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ABSTRACT 

In contemporary technological landscapes, sensors play a 

pivotal role in enabling diverse applications across industries, 

from healthcare to manufacturing. This paper undertakes a 

thorough investigation on system performance (reliability 

and availability of a system), focusing on the critical interplay 

between baseline performance, performance with integrated 

sensors and performance considering sensor reliability, 

recognizing the foundational importance of sensors in data-

driven decision-making processes. The research employs a 

causation-based approach to systematically develop 

functional relations within the system. The failures identified 

of each component and functional relationships will then be 

analyzed using a simulation technique to understand the 

inherent performance of the engineering system. From here, 

a genetic algorithm is used to design a sensor set and tailor it 

for an engineering system, providing a foundation for 

conducting trade studies in the paper's subsequent sections. 

Through rigorous quantitative analysis and simulations, we 

compare the impacts of the performance of the sensor set 

design compared to the baseline performance. The paper then 

investigates the complexities of sensor reliability on overall 

system performance. Through advanced simulations, we 

elucidate the potential cascading effects that variations in 

sensor reliability can have on the system's performance. By 

exploring these ripple effects, we aim to provide a 

comprehensive understanding of how sensor reliability plays 

a crucial role in determining the success of complex systems. 

Beyond the immediate considerations of sensor 

characteristics, the paper analyses the maintenance aspects of 

sensors by performing a series of analyses to suggest 

maintenance aimed at improving the sensor and hence system 

reliability. Highlighting the relationship between sensor 

reliability and system performance, this section stresses the 

critical role of consistent maintenance practices in ensuring 

sustained data quality and system functionality. In 

conclusion, this paper aims to highlight the different 

perspectives that can be analyzed to understand the reality of 

system performance, considering facets such as sensor 

maintenance and reliability. It also aims to demonstrate 

various approaches that can be applied to engineering 

systems to uncover truths about sensor performance and 

reliability. 

1. INTRODUCTION 

The increasing demand for diagnostics has made sensors 

essential in planning and managing systems throughout their 

lifecycle. Symptoms in a system, which are visible or 

detectable indicators, provide crucial information about the 

system's state. Identifying and deploying appropriate sensors 

to capture these symptoms in real-time can inform 

maintenance decisions, prevent failures, and ensure 

continuous operation. 

A model-based approach helps define functions, simulate 

failures, identify critical functions, and diagnose appropriate 

sensor responses that can detect failures before they occur, 

enabling effective maintenance planning. This methodology 

can be applied at any stage—early in development or before 

specific missions—to gain valuable insights into system 

performance and enhance the decision-making process. 

Incorporating sensor analysis into this methodology further 

enriches overall system effectiveness and efficiency. 

This research develops a virtual model of a generic aircraft, 

focusing on one of its key subsystems to assess baseline 

system performance. It then evaluates whether all critical 

functions have sensors capable of detecting failures before 

they occur. This analysis aids in planning for specific 

missions, such as those where certain functions are allowed 

to fail to stay within constraints, if any, for instance, weight. 

Finally, the study assesses system performance with 

integrated sensors, highlighting different perspectives in 

optimizing system reliability and efficiency. 
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2. DIGITAL RISK TWIN FOR SYSTEM ANALYSIS 

A Digital Risk Twin (DRT) is a virtual representation of a 

physical system, capturing its complexities and nuances. This 

digital model can encompass the entire system or focus on 

specific sections, depending on the system's complexity and 

areas of interest. By simulating the system's configuration 

and operating context, the DRT enables a detailed analysis of 

potential risks and hazards, including safety implications, 

operational impacts, and cost of ownership consequences.  

The DRT is integral to performing Reliability, Availability, 

Maintainability, and Safety (RAMS) analysis by integrating 

various data points and simulating different scenarios to 

predict potential failures and their impacts. This capability 

supports proactive risk mitigation and decision-making 

processes, contributing to more resilient and cost-effective 

operations while maintaining safety standards. 

