 

from modeled behavior which is assumed to be correct and 

as intended.  
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Systems Engineering approaches to FM system development 

are uniquely suited to be combined with model-based tools 

currently utilized in the design of other parts of flight 

systems.  

Tighter integration of FM with other system-level and 

subsystem-level hardware/software development activities 

allows crucial redundancy and sensor placement trades to be 

performed earlier and throughout the mission lifecycle.   

Our work in the first year of a two-year program has been 

towards the integration of a model-based fault management 

tool suite, called MONSID® (Kolcio 2016), with JPL’s 

Computer Aided Engineering for Systems ARchitecture 

(CAESAR) (Elaasar, Rouquette, Wagner,  Oakes, Hamou-

Lhadj, Hamdaqa, 2023) platform as a way to improve FM 

system modeling and analysis. MONSID relies on 

application-specific models of the system being monitored. 

MONSID models consist of interconnected elements 

representing system hardware and measurement/command 

input points, called the topology. Model topology design is 

currently a manual process and often relies heavily on paper 

documentation such as hardware/software specs, engineering 

drawings, and interface control documents. It is also iterative, 

which itself is not problematic but when relying solely on 

manual updates, can lead to inconsistencies with the physical 

system it is supposed to be modeling. CAESAR is a 

semantically- driven toolchain for model-based system 

engineering. It is intended to support semantic modeling, 

consistency validation, and continuous integration. As such, 

CAESAR is an authoritative source of truth for the design of 

the physical system. The toolchain is used at JPL for flight 

system engineering design, mainly for power systems. It is 

also starting to be used by other disciplines including flight 

software, mechanical, and now fault management and safety 

and mission assurance. Where once systems engineering 

model development was siloed by discipline, CAESAR 

enables models to be developed and maintained from the 

same data source.  

A goal of the combined toolset is to automate FM model 

development by directly extracting models from CAESAR 

and then analyzing them in MONSID. Analyses currently 

available in MONSID include model topology inspection and 

validation and fault isolation capability based on sensor 

placement. While we have focused on two specific tools, the 

integration approaches can be leveraged by other 

semantically driven model-centric platforms and tools. 

The rest of this paper is organized as follows. We first 

introduce the MONSID and CEASAR technologies. Next, 

we describe our integration approaches and development of a 

MONSID-CAESAR adapter. We then discuss how the 

adapter was demonstrated on an example system modeled in 

CAESAR. Finally, we offer conclusions from the 

demonstration and discuss future work. 

1.1. MONSID Background 

The MONSID system is a model-based software package 

designed to detect and identify hardware faults and off-

nominal behavior. MONSID is composed of a diagnostic 

engine and models of nominal behavior of the target system 

hardware. The generalized fault detection and identification 

approach is applicable to virtually any system with health and 

safety requirements. The physics-based models are 

application-specific. There are opportunities for model reuse 

for programs leveraging similar COTS or GOTS 

(commercial/government off-the-shelf) hardware. Examples 

of MONSID applications include rovers (Kolcio, Fesq, & 

Mackey, 2019), CubeSats (Mackey, Nikora, Fesq, & Kolcio, 

2021), and high-fidelity testbeds (Kolcio & Prather, 2023). In 

this paper we focus on MONSID model generation and 

analysis.  

1.1.1. MONSID Model Development and Analyses 

MONSID models are comprised of interconnected 

components representing various system functions. By 

design they capture interactions among components and so 

provide a system-level view. At the top level, the MONSID 

model represents the system topology, i.e., how the various 

components are interconnected, and data insertion points 

where commands and sensor data enter the model. Model 

topology can be derived from system architecture and high-

level operational descriptions.  

For example, power system block diagrams, command and 

telemetry dictionaries, and operational concept documents 

can be used to specify the MONSID model topology of a 

power subsystem. 

MONSID model developers use these artifacts to determine 

how the various power subsystem hardware components 

should be interconnected and where to place sensor and 

command insertion points. Factors considered as part of the 

high level MONSID model design include level of detail 

(assembly level, box level, or slice) and minimum sensor 

suite needed for fault detection and isolation. These design 

choices ultimately reflect the accepted single point failure for 

the mission risk classification per guidelines, for example as 

defined in NASA Procedural Requirements (NPR) 8705.4, 

Risk Classification for NASA Payloads. As FM design 

evolves through the program phases, so must model 

development, and it is crucial to avoid gaps and 

inconsistencies between the model and underlying system.  

Model topology can be analyzed to determine regions in the 

model where it is not possible to identify a single fault source. 

