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ABSTRACT

Data-driven tools for asset health management face signifi-
cant challenges, including a lack of understanding of physi-
cal principles, difficulty incorporating domain experts’ expe-
riences, and consequently low detection accuracy, leading to
trustworthiness issues. Automatically integrating data-driven
analysis with human knowledge and experience, as found in
literature and maintenance logs, is critically needed. Recent
progress in large language models (LLMs) offers opportuni-
ties to achieve this goal. However, there is still a lack of work
that effectively combines pretrained LLMs with data-driven
models for asset health management using industrial time se-
ries data as input. This paper presents a framework that inte-
grates our recently proposed data-driven AI with pretrained
LLMs to address root cause detection in industrial failure
analysis. The framework employs LLMs to analyze outputs
from our data-driven root cause analysis models, filtering out
less relevant results and prioritizing those that align closely
with physical principles and domain expertise. Our innova-
tive approach leverages advanced data-driven analytics and a
multi-LLM debate for collaborative decision-making, seam-
lessly merging data-driven insights with domain knowledge.
Specifically, through our proposed self-exclusionary debates
among multiple LLMs, biases inherent in single-LLM sys-
tems are effectively mitigated, enhancing reliability and sta-
bility. Crucially, the framework bridges the gap between data-
driven models and physics-informed LLMs, accelerating the
interaction between data and knowledge for more informed
and realistic decision-making processes.

1. INTRODUCTION

In asset health management, fault detection and root cause
analysis (RCA) is the process of identifying and diagnosing
anomalies or malfunctions in equipment or processes to pre-
vent failures and maintain efficiency. Specifically, RCA com-
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plements fault detection by uncovering fundamental causes,
enabling targeted corrective actions and facilitating predic-
tive maintenance strategies Ellefsen et al. (2019); Liao & Ahn
(2016). In recent years, the surge in sensor technologies has
led to an unprecedented volume of time series data across di-
verse sectors, presenting both opportunities and challenges.
Artificial Intelligence (AI) models, especially those designed
to operate on time series data, have become crucial for au-
tonomously identifying the underlying root causes of failures.

Figure 1. A malfunctioning cooling system results in high
pressure and temperature in cooling rods. However, identify-
ing the most deviated features may only reveal downstream
effects rather than direct causes.

Conventional data-driven root cause analysis often rely on
identifying deviations through reconstruction or prediction,
leveraging AI techniques such as autoencoders or LSTM net-
works Pang & Aggarwal (2021); Park et al. (2019); Xiao et
al. (2023). However, pinpointing the most deviated chan-
nels might emphasize downstream effects rather than direct
causes. For example, consider the scenario depicted in Figure
1: suppose there’s a malfunction in the cooling system, lead-
ing to spikes in pressure, temperature, and flow rate within
the control rods. Conventional approaches might flag these
elevated readings as the primary cause due to their substan-
tial residuals in prediction. However, in reality, they serve
more as indications of the underlying cooling system problem
rather than being the immediate cause of the malfunctions.
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Figure 2. The evolution of root cause analysis strategies. Traditional methods focus on channels with high prediction residuals,
which may capture downstream symptoms rather than root causes. Our previous work Huang et al. (2024) introduced a sec-
ondary model built on the prediction model to regress its residuals and identify root causes from the saliency map. In this work,
we propose using LLMs to further refine the saliency map results and identify root causes with higher accuracy.

In our previous work Huang et al. (2024), we introduced the
Deep Root Cause Analysis (DRA) method, featuring a two-
level structure. The first model detects anomalies with high
prediction residuals, while the second model regresses resid-
uals from faulty time series. Saliency maps from the second
model highlight the channels potentially responsible for the
high prediction residuals identified by the first model, offer-
ing transparency in root cause location. In our experimen-
tal study Huang et al. (2024), DRA proves superior to tradi-
tional prediction-residual-based methods in detecting simu-
lated process faults and identifying their root causes.