It operates as a logical, functional, and physical model where 

the functional dependencies of all components are defined 

and interconnected through causal relationships (Stecki, 

Andrew, & Rudov-Clark, 2008). This detailed modelling 

approach ensures that each component's function is 

understood in the context of the entire system, highlighting 

how changes or failures in one area can impact the others. An 

essential aspect of the DRT is the definition of the mission 

profile, which outlines the various phases the system will 

undergo during its operational lifecycle. This includes regular 

phases, transition phases, and operating / environmental 

conditions (Conroy, Stecki, & Thorn, 2016), ensuring that the 

model accurately reflects real-world usage patterns. 

3. OPTIMIZING SENSOR DEPLOYMENT THROUGH 

DIAGNOSTIC ANALYSIS 

Diagnostic Analysis is crucial for determining the optimal 

combination of sensors to ensure comprehensive system 

monitoring (Stecki , Stecki, Rudov-Clark, & Ryan , 2009). 

Utilizing a Genetic Algorithm, this analysis leverages 

dependencies identified in the DRT to guide sensor selection 

and placement. Key parameters, including in-built sensors, 

sensor locations, and the specific failures that must be 

detected, guide the algorithm. The goal is to achieve thorough 

coverage and unique identification of system failures while 

maintaining efficiency and cost-effectiveness. 

By integrating these optimized sensor combinations, the 

system's overall diagnostic capabilities are significantly 

improved. This integration ensures that potential failures are 

detected promptly and accurately, allowing for timely 

interventions and reducing the risk of system downtime.  

4. DISCRETE EVENT SIMULATION IN SYSTEM 

PERFORMANCE ANALYSIS 

Discrete Event Simulation (DES) is a modeling technique 

used to analyze complex systems over time by focusing on 

events that occur at discrete points, triggering changes in 

system states. Unlike continuous simulations, DES captures 

the timing and sequence of events, making it suitable for 

event-driven systems such as manufacturing and service 

operations. This approach provides insights into system 

performance, identifies bottlenecks, and tests various 

scenarios without physical trials. 

DES is particularly useful in systems characterized by 

randomness, incorporating stochastic elements like random 

arrival times and failure rates, which are critical for accurate 

modeling. It enables the simulation of various scenarios to 

assess impacts and make informed decisions regarding 

system design and operation. 

One key advantage of DES is its ability to model intricate 

processes with numerous interacting components through 

discrete events such as arrivals, departures, and maintenance 

activities. By tracking these events, DES generates 

performance metrics, including throughput, utilization, and 

waiting times. Furthermore, DES facilitates scenario analysis 

and optimization, allowing experimentation with different 

maintenance schedules and resource allocation plans to 

determine the most effective strategies for optimizing system 

performance. 

5. SUSTAINING SENSOR PERFORMANCE THROUGH 

MAINTENANCE STRATEGIES 

Optimizing sensor deployment involves maintaining sensor 

performance to ensure system availability throughout its 

lifecycle. This is achieved by devising adequate maintenance 

strategies specifically tailored for the sensors. Effective 

maintenance strategies are crucial for preventing sensor 

failures, extending sensor lifespan, and ensuring consistent 

system reliability. By implementing a proactive maintenance 

schedule, potential issues can be identified and addressed 

before they lead to significant system disruptions. 

Evaluating system reliability with these maintenance 

strategies involves continuous monitoring and periodic 

assessments of sensor performance. This helps in refining 

maintenance plans to adapt to changing conditions and 

emerging challenges. This methodology enhances the 

reliability of individual sensors and contributes to the overall 

robustness and efficiency of the entire system, ensuring 

sustained operational effectiveness over time. 

6. CASE STUDY 

In this case study, a generic aircraft is analyzed at the system 

level, including the complexity and numerous subsystems 

that constitute it. The platform-level model is the aircraft, 

which includes various subsystems, one of which is the 

Landing Gear System. The Landing Gear System includes 

Wheel Braking Assemblies - Wheel Brake Assembly 1 and 

Wheel Brake Assembly 2. The focus of this study is on Wheel 

Brake Assembly 1, which comprises three key components: 
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the Hydraulic Line, Brake Caliper, and Brake Disc and Wheel 

Hub. The initial task involved developing a DRT for Wheel 

Brake Assembly 1 that serves as a virtual representation, 

facilitating the analysis. Parallel efforts by other teams will 

create similar models for other sub-systems within the 

aircraft. 