These regions are called ambiguity groups. An ambiguity 

group with more than one member implies that every member 

is a fault suspect but there is insufficient information to 

resolve the fault to one member. For a perfectly diagnosable 

model, each component and sensor would be the only 

member in its own ambiguity group. Ambiguity groups with 
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more than a single member can be reduced with the addition 

of sensors, which may be possible when fault management 

design is closely coupled with flight system design. 

MONSID model topology development and analysis are 

completed with the help of the MONSID tool suite. The tool 

suite includes a web app called MONSID Toolkit which 

provides visual model design and is also used to analyze how 

well faults can be isolated to a single component (diagnosis 

resolution (Kolcio, Fesq, & Mackey, 2017]). Model 

visualization and diagnosis resolution are the primary uses 

for models generated by the MONSID-CAESAR adapter. 

Although not further discussed here, Toolkit is also used to 

step through MONSID engine runs. Screenshots depicting 

various Toolkit usages are shown in Figure 1. 

The model development time depends on the scale of the 

program and available expertise. For example, it can take 3-

4 person months for an engineer with an attitude control 

system background to develop an ACS MONSID model of a 

program on the scale of a CubeSat or rover. It can take 

considerably more time for engineers venturing outside their 

domain of expertise. Perhaps the largest factor affecting 

development time is the availability, correctness, and 

 
1 GitHub - opencaesar/oml: Ontological Modeling Language (OML) 

completeness of the resources used to develop the models. 

Sources are not always in familiar or easily navigable 

formats. Even when sources/data are available, it could take 

time and coordination to gain access to it, which can happen 

when different departments or organizations are involved. 

Heavy reliance on paper documentation which can be 

outdated or the wrong version can also result in design gaps 

and mistakes.  

The resource issues are compounded for model development 

on larger scale programs with more complex systems, larger 

teams, and much more paper documentation to utilize. While 

the current model development process is viable and has 

resulted in validated, proven, and effective models, there is 

room for improvement. To date, MONSID has been applied 

to fairly small-scale systems like CubeSats, rovers, and 

hardware testing platforms. Without improvements in current 

processes, we can expect significant increases in model 

development time for large, complex systems.  

1.2. CAESAR Tool Chain 

CAESAR 1  is an open-source technology developed and 

maintained by NASA JPL designed to enable different 

Figure 1. MONSID users can visualize and analyze and models, and inspect MONSID engine runs 

via the Toolkit web app. 

 

https://github.com/opencaesar/oml
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engineering teams to effectively share and manage program 

data in the process of performing domain-specific program 

development activities. It provides ontological description, or 

modeling, of various system data. In CAESAR, the data is 

modeled via ontological instances with precise syntax and 

logical semantics, and thus no longer tool-specific. Often 

referred to as a “semantic data warehouse” CAESAR is fully 

compatible with the Web Ontology Language (OWL-2, 

specified by the Worldwide Web Consortium). To make 

working with ontologies more efficient and easier, JPL has 

developed the Ontological Modeling Language (OML) that 

is a subset of OWL 2. OML provides more concise textual 

and XMI representations of OWL that precisely encode the 

expressive patterns and rules most commonly used in 

engineering descriptions. OML also uses description logic 

rules so that vocabulary consistency can be formally verified 

and models can be verified for consistency with the 

vocabulary using generic commercial or open-source 

reasoners. Logic reasoners are used to add inferences to the 

data which allows queries and database engines to pick up 

inferred associations.  

The CAESAR environment consists of several tools to 

accomplish workflows from authoring models, called 

descriptions at one end to generating reports from various 

queries at the other end. The environment includes a 

conversion tool OML to OWL which allow open-source 

description logic reasoners such as Pellet to check model 

consistency. CAESAR is being utilized on NASA JPL 

programs including PSYCHE, Europa Clipper (Wagner, 

Kim-Castet, Jimenez, Elaasar, Rouquette, & Jenkins, 2020). 

and Mars Sample Return.  

The initial focus has been on Electrical Flight System 

Engineering and harness design. Authoring and reporting 

tools were developed for this domain. On Europa Clipper and 

Psyche, electrical system assemblies, electrical interfaces and 

interconnectivity were captured. CAESAR was also used to 

integrate with telemetry and command specification data. 

Benefits to using CAESAR included a reduction on manual 

steps in harness specification and design, enabling system 

engineers to specify requirements instead of design, and re-

usability (from Europa Clipper to Psyche). The MONSID-

CAESAR interface will provide similar benefits, i.e.  

reducing manual steps to MONSID model creation.  