Although the potential root cause channels identified by our
DRA often include the true root cause, the scores of the true
root cause are not always among the highest, leading to trust-
worthiness issues. To address this problem, we integrate
physical principles and domain experts’ experiences into our
root cause analysis framework by utilizing pretrained large
language models (LLMs) to identify the most relevant chan-
nels from the potential root causes (identified by our DRA)
according to their impact to symptom channels (those with
high prediction residuals), as shown in Figure 2. We call this
new framework LLM-Enhanced Deep Root Cause Anal-
ysis (LDRA). Specifically, we propose a multi-LLM debat-
ing system to enhance the accuracy of conclusions, mitigat-
ing potential bias from a single LLM. While several works
exist on multi-LLM debating Chan et al. (2023); Du et al.
(2023); Liang et al. (2023); Nascimento et al. (2023); Wu
et al. (2023), we introduce a novel debating strategy among
multiple LLMs that involves multiple rounds of debating and
self-exclusionary voting, which will be described in Section
5. Experiments on the Tennessee Eastman process dataset
demonstrate that LDRA achieves extremely high accuracy in
identifying true root causes, surpassing both our previous
work in Huang et al. (2024) and popular baseline methods.

2. RELATED WORKS

Our primary focus lies on root cause analysis of detected
faults for multivariate time series collected from industrial
sensors. Traditional data-driven fault detection and root cause
analysis methods, such as isolation forest Xu et al. (2023)
and one-class SVM Arunthavanathan et al. (2022), rely on
deviation detection, considering deviations from the norm as
anomalies or faults. Prediction-residual based methods, in-
cluding ARIMA Kozitsin et al. (2021), LSTM Filonov et al.
(n.d.), CNN Lomov et al. (2021), and Autoencoders Xiao et
al. (2023), identify faults and root causes by measuring pre-
diction or reconstruction errors. Root causes are typically de-
tected by high residuals between actual and predicted values
across all observable channels.

In contrast, our previously proposed DRA Huang et al. (2024)
introduces a unique approach. DRA utilizes a two-model
structure, where the first detects anomalies with high predic-
tion residuals, and the second specifically regresses residuals
from the first model. The saliency maps derived from the
second model highlight channels potentially responsible for
the high prediction residuals in the first model. This hierar-
chical structure enhances interpretability, providing detailed
insights into root causes.

While some existing research integrates causal inference
methods to identify root causes, as seen in Cheng et al.
(2016); Qiu et al. (2012); Zhang et al. (2019), these meth-
ods may not be suitable for data with nonlinear correlations.
Additionally, rule-based systems, which rely on predefined
rules and expert knowledge Ragab et al. (2018), provide valu-
able insights but may lack adaptability and precision. Fur-
thermore, many devices accumulate vast quantities of high-
frequency time series data over time, making manual analysis
and creation of new rules impractical.

Although LLMs have proven effective and popular in vari-
ous scientific applications Kumar et al. (2023); Rane et al.
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(2023) and industrial problems Li et al. (2024); Yang et al.
(2023), their potential in prognostics and health management
(PHM) remains underexplored. A significant challenge im-
peding the adoption of LLMs in industrial applications is the
prevalence of biases and response variability. Each LLM may
contain biases and produce different answers to the same in-
puts, raising trustworthiness concerns Chan et al. (2023); Du
et al. (2023); Liang et al. (2023); Nascimento et al. (2023);
Wu et al. (2023). This discrepancy arises from several factors.
Firstly, different LLMs may be trained on diverse datasets or
sources, leading to inherent biases or subjective interpreta-
tions. Secondly, differing perspectives and interpretations of
the same context can cause variations in the responses gener-
ated by different LLMs. Even if several LLMs are trained on
the same dataset with the same model structure, the patterns
learned during pretraining may not fully generalize to all pos-
sible inputs. Consequently, LLMs may exhibit uncertainty or
ambiguity in their predictions for certain inputs Chan et al.
(2023); Du et al. (2023); Liang et al. (2023); Nascimento et
al. (2023); Wu et al. (2023). When utilizing LLMs in PHM, it
is crucial to address and mitigate these biases and variabilities
to ensure accurate and robust results. In Section 5, we intro-
duce a novel strategy involving multiple rounds of debating
and self-exclusionary voting among multiple LLMs, which
helps to reduce potential biases and response variability.