The core of the methodology involves conducting a 

Diagnostic Analysis to optimize sensor allocation across the 

entire model. This process incorporates existing legacy 

sensors, ensuring they are integrated into the new sensor 

framework where applicable. The result of this analysis is an 

optimal sensor set designed for maximum efficiency and 

coverage. Specifically, for Wheel Brake Assembly 1, the 

analysis suggests the inclusion of a sensor for one of its three 

components (Brake Disc and Wheel Hub). Before 

implementing this recommendation, the impact of this sensor 

on the subsystem's performance metrics such as reliability, 

availability, and cost, must be thoroughly evaluated. This 

evaluation is conducted using MADE software 

(https://www.phmtechnology.com/) for DRT and Diagnostic 

Analysis, while DES is employed to assess the metrics, using 

Python. This comprehensive approach ensures that the 

decision to include the sensor is based on a detailed 

understanding of its potential benefits and drawbacks.  

The following assumptions are considered for DES: 

• Maintenance strategies and metrics: The simulation 

incorporates predefined maintenance strategies, along 

with their associated metrics, to evaluate system 

performance. 

• The choice of the exponential failure distribution is 

guided by its simplicity and relevance for components 

expected to have relatively constant failure rates.  

• Independent component failures: The model assumes 

that the failure of each component occurs independently, 

meaning that the failure of one component (e.g., 

Hydraulic Line, Brake Caliper, or Brake Disc and Wheel 

Hub) does not accelerate the degradation or influence the 

failure rates of other components. Each component’s 

failure is treated as a discrete event without direct impact 

on the operational state or performance of other 

subsystems. This assumption simplifies the system's 

complexity by isolating component behaviors. 

• No sensor redundancies: The model assumes that there 

are no redundant sensors, implying that each sensor is 

unique and has a specific role without backup sensors. 

• Sensor intrinsic properties and reliability: The intrinsic 

properties, such as sensitivity and specificity, and 

reliability of sensors are factored into the simulation to 

assess their impact on system performance. 

Operational cost and downtime loss metrics: The simulation 

considers operational costs and downtime losses but does not 

account for procurement costs. This helps in focusing on the 

ongoing operational efficiency and the financial impact of 

system downtime. The interactions and dependencies from 

DRT and the above assumptions provide a structured 

framework for the DES simulation, ensuring a realistic yet 

simplified modelling of the system dynamics and 

maintenance processes. This approach aids in understanding 

the potential impact of sensor integration on the subsystem's 

performance metrics, thereby supporting informed decision-

making. From here onwards, Wheel Brake Assembly 1 is 

referred to as the system, as the evaluation of the sensor 

impact is focused on this specific assembly. DES investigates 

system performance across four scenarios:  

1. Scenario 1: Baseline with Breakdown maintenance for 

Hydraulic Line, Brake Caliper, and Brake Disc and 

Wheel Hub. 

2. Scenario 2: Condition-based maintenance (CBM) on 

Brake Disc and Wheel Hub (using an ideal sensor), with 

breakdown maintenance for Hydraulic Line and Brake 

Caliper. 

3. Scenario 3: CBM on Brake Disc and Wheel Hub, 

considering the sensor's intrinsic properties (Specificity 

and Sensitivity), with breakdown maintenance for 

Hydraulic Line and Brake Caliper. 

4. Scenario 4: CBM on Brake Disc and Wheel Hub, 

considering the sensor's reliability along with intrinsic 

properties (Specificity and Sensitivity), with breakdown 

maintenance for Hydraulic Line and Brake Caliper. 

Baseline performance is estimated before Diagnostic 

Analysis is conducted. To establish baseline system metrics, 

failure rates are assigned to each component to conduct 

reliability analysis. Maintenance strategies are then defined 

to perform availability analysis. These steps are essential for 

understanding the inherent performance of the system under 

normal operating conditions. The resulting baseline metrics 

serve as critical reference points for comparing the system's 

performance with and without sensor integration.  

After identifying the optimal sensor set through Diagnostic 

Analysis, DES assesses the impact of various sensor 

parameters (specificity and sensitivity) on system 

performance. These simulations allow us to evaluate sensors 

of the same type with different parameters configurations, 

determining which setup maximizes system efficiency and 

reliability. By examining how sensor parameters influence 

the system under various operational scenarios, the best 

sensor is identified that enhances overall performance. 