At this time most of the models in CAESAR are higher-level 

system architecture specifications. Efforts at JPL have started 

to incorporate behavioral and analytical models. Near term 

plans include adding more domains such as mechanical and 

thermal. The FM piece has not yet been addressed, but could 

clearly benefit from a modeling platform.  

2.  MONSID AND CAESAR – THE BIG PICTURE 

System engineering uses models to help automate 

engineering analysis. In this case, we are using a model 

transformation from CAESAR’s descriptive system model to 

MONSID’s analytical model to enable the kind of fault 

analysis that MONSID can provide. Model-based approaches 

enable different engineering teams to effectively share and 

manage a variety of data in order to perform domain-specific 

mission development activities. Government and industry 

organizations are seeking ways to better integrate the myriad 

tools through the use of authoritative source of truth modeling 

environments such as CAESAR. Figure 2 illustrates the 

capability in the context of FM system engineering activities.  

The CAESAR modeling environment is the central area 

where program data is manipulated, and effectively kept 

under revision control such that information entered by 

hardware/software engineers on the left side of the figure can 

be utilized to generate a diagnostic model and update FM 

system analyses shown on the right side of the figure. The 

flow of information to/from CAESAR is facilitated by 

adapter interfaces allowing custom/COTS tool to work with 

the modeling environment.  

 

Figure 2. Model-based FM interacting with a modeling 

environment. 

 

The core of modern system engineering processes are the 

models. Practically, there are many types of models, with 

different data types and levels of fidelity, used for various 

purposes. Although it is not feasible to think of  “one model 

to rule them all”, one can consider the authoritative and 

traceable representation of knowledge as sources of truth. 

That is what environments such as CAESAR are designed to 

do. A CAESAR model captures a set of facts about a system 

architecture and maintains change control over those facts. 

The facts describe elements that define the architecture, their 

properties, and relations, particularly including functional 

interface relations. It is the authoritative source of truth for 

this information on projects utilizing CAESAR. 

Model-based FM can benefit from this source not only by 

extracting continuously up to date information needed to 

develop and test diagnostic models but also by the ability to 

automatically generate these models. MONSID models in 
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particular describe the nominal behavior of the underlying 

physical system. 

However, there currently are no FM-specific interfaces to 

CAESAR for tools like MONSID. A goal of a MONSID-

CAESAR adapter is to alleviate this problem. As emphasized 

in the NASA Fault Management Handbook (2012), tighter 

and earlier integration (w.r.t lifecycle) of FM with “nominal” 

system engineering activities such as system-level and 

subsystem-level hardware/software development can enable 

crucial trade studies, such as redundancy and sensor 

placement, to be performed earlier, more often, and more 

quickly. 

Enabling the FM practice to be more tightly integrated with 

the other systems engineering activities makes it more 

accessible to non-FM experts to improve the overall system 

design. Providing this capability enables the systems team to 

more easily visualize models and glean precise information 

they need without necessarily having to understand all the 

technical details of the underlying FM design. 

Through a MONSID-CAESAR adapter many of the 

previously mentioned issues with manual information 

collection can be alleviated and eventually removed. 

Information from disparate sources would be presented to 

FM engineers with consistent terminology and format. 

CAESAR would keep an authoritative running history of that 

data. This will shorten design time as well as improve model 

fidelity. As CAESAR evolves to include analytical models 

that capture behavior/operation, this information can be 

extracted to readily generate constraints for MONSID 

components, which are needed to realize an executable model 

that can be run with real data. Initially, the actual coding of 

MONSID components would still be done manually. The 

long-term goal would be to incorporate transformation tools 

to automate MONSID component development in support of 

automatically generated flight software. 

FM analyses can greatly benefit from improved models. 

Model topology has been successfully used to determine how 

well the MONSID engine will be able to isolate faults based 

on the ambiguity groups. The results of ambiguity group 

analysis and sensor placement trades generated by MONSID 

can be fed back to CAESAR. This process would allow 

changes that influence the FM capabilities to be readily 

validated to ensure the changes don’t adversely affect the 

established baseline functionality. For example, without this 

capability, if a sensor is removed from a subsystem, the 

system engineer may not know that removal would adversely 

affect the FM design. 

A long-term goal of a MONSID-CAESAR adapter is to 

improve the determination and analysis of fault containment 

regions (FCR), which are key for fault tolerance. An FCR 

delineates a boundary around spacecraft components 

(hardware and/or software) such that a fault within the 

boundary of the FCR does not propagate outside (Avizienis, 

1997). Partitioning of containment regions (Chau, Alkalai, & 

Tai, 2000) involves determination of a subsystem to system 

hierarchy, redundancy scheme, and design diversity 

(different hardware/software to accomplish the same task). 