3. NOTATIONS AND MOTIVATIONS

We implement fault detection and root cause analysis on mul-
tivariate time series data collected from industrial assets. A
time series is denoted as X ∈ Rm×n , where m represents the
number of input channels and n denotes the number of time
steps. The value of the i-th channel at time step t is denoted
as Xt,i. A sliding window is used to scan each time series,
where Xt−ℓ+1:t ∈ Rm×ℓ represents the window containing
the latest ℓ time steps. Our root cause analysis is built upon
anomaly (fault) detection. Therefore, our first objective is
to build a regression model for anomaly detection that takes
a sliding window as input to predict the next time step and
capture anomalies with high prediction residuals. Simultane-
ously, our second objective is to identify root cause channels
for each detected faulty time series. Formally, the dual objec-
tives in our proposed DRA in Huang et al. (2024) are:

1. Anomaly detection upon time series prediction: Pre-
dict the values of Xt+1 with each input window:

X̂t+1 = f(Xt−ℓ+1:t). (1)

An abnormal segment Xt−ℓ+1:t is identified if the ab-
solute residual |X̂t+1 − Xt+1| is high. The entire time
series X is labeled as an anomaly if the cumulative ab-
solute residual |X̂ −X| surpasses a predefined threshold
(threshold setting will be discussed in Section 6.2).

2. Potential root cause detection with saliency map: For
each identified anomaly X , provide a matrix R, a tem-

poral saliency map indicating which input channels are
potential root causes of the anomaly. Each element Rt,i

represents the importance score of Xt,i, indicating its
contribution to the abnormal time series X .

The left part of Figure 3 outlines our DRA’s workflow in
Huang et al. (2024). Our data-driven DRA comprises two
models, and both models share the same structure with inde-
pendently trained parameters (the structure is detailed in Sec-
tion 4). Model 1 detects anomalies using the prediction model
f(∗) (Equation (1)) trained on normal data. In the inference
stage, anomalies are identified by high prediction residuals,
with channels exhibiting the highest residuals referred to as
symptom signals. Model 2 is a regression model regressing
residuals from Model 1:

X̂t+1 −Xt+1̂ = g(Xt−ℓ+1:t). (2)

Saliency maps derived from Model 2 provide potential root
causes for detected anomalies, extending their application be-
yond their origin in computer vision Niebur (2007). The pro-
cess is detailed in Section 4.2.

While our experiments in Huang et al. (2024) demonstrated
that the unique structure of DRA offers greater accuracy
and promise, particularly in scenarios where traditional ap-
proaches mistakenly focus on symptoms and downstream ef-
fects rather than root causes, DRA remains purely data-driven
and lacks integration with physical principles and validation
by domain experts’ experiences. To further increase detection
accuracy and trustworthiness, we propose using pretrained
LLMs to analyze the output of DRA. As shown in the right
part of Figure 3, the prompt to the LLMs includes symptom
signals from Model 1 and potential root causes from Model
2 in DRA. The LLMs are then asked to prioritize the most
relevant root causes based on their impact on the symptom
signals. In Section 5, we will detail how we utilize LLMs and
a new debating strategy among multiple LLMs to enhance
analysis stability and accuracy.

4. OUR DRA IN HUANG ET AL. (2024)

In Huang et al. (2024), we introduced a novel data-driven ap-
proach for detecting root causes, contrasting traditional meth-
ods relying solely on deviated features with high prediction
residuals. Notable features that set DRA apart and potentially
offer advantages over traditional methods include its hierar-
chical two-model structure and saliency map extraction for
root cause detection. These together provide detailed insights
into the complex and multifactorial nature of root causes in
industrial processes, enhancing the method’s effectiveness.

4.1. Model Structure of DRA

The two models in our DRA Huang et al. (2024) share
the same Temporal Convolutional Network (TCN) structure
with independently trained parameters, depicted in Figure 4.
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Figure 3. High level description of our proposed work flow.

Model 1 predicts the next time step Xt+1 while Model 2 pre-
dicts X̂t+1 −Xt+1 with the same input window Xt−ℓ+1:t.