The failure distribution of the sensor is then incorporated into 

the simulation for reliability analysis. This step is crucial for 

understanding the likelihood of sensor failures and their 

effects on system performance. This comprehensive 

approach helps to optimize sensor deployment, balancing the 

need for high performance with the practical considerations 

of sensor reliability and redundancy. 

https://www.phmtechnology.com/
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6.1. Optimization Framework and Methodology 

Figure 1 summarizes the optimization process for this case 

study. Design data is first input into the DRT for RAMS 

analysis, which generates insights into potential failure paths. 

This information informs a Diagnostic Analysis to identify an 

optimal sensor set. The sensor configuration is then evaluated 

through DES simulations across various scenarios, assessing 

their impact on the system. 

The DRT can be tailored to meet different program 

requirements and adapt it as the system evolves. The initial 

optimization focuses on design data; however, once the 

system is operational, conducting trade studies will provide 

further insights into maintenance strategies and sensor 

effectiveness. 

 

Figure 1: Framework for sensor optimization 

6.2. Modelling DRT of Wheel Brake Assembly 1 

Figure 2 illustrates the DRT of Wheel Brake Assembly 1 that 

is modelled with the following functional definition. The 

Hydraulic System in the aircraft plays a crucial role in 

operating various components, including the Wheel Brake 

Assembly 1. Its primary function is to transmit force using a 

fluid under pressure, which allows for the precise control and 

application of mechanical force required for braking. In the 

context of Wheel Brake Assembly 1, the hydraulic system is 

responsible for delivering the necessary pressure to actuate 

the brakes, ensuring effective and reliable braking 

performance. The Hydraulic Line serves as the conduit for 

the pressurized hydraulic fluid from the aircraft's Hydraulic 

System to the Brake Caliper. When the pilot applies the 

brakes, hydraulic fluid is forced through the Hydraulic Line 

to the Brake Caliper. The Brake Caliper, in turn, uses this 

hydraulic pressure to push the brake pads against the Brake 

Disc, which is attached to the Wheel Hub. This action 

generates the friction needed to slow down or stop the 

aircraft.  

 

Figure 2 DRT of Wheel Brake Assembly 1 

 

The pressurized hydraulic fluid during normal and 

alternate/emergency braking scenarios is modelled as 

separate inputs for failure analysis. A similar approach is 

used to model braking signals (normal and 

alternate/emergency braking) as inputs. Figure 18 expands 

this concept to model the DRT of the entire aircraft, providing 

a comprehensive view of how the Wheel Brake Assembly 1, 

within the Landing Gear System, integrates with the broader 

Hydraulic System. 

6.3. Scenario 1: Baseline Performance Metrics 

A mission duration of 10,000 hours is considered to estimate 

the baseline reliability, availability, and cost incurred for the 

system. All components within the system are in a ‘series’ 

operational dependency group, where the failure of any single 

component leads to the failure of the entire system. Each 

component's failure time is modelled using an exponential 

distribution with Mean Time to Failure (MTTF) listed in 

Table 1. For instance, Brake Caliper has an MTTF of 5000 

hours indicating the time to failures is exponentially 

distributed with a mean of 5000 hours. In DES, failure times 

are sequentially sampled from this known exponential 

distribution. For example, the first failure time might be 2000 

hours, the next could be 10000 hours, and so on. These failure 

times are not random in a purely arbitrary sense but are 

instead probabilistically determined based on the exponential 

distribution characterized by the MTTF. This method ensures 

that the simulated failure events accurately reflect the 

statistical properties of the assumed failure distribution, 

providing realistic failure intervals. Figure 3 shows the 

reliability of the system considering MTTF in Table 1. 

Table 1: MTTF of components in Wheel Brake Assembly 1 

Component Name MTTF (Hours) 

Hydraulic Line 700 

Brake Caliper 1500 

Brake Disc and Wheel Hub 500 

 

Operational Availability (𝐴𝑜) is the total time of utilization 

of a machine. Availability is the ratio of the difference 

between the total available hours and total breakdown hours 

to the total available hours (Kolte & Dabade, 2017). Table 2 

outlines the baseline maintenance strategies, including 

maintenance cost, defined for each component. 