Thus, faults can be contained in different ways through non-

intersecting paths (e.g., separate data/power buses), and 

functionally or identically redundant hardware strings. 

Ensuring that the fault containment design will meet fail 

safe/operational requirements for single point failures is a 

manual, painstaking process. The number of FCRs is a 

primary factor in determining how many faults a system can 

tolerate and still preserve the spacecraft.  

We postulate that MONSID models can also be used to 

analyze FCRs in a similar fashion to ambiguity groups. 

Through inputs from CAESAR, the identification of and 

tracing/analyzing FCR would be facilitated and eventually 

automated. It should be noted that, in general, diagnostic 

resolution and FCR are not the same. However, they can 

overlap when lower-level fault isolation is not needed or not 

possible. Rigorous assessment of FCR will provide assurance 

that mission risk classification requirements with respect to 

single point failure tolerance are being met. 

While our effort has thus far focused on creating an adapter 

to work one way, from CAESAR to MONSID, it is desired 

to eventually bring results back into CAESAR. In the current 

process, such information would need to be manually 

authored into the CAESAR model. An automated two-way 

adapter would place MONSID model data and analyses into 

the continuous integration toolchain. Tighter integration of 

FM design with nominal system design would also be 

facilitated and would greatly benefit from a two-way adapter.  

3. INTEGRATION APPROACHES 

The task of converting one representation of data to another 

is simply a transformation exercise. The most important 

aspect of this task is identifying the places where data can be 

accessed and manipulated to achieve the desired goal. The 

CAESAR toolchain has several stages as shown in Figure 3, 

with the data cycle moving in a left to right fashion.  

The key characteristic of that cycle is that model data will be 

stored in a database. This database breaks the data lifecycle 

into two phases, which we have simply termed as “pre-

database” and “post-database”. The CAESAR toolchain is 

responsible for populating the database with reasoned data, 

meaning the source OML model has instantiated, rules 

applied and the composite information has been run through 

a semantic reasoner. The database contains a well-formed and 

semantically correct model. 

In the pre-database phase, referring to Figure 3, 

transformation is handled through the creation and 

maintenance of OML vocabularies and OML-based tools 

(not shown in Figure 3). We note that in this paper, 

vocabulary names are in lower case to distinguish them from 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

6 

similarly named organizations or products. JPL, for example, 

relies on the integrated model-centric engineering (imce) 

vocabulary when constructing models for any project. Then 

project-level vocabularies can also be created to specialize 

imce vocabulary terms as well as additional terms specific to 

a particular project’s needs. MONSID terminology is 

appended to the system model via the monsid and mapping 

vocabularies (discussed in the next section). The result is run 

through a semantic reasoner and loaded to a database, as 

represented by the CAESAR Model in Figure 3. 

In the post-database phase, the transformation task takes on a 

more traditional ETL (extraction, transform, load) approach. 

Data contained in the database can be queried to produce a 

variety of reports and outputs that can be fed to other 

downstream processes. As illustrated in Figure 3, queries are 

used to generate HTML reports and text files (CSV). The 

adapter processes the text files to generate MONSID model 

definitions which can be visualized and analyzed in the 

Toolkit app. As with any ETL task, the source and target 

schemas must be well defined.  

3.1. MONSID-CAESAR Adapter 

There were two main requirements defined for the adapter: 

• Generate MONSID model topology from a CAESAR 

project 

• Format shall be ingestible by MONSID Toolkit web 

application 

To meet the first requirement, key MONSID model topology 

elements were identified as things to be mapped to a 

CAESAR model. The MONSID topology elements are 

defined by:  

Models 

• Contain Components 

• Represent subsystems 

Components 

• Contain Nodes 

• Represent hardware and physical behaviors 

Nodes 

• Effectively represent state variables 

o Conserved state variables (e.g., fluid flow, 

electric current, momentum) 

o Potential state variables (e.g., pressure, 

voltage) 

• Used as endpoints for each Connection 

Connections 

• Used to describe a link between 2 nodes 

 

Sensors 

• Provide commanded and reported data from the physical 

system 

• Provide data directly to Nodes  

In order to extract existing model information for utilization 

in the MONSID tool suite, we establish a set of guiding 

principles for the MONSID-CAESAR adapter. 

• Create a repeatable process that is not ad hoc for projects 

to add FM analysis. 

• Keep the setup cost to a minimum. Ideally, we wanted 

all users of a specific vocabulary to gain the same benefit 

as past projects. 

• Make it adjustable, knowing that each project will have 

some customizations that can only be addressed with 

bespoke adjustments to the adapter. 