The first stage of our TCN comprises a channel-wise conv1D
network, applying 1D convolution on k time steps, gener-
ating d dimension embeddings Vi for each input channel
i ∈ 1, 2, ...,m. Multiple levels are employed for increased
nonlinearity recognition. The second stage concatenates non-
linear features from each channel, V = [V1, V2, ..., Vm], and
processes them through an inter-channel conv1D network
with a filter size of k × md to produce time series embed-
ding U . ReLU activation is applied after each TCN layer.
This design captures patterns within each channel and across
all channels. This two-stage network preserves both tempo-
ral and channel dynamics, enhancing prediction explainabil-
ity (see Section 4.2).

Figure 4. This figure illustrates the common structure shared
by the two models in DRA. It is a Temporal Convolutional
Network (TCN) that processes a time series window at each
time step. Channel-wise Conv1D operators are applied to
each input channel individually, while inter-channel Conv1D
operators take the concatenated outputs from all input chan-
nels to obtain the time series embedding U . This embedding
is then fed into a Fully Connected Network (FCN) to produce
predictions.

Both models aim to approach their prediction targets: Xℓ+1,
Xℓ+2, ..., Xn by Model 1 and X̂ℓ+1 −Xℓ+1, X̂ℓ+2 −Xℓ+2,
..., X̂n −Xn by Model 2. Mean squared error (MSE) cal-
culates residuals, guiding back-propagation for model up-
dates during training. Detailed hyperparameter settings can
be found in Section 6.

It is worth emphasizing that the training set of Model 2 con-
tains both normal and faulty data. It ensures that, by regress-
ing low residuals for normal data and high residuals for faulty
data, the saliency map for faulty data highlights patterns caus-
ing symptoms of faults that do not appear in normal data.

4.2. DRA’s Saliency Maps for RCA

In our DRA Huang et al. (2024), we applied a transposed
convolution with the weights learned in the inter-channels
conv1D to extract saliency maps.

In detail, Model 2 captures and aggregates vital information
at each time step from the channel-wise conv1D-learned fea-
tures V across all input channels (as shown in Figure 4). This
aggregated information then undergoes inter-channel conv1D
processing to produce the time series embedding U . There-
fore, to discern the significance of each input channel, we
leverage the embedding U . Since U integrates information
from all input channels, we perform a reverse operation on U
using the transpose conv1D filter with the same weight in the
inter-channel conv1D layer. The result is a concatenated con-
tribution matrix of size m × d, where m denotes the number
of input channels and d represents the number of nonlinear
embeddings from the channel-wise conv1D. We then com-
pute the average contribution across d for each input channel
i, determining its importance Rt,i at time step t.

Furthermore, we measure the ℓ2-norm of each input channel
i across the entire R and sort the channels from high to low.
A higher ℓ2-norm indicates a higher likelihood of the channel
being the root cause for the anomaly. The top-ranked chan-
nels are identified as potential root causes that contribute to
the symptom channels with high residuals.
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Figure 5. Different LLMs may return different answers when presented with identical prompts, and a judge system Liang et al.
(2023), which is also an LLM, may fail to identify the correct answer from multiple LLMs due to inherent biases.

5. ENHANCING RCA ACCURACY WITH MULTI-LLM
DEBATING

5.1. The Motivation and Challenges of Leveraging LLMs

Despite DRA’s unique structure providing enhanced accuracy
and promise, particularly in cases where traditional methods
incorrectly emphasize symptoms and downstream effects in-
stead of root causes, it remains entirely data-driven and is
not validated by physical principles and domain experts’ in-
sights. In our experiments Huang et al. (2024), we observed
that although the potential root cause channels identified by
DRA often include the true root cause, 1) the true root cause
channels’ scores are not always among the highest, and 2) the
channels with the highest scores may not always have a direct
physical influence on the identified symptom channels, lead-
ing to trustworthiness issues. In response to this challenge,
we incorporate physical principles and domain experts’ ex-
periences into our root cause analysis framework by employ-
ing LLMs to analyze the outputs of DRA and pinpoint the
most influential channels to the symptom channels. This ap-
proach, termed LLM-Enhanced Deep Root Cause Analysis
(LDRA), is crafted to enhance the accuracy and reliability of
our root cause analysis..