To evaluate the baseline availability, failure events were 

generated, and the resulting downtime was recorded for each 

iteration in DES. Availability is then computed using Eq.(1) 

and displayed as a percentage. This process is repeated for 

10,000 iterations to account for variability and provide a 

robust statistical distribution of availability. 

 Ao =
Mission Duration − Downtime

Mission Duration
 (1) 
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Figure 3: System reliability for baseline scenario 

 

Table 2: Baseline Maintenance Strategy 

Component 

Name 

Maintenance 

Strategy 

Downtime 

(Hours) 

Cost 

($) 

Hydraulic Line Breakdown 4 500 

Brake Caliper Breakdown 9 300 

Brake Disc and 

Wheel Hub 

Breakdown 12 200 

Figure 4 presents the Probability Density Function (PDF) plot 

of the system's availability, fitting a normal distribution. The 

x-axis represents the percentage availability for each 

iteration, while the y-axis indicates the density. The 

distribution shows a mean availability of 96.1996% with a 

standard deviation of 0.5921, demonstrating the system's 

high availability and minimal variance in performance. The 

spread of the PDF indicates that most availability values are 

close to the mean, suggesting high consistency. 

 

Figure 4: PDF of system availability for baseline scenario 

 

Figure 5 is the Cumulative Distribution Function (CDF) plot 

of the system's availability. The steepness of the CDF curve 

around the mean indicates how rapidly the cumulative 

probability increases, reaffirming that extreme deviations 

from the mean are rare.  

To estimate the system cost over the mission duration, 

operational cost, downtime loss, and maintenance cost for 

each of the three components are considered (Table 2 and 

Table 3). The operational cost accounts for the expenses 

associated with running the system under normal conditions. 

The downtime loss reflects the financial impact of system 

downtime, including lost production and potential revenue 

loss, which is critical for capturing the economic 

consequences of system failures. The breakdown 

maintenance cost for each component encompasses the 

expenses incurred when repairing or replacing a failed 

component. By incorporating these costs, the simulation 

closely mirrors real-world scenarios where both operational 

efficiency and failure-induced losses significantly influence 

total costs. 

 
Figure 5: CDF of system availability for baseline scenario 

 

Table 3: Cost considerations 

Component $/Hour 

Operational 40 

Downtime Loss 50 

 

Figure 6 illustrates the baseline cost distribution, also fitting 

a normal distribution, with a mean cost of $418,461.8240 and 

a standard deviation of $2864.1840. This consistent cost 

estimate highlights the predictability of the financial 

requirements for maintaining the system’s high availability. 

Figure 7 is the CDF plot of the system's cost. 

Together, the PDF and CDF plots provide a comprehensive 

view of the system’s availability and cost, highlighting its 
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high consistency and the low likelihood of significant 

deviations from the expected performance. 

 

Figure 6: PDF of system cost for baseline scenario 

 
Figure 7: CDF of system cost for baseline scenario 

 

These analyses provide a comprehensive understanding of 

the system's baseline performance with the expected range 

and variability. This foundational assessment is crucial for 

identifying potential improvements and ensuring the long-

term efficiency and cost-effectiveness of the system. 

6.4. Diagnostic Analysis for Sensor Deployment 

Diagnostic Analysis is performed on the Landing Gear 

System to uniquely identify all potential failures while 

minimizing the number of required sensors. By strategically 

deploying sensors, the analysis aims to achieve complete 

failure coverage with optimized resource utilization.  

Figure 8 illustrates the necessary responses within the 

Landing Gear System that require sensor detection to ensure 

unique failure identification. One critical location identified 

is the wheel speed sensor on Brake Disc and Wheel Hub in 

Wheel Brake Assembly 1 (highlighted in Figure 8). Installing 

a sensor at this location ensures the identification of all 

failures within Wheel Brake Assembly 1, as all components 

in this assembly are modelled in a series configuration 

(Figure 2). This strategic placement of sensor in Wheel Brake 

Assembly 1 is then used to assess the impact of sensor 

integration on its performance. 