        
            

             

    

      
            

             

           
            

            

Figure 3. The MONSID adapter to CAESAR consists of portions before and after the CAESAR database to leverage the 

reasoning and query execution tasks of the CAESAR toolchain. 
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By providing a general framework to extract any CAESAR 

model and bringing that information into MONSID, we 

needed to explore how to best utilize the CAESAR toolchain. 

We examined two strategies leveraging post-and pre-

database phases of the CAESAR toolchain starting with post-

database. 

3.1.1. Post-database 

We created a prototype adapter to convert an existing 

CAESAR model of an example heat reclamation system by 

solely leveraging the reasoned data contained within 

database. We decided on this approach as a first step to better 

understand the mechanics of the CAESAR toolchain and 

build a suite of tools that would allow the ingest of any 

CAESAR model.  

The prototype adapter was implemented in two parts. The 

post-database adapter and data flow are shown on the right 

side of Figure 3. The first part was the extraction of MONSID 

model elements from the CAESAR database. This was 

accomplished by creating queries and scripts to generate 

output files (CSV format) that contained MONSID model 

topology elements. The second part of the adapter was the 

creation of an executable that generated a MONSID model 

definition file from the csv output files. 

When working with CAESAR models, there are effectively 

two model states. The first, is the native OML format, which 

we refer to as the source model. In this state, the model 

reflects the exact representation as intended by the authoring 

team and, more importantly, has not been altered by the 

reasoner. Once the source model is fed to the reasoner, the 

model becomes the reasoned model. In this state, a reasoned 

model has been validated/verified by the reasoner as well as 

contains additional data that may injected by other parties. 

This injection is discussed in the Pre-database section that 

follows. The reasoned data can be considered a more 

complete and expanded representation of the initial source 

model. 

Although it is possible to design an adapter to exclusively 

work in the post-database realm, we found that quite a bit of 

knowledge of the vocabulary and source model was required. 

The database queries had to be extensively tailored to the 

source CAESAR model. Although some tailoring from 

project to project is to be expected, one of our objectives was 

to minimize project-specific tailoring to make the adapter 

more generalizable and easier to introduce to other projects. 

The problem with queries for the post-database only case is 

that the query authors need to really understand the 

vocabularies that are in use for the CAESAR model. This 

presents a substantial learning curve for MONSID users as 

some expertise of vocabulary structure and how it’s used is 

required. Moreover, completely new queries would be 

needed for applications with different vocabularies. 

The verbosity of the source model is highly dependent on 

institutional knowledge and practices. Thus, reasoned data 

alone does not give us more context and it becomes very 

difficult to determine what source model elements are needed 

in the resulting MONSID model. The prototype was 

dependent on a priori knowledge of the source model and that 

information was embedded throughout the two parts of the 

adapter.  

Lastly, the executable needed to incorporate a variety of 

assumptions in order to process the data produced by the 

queries. For example, state variables were not explicitly 

implemented in the source model but needed to be realized in 

the final transformation step when creating the MONSID 

model. It should be mentioned that this is a limitation of the 

source model used to demonstrate our work, not the 

CAESAR platform itself. One could also argue that any 

source model designed for other system engineering purposes 

may need some augmentation in order to be useful for 

MONSID. However, any augmentation done exclusively in 

the post-database space introduces project-specific artifacts 

which we would like to minimize. 

Heavy use of hard-coded knowledge may serve for a 

prototype; however, incorporating this type of information 

would not make for a scalable and general solution that could 

be easily transported to another project.  

3.1.2. Pre-database 

By working with data in the pre-database phase, it becomes 

easier to transform any CAESAR model into the desired 

representation. This is done by leveraging the strength of 

CAESAR’s OML vocabulary and vocabulary mapping 

constructs. Work in this phase utilizes the semantic reasoner 

to associate and transform the data. In a typical ETL project, 

the Transformation step follows extraction; however, by 

utilizing OML, the transformation step is handled first which 

allows the overall solution to become more readily project 

agnostic.  

There are three key elements to this process: 

1. Create a vocabulary that represents the target vernacular. 

In this case, we need to create an OML vocabulary that 

represents the MONSID topology elements defined in 

the MONSID-CAESAR Adapter section.  

2. Identify the most common vocabulary (e.g., upper 

ontology) for the source project. In this case we used 

JPL’s imce vocabulary. 

3. Create a mapping vocabulary between the monsid 

vocabulary and common vocabulary. This may be 

further expanded to include a project-level mapping 

vocabulary to accommodate project customizations. 