Formally, given a set of symptom channels (denoted as S) ob-
tained from Model 1 in DRA, and a set of potential root cause
channels (denoted as P) obtained from Model 2 in DRA, the
objective of LDRA is to provide a sorted list of P based
on their impact on S using LLMs. We will further describe

Figure 6. An example of our Iterative and Self-Exclusionary
Multi-LLM Debating strategy is shown. In the first round,
each LLM present its rankings and reasoning, represented by
different geometric shapes. From the second round onwards,
each LLM evaluate others’ opinions from the previous round
and select the best one, ensuring they cannot choose their own
opinion unless another LLM shared the same view in the pre-
vious round. A clerk ensures consistency after each round. A
final consensus is reached when all (or most) LLMs agree on
the ranking of the root cause channels.

how we decide the size of S and P in Section 6.1 (Implemen-
tation Details).

While LLMs have showcased their effectiveness, utility, and
widespread adoption across various scientific Kumar et al.
(2023); Rane et al. (2023) and industrial domains Li et al.
(2024); Yang et al. (2023), their untapped potential in prog-
nostics and health management (PHM) remains a notable gap.
One significant challenge hindering the adoption of LLMs
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Figure 7. In contrast to single LLM approaches and other multi-LLM debating methods, our proposed Iterative and Self-
Exclusionary Multi-LLM Debating, which incorporates multiple rounds of debating and self-exclusionary voting, achieves
high accuracy in identifying true root causes.

in PHM is the prevalence of biases and response variability.
Each LLM may harbor biases and yield divergent answers,
even when presented with identical prompts, thereby intro-
ducing trustworthiness concerns Chan et al. (2023); Du et al.
(2023); Liang et al. (2023); Nascimento et al. (2023); Wu et

al. (2023). Figure 5 illustrates how different LLMs may re-
turn varying answers when presented with the same prompt.
This discrepancy arises from several factors. Firstly, different
LLMs may have been trained on diverse datasets or sources
of information, resulting in inherent biases or subjective in-
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terpretations of the data. Secondly, varying perspectives and
interpretations of the same context may lead to differences
in the responses generated by different LLMs. Additionally,
even if all LLMs are trained on the same dataset with the
same model structure, the patterns learned during pretrain-
ing may not fully generalize to all possible inputs. Conse-
quently, the LLMs may exhibit uncertainty or ambiguity in
their predictions for certain inputs Chan et al. (2023); Du et
al. (2023); Liang et al. (2023); Nascimento et al. (2023); Wu
et al. (2023). Addressing and mitigating these biases and vari-
abilities are crucial to ensuring inclusive, consistent, and ac-
curate results from LLMs in industrial applications.

5.2. Our Proposed Multi-LLM Debating Strategy

Recognizing that best practices in human decision-making of-
ten involve collaboration among multiple annotators Chan et
al. (2023), we resort to multi-LLM debating system. Despite
existing research on multi-LLM debating Chan et al. (2023);
Du et al. (2023); Liang et al. (2023); Nascimento et al. (2023);
Wu et al. (2023), the inherent bias in each LLM remains un-
addressed, often resulting in inaccurate conclusions. Figure 5
illustrates that both single LLM and a judge system proposed
in Liang et al. (2023) may fail to identify the true root cause
due to inherent bias.

In this work, we propose a novel debating strategy among
multi-LLMs. This strategy, termed Iterative and Self-
Exclusionary Multi-LLM Debating, involves multiple rounds
of debating and self-exclusionary voting. Figure 6 illustrates
an example of the debating process. In the first round, each
LLM presents its opinion on ranking and reasoning, repre-
sented with different geometric shapes. Starting from the
second round, each LLM evaluates the opinions of all other
LLMs from the previous round and selects the best opinion.
However, an LLM cannot choose its own opinion unless at
least one other LLM shared the same opinion in the previous
round. After each round of voting, a clerk examines whether
consistency is reached across all or most LLMs (e.g., 80%).
A final conclusion is reached when a consensus is achieved,
with all or most LLMs converging on the same ranking of
potential root cause channels. This iterative process aims to
mitigate individual biases and enhance the overall robustness
of the analysis.