6.5. Impact of Sensor on System Performance 

Following the recommendation from the Diagnostic Analysis 

to install a wheel speed sensor, this section evaluates the 

sensor's impact on the system by simulating Scenario 2, 

Scenario 3 and Scenario 4. In Scenario 2, the maintenance 

strategy of Brake Disc and Wheel Hub is changed from 

breakdown to CBM using an ideal sensor that provides 

perfect measurements without any errors & is 100% reliable. 

Scenario 3 examines CBM along with the sensor's intrinsic 

parameters, specifically specificity (the ability to correctly 

identify true negatives) and sensitivity (the ability to correctly 

identify true positives) while assuming the sensor is 100% 

reliable. Scenario 4 explores CBM and the impact of sensor 

reliability on system performance. By evaluating these 

different aspects, the simulation provides a comprehensive 

understanding of how the sensor influences the system's 

performance. 

 

Figure 8: Identification of location for sensor deployment 

6.5.1. Scenario 2: System Performance Using an Ideal 

Sensor 

An ideal sensor is one that does not fail and has perfect 

measurement capabilities. For instance, 100% specificity and 

100% sensitivity. In this section, an ideal sensor identifies 

failure symptoms in the Brake Disc and Wheel Hub, 

prompting timely CBM. This proactive approach 

significantly minimizes stoppages and reduces downtime that 

would otherwise result from breakdown maintenance. Table 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

 

7 

4 illustrates the revised maintenance metrics, highlighting the 

reduced downtime achieved by implementing CBM. 

Table 4: Revised maintenance metrics 

Component 

Name 

Maintenance 

Strategy 

Downtime 

(Hours) 

Cost 

($) 

Brake Disc 

and Wheel 

Hub 

CBM 4 300 

An Effectiveness Factor (EF) is introduced to estimate the 

efficacy of CBM in preventing failure of Brake Disc and 

Wheel Hub. An EF of 1.0 indicates a "perfect" corrective 

action, while an EF of 0 signifies a completely ineffective 

action. In this case study, an EF of 0.411 is considered for 

reliability analysis. Teal curve in Figure 12 illustrates the 

resulting improvement in the system's reliability against 

baseline scenario (blue curve in Figure 12). 

PDF of the system using revised maintenance metrics is teal 

region in Figure 13. The updated PDF, with a mean 

availability of 97.1347% and a standard deviation of 0.4850, 

shows a shift to the right compared to the previous mean of 

96.1996% (black curve in Figure 13), indicating an overall 

improvement in system availability. Additionally, the 

narrower spread of this PDF suggests that the availability 

values are more tightly clustered around the mean, indicating 

increased consistency and reliability in the system's 

performance. 

The teal curve in Figure 14 presents CDF for system 

availability. It shows that reaches higher probabilities more 

quickly, demonstrating that a higher percentage of the 

system's availability values are concentrated near the new 

mean. Furthermore, teal curve in Figure 15 shows reduction 

in cost against baseline (Scenario 1).  Overall, these 

comparison plots reveal that sensor integration for 

implementing CBM has not only enhanced the system's 

performance but also made it more predictable and stable. 

6.5.2. Scenario 3: System Performance Considering 

Sensor Intrinsic Properties 

This section simulates how various sensor parameters 

influence system performance, helping identify the best-fit 

sensor from a pool of sensors (wheel speed sensor). For this 

case study, sensor parameters specificity and sensitivity are 

considered, with the assumption that the sensor is 100% 

reliable (i.e., it does not fail).  

Sensitivity Analysis 

To understand the impact of sensor parameters on system 

availability and cost, sensitivity analysis is performed 

focusing on two key parameters: specificity and sensitivity of 

the sensor. Figure 9 shows the availability increases as both 

specificity and sensitivity increase. The sensitivity parameter 

has a more pronounced effect on the mean availability 

compared to the specificity. This indicates that improvements 

in sensitivity lead to a more significant enhancement in 

system availability than equivalent improvements in 

specificity. Figure 10 shows the cost decreases with an 

increase in both specificity and sensitivity. The sensitivity of 

cost to both parameters is quite similar, without a clear 

distinction between the impact of specificity and sensitivity. 

This suggests that the cost is equally influenced by changes 

in either parameter. 