Creating a vocabulary that represents MONSID elements is a 

task that only needs to be completed once. This vocabulary 

represents all the tangible items and relationships that are 
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needed to describe a MONSID model within OML. This task 

is effectively a one-time task and becomes a crucial 

component in the overall toolchain process.  

The monsid vocabulary represents elements of the MONSID 

Model Library API. Vocabulary OML classes were created 

for each of the MONSID model topology elements listed 

above. See Figure 4 for a sample representation of the monsid 

vocabulary. 

 

Figure 4. Subset of monsid vocabulary  

 

In the second step, identifying the common vocabulary that a 

given organization prefers is straightforward as most projects 

within that organization will use a single vocabulary along 

with project-level customizations. Time invested in 

understanding this vocabulary will make it easy to consume 

any project that leverages the same vocabulary. 

Mapping Vocabulary 

The third step involves establishing a mapping between the 

vocabulary of the CAESAR model to the vocabulary of the 

analysis tool. Thus, the goal is to understand how the imce 

vocabulary is utilized and then create a single mapping 

vocabulary between monsid and imce (the monsid-imce 

vocabulary).  

The OML language syntax provides a mechanism by which 

a vocabulary can be extended by another vocabulary. This is 

a powerful way to easily transform the original representation 

created by the source vocabulary. For example, in the monsid 

vocabulary there exists an OML Concept called Component. 

In the imce vocabulary, there is an OML Concept called 

Assembly. With OML, it’s straightforward to create a 

mapping that states an imce Assembly is a specialization of 

monsid Component. Figure 5 illustrates a subset of the 

monsid-imce mapping vocabulary. 

 

Figure 5. Subset of the monsid-imce mapping vocabulary. 

 

By that same extension, if a project creates a project-specific 

vocabulary, a project-level mapping vocabulary can also be 

created as seen in Figure 6. For example, using the same 

model used in the first prototype adapter, we were able to 

clearly define items that could be treated as monsid 

StateVariables and subsequently eliminate the hard-coded 

assumptions that involved them in the post-database tools 

(see yellow box in Figure 6).  

 

Figure 6. Subset of project-level mapping vocabulary. 
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By leveraging mapping vocabularies, all the benefits of the 

semantic reasoner come into play. All the rules, properties, 

and associations will be honored once the mapping is utilized.  

Further, by leveraging OML, the expertise needed to 

incorporate project customization is already available. More 

importantly, though, once the data has been reasoned and 

loaded into the database, the tool adapters will no longer need 

to know anything about the source vocabulary or project-

specific details. Everything can be queried relative to our 

monsid vocabulary. This greatly simplifies the database 

queries as everything is relative to MONSID elements. Hard-

coded knowledge, string lookups, and other assumptions 

about the project’s contents can be removed from the 

database queries and any of the tools that consume those 

queries.  

Finally, and perhaps most importantly, aside from injecting 

the mapping vocabularies into the source project, there is no 

need to adjust the source project. This is a key characteristic 

as additional tooling should benefit but not require altering 

existing CAESAR models in order to use them. A 

combination of pre- and post-database interaction offers the 

most flexibility and scalability for any model-based tool that 

would like to leverage the data within a CAESAR model. 

4. EXAMPLE DEMONSTRATION 

The combined pre- and post- database adapter was 

demonstrated on the fluid domain of a simplified heat 

reclamation system (HRS) based on the Europa Clipper 

mission. The HRS circulates a working fluid to heat and cool 

spacecraft components as needed to maintain thermal 

stability. The working fluid was assumed inviscid and 

isothermal, thus volumetric fluid flow and pressure were the 

only sensed state variables. A block diagram of the pump 

assembly portion of the HRS is shown in Figure 7.  

 

Figure 7. Block diagram of Heat Reclamation System. 

 

The system includes three parallel banks of two pumps 

connected to two pumps in series for a total of eight pumps. 

Sensors are represented by the blue circles. Pressure sensors 

are labeled PT and flow sensors are labeled FT. The lines 

connecting the pumps represent pipes. The small black 

squares represent pipe junctions. The pump configuration of 

the example system is representative of actual spacecraft 

HRS. Simplifications such as ideal pipes and incompressible 

fluid were deemed appropriate for demonstrating the 

feasibility of the adapter. 

A CAESAR model of HRS was specified using the imce 

vocabulary and specializations thereof to describe the 

individual pumps, flow and pressure sensors, and ideal pipes 

and pipe junctions. The load was not modeled. Pumps and 

pipe junctions included fluid in-port and out-port interfaces 

(not shown in the figure). Each pipe created a fluid flow 

connection between out port and in ports. Fluid flow and 

pressure state variables were not explicitly modeled in 

CAESAR. The fluid state variable was implied by the pipe 

connections. The pressure sensors implied pressure state 

variables.   