System Performance Analysis 

Table 5 lists the wheel speed sensors evaluated in this case 

study and Figure 11 presents the CDF of system availability 

considering these sensors. Among these, Sensor 2 achieved 

the highest mean availability of 96.8059% with a standard 

deviation of 0.5164 in line with the sensitivity findings. This 

sensor is identified as the best possible option and is used for 

comparing system metrics. 

 

Figure 9: Sensitivity analysis on availability 

 

Figure 10: Sensitivity analysis on cost 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

 

8 

For reliability analysis, an EF of 0.375 is considered, which 

is lower than the value used for Scenario 2. This adjustment 

accounts for the practical performance of a real-world sensor 

and CBM. The orange curve in Figure 12 illustrates the 

system's reliability when incorporating a sensor 2, which is 

lower than using an ideal sensor (teal curve in Figure 12). 

This comparison reflects a more realistic scenario, 

highlighting the impact of using a practical, real-world sensor 

on the system's overall reliability. 

Table 5: Sensor Parameters 

# Wheel Speed 

Sensor 

Specificity Sensitivity 

1 Sensor 1 75 75 

2 Sensor 2 70 80 

3 Sensor 3 80 70 

4 Sensor 4 58 64 

5 Sensor 5 48 50 

 

Figure 11: CDF of system availability considering sensors 

in Table 5 

The PDF plot comparison (Figure 13) shows that when 

considering sensor parameters, the peak (orange region) is 

slightly lower and broader than with the ideal sensor (teal 

region), but still higher and narrower than the breakdown 

maintenance (black region), suggesting an overall improved 

but slightly less consistent performance. 

The CDF plots (Figure 14 and Figure 15) reflect performance 

changes in a cumulative context. In both figures, the orange 

curve represents the scenario considering sensor parameters. 

In Figure 14, this curve is notably steeper than the baseline 

scenario (black curve), indicating that even with imperfect 

sensor properties, CBM significantly enhances system 

availability. Additionally, this scenario proves to be more 

cost-effective compared to the baseline (black curve in Figure 

15), demonstrating the dual benefits of improved 

performance and reduced costs. 

6.5.3. Scenario 4: System Performance Considering 

Sensor Reliability 

This section assesses the system performance by 

incorporating the reliability of the single best-fit sensor 

(Sensor 2). Sensor reliability is estimated using an 

exponential failure distribution with an MTTF of 150 hours. 

An EF of 0.333 is considered to estimate system reliability. 

This value, lower than the one discussed in Scenario 2, 

accounts for the sensor reliability and CBM. The purple curve 

in Figure 12 illustrates the system's reliability for this 

scenario, demonstrating a reduction in reliability that aligns 

more closely with real-world applications. 

 

Figure 12: System reliability in all four scenarios 

 

The purple region in Figure 13 presents the PDF of system 

availability considering sensor reliability. Incorporating 

sensor reliability resulted in a mean availability of 96.7329% 

and a standard deviation of 0.5362. This scenario shows a 

slight reduction in mean availability and an increase in 

variability compared to the scenario with only intrinsic sensor 

properties (orange region in Figure 13), reflecting the impact 

of sensor failures on overall system availability. 

The purple curve in Figure 14 and Figure 15 shows the CDF 

of the system availability and cost considering sensor 

reliability suggesting enhanced availability and cost 

effectiveness against baseline case (Scenario 1). 

Overall, these comparisons help optimize sensor deployment 

considering the practical aspects of the sensor. While 

introducing sensor reliability slightly reduces availability and 

increases variability, CBM with realistic sensor properties 

and reliability still offers substantial improvements over 

traditional breakdown maintenance, providing a more 
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practical yet effective approach to maintaining high system 

performance. 

 

Figure 13: PDF of system availability in all four scenarios 

 

Figure 14: CDF of system availability in all four scenarios 

 
Figure 15: CDF of system cost in all four scenarios 

6.6. Implementing Maintenance Strategies for Sensor 

Earlier sections discussed the significant impact of sensor 

integration on system performance. This emphasizes the 

necessity of devising appropriate maintenance strategies to 

ensure the sensor functions as intended. To address this, the 

RCM II (Reliability-Centered Maintenance) methodology 

(Moubray, 1997) was employed to identify suitable 

maintenance strategies, although the specific details of this 

process are beyond the scope of this paper. Figure 16 

illustrates the comparison of various maintenance strategies, 

highlighting that CBM results in the least downtime. 