The monsid-imce mapping vocabulary (see Figure 5) 

described above was used directly in the pre-database portion 

of the adapter. A project level vocabulary (see Figure 6) was 

created to map the HRS sensors to MONSID sensors, and in-

port and out-port type to the corresponding MONSID input 

and output node types. Flow and pressure types were created 

in the HRS mapping vocabulary to separate and make explicit 

fluid flow and pressure, which were implied in the CAESAR 

model. The FlowType maps to ConservedStateVariable and 

PressureType maps to PotentialStateVariable, as shown in 

the yellow box in Figure 6.  

The adapter executable generated additional nodes and 

connections as needed based on state variable type 

(conserved or potential). For example, each input/output 

node on a pump component was expanded into separate 

nodes for fluid flow and pressure. For a pipe junction 

component, one additional input node and output node (and 

connections) were needed for the pressure state variable.  

A snapshot of the MONSID model generated by the adapter 

executable is shown in Figure 8. It is annotated for 

comparison with the HRS block diagram in Figure 7. 

Comparing this to the block diagram in Figure 7, a similar 

configuration of pump and junction components and sensors 

is seen.  

The MONSID model topological elements introduced 

previously in 3.1 are now described for the HRS MONSID 

model shown in Figure 8. The orange boxes are the 

components which represent system hardware such as the 

pumps. Pipe junctions are also represented as components to 

model fluid flow splitting into different paths. The small 

green boxes on either side of the components are the 

input/output nodes; nodes on the left side of a component are 

input and nodes on the right are output. Each node is either a 

pressure or fluid type, as appropriate for a fluid domain 

model. The black lines between nodes are the connections. In 
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MONSID models there are separate paths for each state 

variable, in this case for flow and pressure. The adapter 

ensures that each fluid node is connected only to another fluid 

type node and similarly for pressure node types. The purple 

ovals represent sensors, which for this model are pressure and 

flow sensors. MONSID sensors represent points in the 

system where there is information available about its 

behavior. Sensors play an important role in the formation of 

ambiguity groups as will be discussed later.  

 

The model generated by the adapter can be loaded into 

Toolkit to visualize and review its topology.  

The Toolkit checks models for unconnected nodes and 

unattached sensors and displays a list of any such occurrences 

to the user. For the HRS model, the topology review feature 

noted that two input nodes on the left junction component 

were not connected. A screenshot of the model opened in 

Toolkit is seen in Figure 9; the two unconnected nodes are 

listed in the review pane located on the right side of the page.  

While the adapter generated a nearly complete MONSID 

model, some manual manipulation was needed in order to 

perform meaningful ambiguity group analysis. A snapshot of 

the model in the Analyze page is shown in Figure 10. This 

page displays the current state of ambiguity group 

determination, including a list of items that were not 

considered in the calculation because of topological issues 

(bottom left pane in the figure). In this case, the left junction 

component and, by extension, the pressure sensor attached to 

its second from the top output node (appearing in lighter gray 

in the figure) are not considered because of the two 

unconnected input nodes previously mentioned. Note that 

intentionally leaving items out of the ambiguity group 

calculations allows some analysis of partial or incomplete 

models to be performed. This is particularly useful in the 

development cycle when models are under construction. 

On the Analyze page sensors can be added to the model to 

see how ambiguity group membership reduces. Ambiguity 

groups are automatically recalculated when model topology 

changes. To include the junction component and pressure 

sensor in the calculation, new sensors are added to the two 

input nodes of the left junction component. The result of 

adding the new sensors (labeled Sensor 8 and Sensor 9) is 

shown in Figure 11. First notice that now all items in the 

model are considered in the ambiguity group calculations (all 

are same shade of gray). Second, new ambiguity groups 

appear on the left side. There are two groups with more than 

a single member, one with 11 members shown with teal 

highlights and one with 3 members. The 3-member group 

includes the left junction component and the two new 

sensors. 

The larger 11-member group is a result of the lack of sensors 

in between components. This is clearly undesirable from an 

FM perspective because a fault occurring in that group cannot 

be further narrowed down to any specific members. The 

diagnostic resolution would be improved if there are more 

ambiguity groups with fewer members in each group. The 

ideal ambiguity group is composed of a single member. 

Sensors located between components form an ambiguity 

group with themselves and so are single member groups. The 

HRS model naturally has four such groups, the PT-2, FT-1, 

FT-2, and FT-3 sensors.  