 

Figure 16: Comparison of Various Maintenance Strategies 

 

This case study adopts the CBM strategy with an EF of 0.367 

for wheel speed sensor to assess system reliability. The 

results, shown by the orange line in Figure 17, indicate an 

improvement in system reliability with the implementation of 

CBM. This strategy ensures timely maintenance actions 

based on the actual condition of the sensor, thereby 

enhancing overall system performance and reducing the 

likelihood of unexpected failures. 

 

Figure 17: Change in system reliability by incorporating 

maintenance on sensor 
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7. DISCUSSION 

The investigation into the Wheel Brake Assembly 1 reveals 

significant insights into the impact of sensor integration on 

system performance across four scenarios. Firstly, the 

baseline performance metrics depict the system's operational 

state under traditional breakdown maintenance. The system 

achieves a high mean availability, indicative of its reliability 

under standard operating conditions. However, operational 

costs associated with this approach are significant, reflecting 

the expenses incurred due to the maintenance strategy. 

Secondly, the implementation of an ideal sensor for CBM on 

the Brake Disc and Wheel Hub demonstrates improvements 

in system availability. The adoption of this proactive 

maintenance strategy results in enhanced availability metrics 

and a reduction in operational costs compared to the baseline 

scenario. 

Further, a comprehensive examination of the intrinsic 

properties of the sensors reveals significant impacts on 

system performance, as illustrated through the sensitivity 

analysis. The identification and selection of the highest-

performing sensor results in marked improvements in 

availability metrics. These findings emphasize the potential 

for optimized sensor deployment strategies to enhance 

overall system reliability. 

Moreover, the incorporation of sensor reliability into the 

analysis highlights the practical implications of sensor 

failures on overall system availability. While this scenario 

shows a slight reduction in availability and increased 

variability compared to ideal conditions, it emphasizes the 

importance of realistic sensor considerations in maintenance 

planning. 

Throughout the analysis, CBM consistently emerges as the 

preferred strategy, resulting in the least downtime and 

offering significant enhancements in system performance. 

These findings indicate the critical role of sensor integration 

and maintenance strategies in ensuring the reliability and 

efficiency of engineering systems. 

8. FUTURE WORK 

The future improvements to enhance the accuracy and 

flexibility of the simulation include: 

• Expanding Failure Distribution Options: The 

exponential distribution may not fully capture failure 

behaviors subject to wear-out or degradation over time. 

In such cases, alternative distributions like the Weibull 

or log-normal distributions provide more flexibility, 

allowing for varying failure rates, such as early-life 

failures or increased likelihood of failure due to aging. 

Incorporating additional failure distribution options 

better captures varying failure rates over time. 

• Introducing failure dependencies between components: 

In reality, a failure in one component could accelerate 

the degradation of another. For example, if the Brake 

Disc and Wheel Hub experience a critical failure due to 

a sensor issue, this could place additional strain on the 

Brake Caliper, accelerating its wear and potentially 

leading to premature failure. This capability would 

enable better predictive maintenance strategies by 

accounting for the cascading effects of component 

failures, thus enhancing the overall robustness of the 

model. 

9. CONCLUSION 

This case study illustrates the significant impact of sensor 

integration and maintenance strategies on the performance of 

systems. Through a combination of Diagnostic Analysis and 

DES, the study demonstrates that CBM, particularly when 

implemented with even imperfect sensors, can improve 

system availability and reduce costs compared to traditional 

breakdown maintenance. The findings showcase the value of 

a model-based approach in optimizing system performance 

across various scenarios. 

By incorporating real-world sensor parameters and 

reliability, the study provides practical insights into 

enhancing system reliability and cost-effectiveness. This 

methodology can be extended to other significant 

performance metrics within the system. Furthermore, sensor 

parameters can be subjected to sensitivity analysis, as 

illustrated in the case study where the analysis was conducted 

for specificity and sensitivity. This approach can also be 

applied to other parameters of interest such as MTTF, 

downtime, and maintenance costs. The methodology offers a 

robust framework for informed decision-making and 

continuous performance improvement, applicable to diverse 

engineering systems. 
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APPENDIX 

 

Figure 18: DRT of Aircraft at platform-level 