There are a few ways to reduce the 11-member group. One 

way would be to add three more sensors in between the output 

flow nodes of the parallel pumps and the input nodes of the 

right junction component as shown in Figure 12. This action 

splits the 11-member group into 8 smaller groups. The pumps 

in series are now in a separate group. Each of the three 

branches of the parallel pump configuration is now a separate 

group consisting of two members each. The pumps in series 

are in a 5-member group with the right junction component 

and two sensors. Finally, the three additional flow sensors are 

single members of their own group. Another way would be 

Figure 8. HRS MONSID model generated by the adapter and visualized in Toolkit. 
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to add sensors to the output nodes of the right junction 

component. This costs less additional sensors than the 

previous option but puts the parallel pumps into a 7-member 

group with the right junction component. These are just  

examples of the kinds of sensor placement trades that can be 

performed. 

 

 

Figure 9. Screenshot of the adapter-generated model opened in Toolkit. The topology review panel shown on the right side of 

the page alerts the user to the two unconnected node interfaces. 
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Figure 10. Screenshot of the model displayed in the Analyze page. Items not considered in ambiguity group calculation due 

to topology issues are listed in the pane on the bottom left. Item not considered are shown in a lighter shade of gray.
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Figure 11. Screenshot of the model in Analyze page after sensors (sensor 8 and 9) are added to each input on the left junction 

component. New ambiguity groups and their members are listed on the left. The largest group with 11 members is 

highlighted in teal. All model items are now considered in the ambiguity calculations (the Items not Considered list is empty 

and is not displayed).  

 

 

Figure 12. Screenshot of the model in Analyze after sensors 10, 11, and 12 are added to inputs on the right junction pipe. 

Additional ambiguity groups with fewer members are created thus improving diagnosability.  

 



 14 

 

5. CONCLUSIONS AND FUTURE WORK 

The MONSID adapter to CAESAR enables faster diagnostic 

model generation with less errors compared to a documents-

based and hand-coding process.  

This approach also constitutes a significant step towards 

integrating FM with nominal flight systems engineering. 

Model generation can occur as the CAESAR model is being 

populated and thus can start earlier in the project life-cycle. 

Since the adapter is effectively part of the CAESAR 

toolchain, MONSID models evolve concurrently with other 

systems engineering activities including harness design and 

flight software development.  

Post-database only transformation requires a lot of project 

specific information. It is viable but not scalable nor a very 

reusable solution. The problem lies in that the transformation 

logic becomes deeply embedded into multiple places, which 

is the antithesis of leveraging OML as the authoritative 

source of truth. Adding a pre-database component makes 

transformations more generic as the reasoner can apply a 

mapping vocabulary which allows the post-database portion 

to be more application-agnostic. The use of mapping 

vocabularies in the pre-database portion leverages the power 

of the reasoner to validate the semantic structure of the 

model. Hierarchical organization of the mapping vocabulary 

into upper-level and project-level allows re-use of the upper-

level across projects within an organization (i.e. common 

vocabulary mapping that is project-agnostic) while allowing 

project-specific mappings and definitions to be constrained 

to the project-level. 

The design of the MONSID-CAESAR adapter utilized the 

assumption that components in the source model have been 

specifically typed to accurately imply their behavior. 

Currently, CAESAR models for flight projects are primarily 

used to map interfaces and types are applied to define 

canonical interfaces. Here we assumed that this can also 

imply behavior. Whether this is sufficiently precise to enable 

useful fault analysis is the subject of ongoing investigation. 

The benefits of a MONSID-CAESAR adapter were 

effectively demonstrated on the simplified HRS example 

system with less than 40 of any one topology element. We 

expect it to scale well for more complex flight systems. The 

adapter is particularly suited for real-world, larger systems 

that may have hundreds to thousands of elements. In the 

combined power and command & data handling subsystems 

on JPL’s Mars Sample Return Lander (SRL) flight program, 

for example, there are upwards of one hundred assemblies, 

over two thousand interfaces, and thousands of sensors. The 

time consuming and error-prone tasks of manually making 

 
2 Reference herein to any specific commercial product, process, or service 

by trade name, trademark, manufacturer, or otherwise, does not constitute or 

and keeping track of interface connections are eliminated 

with the adapter. 

The next step in the adapter development is to apply it to a 

more complex CAESAR model utilized on an actual flight 

program. To that end, work is in progress to extend the 

adapter with the intent to demonstrate it on the CAESAR 

model of JPL’s SRL flight program. Initial focus is on the 

SRL power system because it is the most populated. A goal 

of this effort will be to compare the results of diagnosis 

resolution analysis (also known as ambiguity group analysis) 

on the SRL MONSID model to fault containment regions 

specified in the CAESAR model.   
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