Our new multi-LLM debating design serves several purposes:
firstly, it aims to prevent biases or distorted thinking from
clouding LLM’s self-reflection; secondly, by utilizing self-
exclusionary voting, it circumvents rigidity and resistance
to changing one’s beliefs; and thirdly, it incorporates di-
verse feedbacks, thereby offering valuable perspectives and
insights while reducing the impact of individual biases. Fig-
ure 7 shows this strategy in action, showcasing its effective-
ness compared to existing methods with the same input (Fig-
ure 5). In Section 6 we will further demonstrate the superior

performance of our LLM-Enhanced Deep Root Cause Anal-
ysis (LDRA) in root cause analysis compared to data-driven
methods.

6. EXPERIMENTS

Our experiments aim to assess the accuracy of root cause
analysis using LDRA compared to baseline methods.

Figure 8. TEP system.

6.1. Experiment Setup

Dataset Introduction. The Tennessee Eastman Process
(TEP) is a realistic simulation of a chemical plant process
widely utilized in fault detection and analysis studies Yin
et al. (2012). The TEP system (Figure 8) encompasses five
main process units: a reactor, condenser, gas-liquid separa-
tor, centrifugal compressor, and a stripper, along with addi-
tional components. It involves 52 variables (listed in Figure
9), including flowrates, pressures, temperatures, levels, mole
fractions, and compressor power outputs. The dataset con-
tains both ‘fault-free’ and ‘faulty’ data, representing normal
operation and 20 simulated process faults, respectively. Each
time series is sampled every 3 minutes for 25 hours, result-
ing in 500 time steps. The training set consists of 500 normal
time series, while the testing set comprises 500 normal and
500 faulty time series for each fault type. To ensure confident
root cause evaluation, we focused on a subset of faults listed
in Figure 10, as these are well-studied with confirmed root
causes for evaluation.

Baselines and Hyperparameter Setting. We compared our
LDRA with the following baseline methods: DRA Huang et
al. (2024): our previous proposed two-level structure. The
first model detects anomalies with high prediction residuals,
while the second model regresses residuals from faulty time
series. Saliency maps from the second model highlight the
potential root causes. LSTM Filonov et al. (n.d.): LSTM
model trained on normal data to regress future values, treat-
ing prediction error as an anomaly degree. CNN Lomov et
al. (2021): Temporal CNN architecture combining 1D and
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Figure 9. TEP channels.

2D convolutions for fault pattern detection. AE Xiao et al.
(2023): Deep autoencoder designed for TEP fault detection.
TRNS Bai & Zhao (2023): Transformer-based multi-variable
multi-step prediction method for TEP fault detection. All
baselines, except for DRA, rank potential root cause channels
based on global residuals in prediction. For their hyperparam-
eter settings, we adhered to the default structures specified in
their original papers, as these configurations are tailored for
TEP applications. Our DRA’s structure used in experiment
includes a channel-wise conv1D with 3 layers, each with an
output channel size of 20, and an inter-channel conv1D with
output dimensions of 50. The conv1D filters use a kernel size
of 3 with stride and dilation set to 1.

Evaluation Metrics. Each algorithm outputs a descending
list of potential root cause channels, ranked by their impact
on the anomaly. To demonstrate performance, we report the
ranking of the ground truth root cause within each list for each
fault. For faults with multiple ground truth root causes, we
show the highest rank among them. Ideally, the rank would
be 1 if the method successfully detects one of the ground
truth causes with the highest anomalous score. We conducted
20 trials for each setting and documented the average perfor-
mance and standard deviation.

Figure 10. TEP faults description and the true root causes.

Anomaly Detection. Since anomaly detection is a prerequi-
site and foundation for root cause analysis, and our proposed
LDRA in this paper is built upon the anomaly detection from
our previous DRA Huang et al. (2024), we first report the per-
formance of each algorithm in detecting anomalies. Tradi-
tional baselines (LSTM, AE, CNN, and TRNS) and the ini-
tial model of our DRA Huang et al. (2024) train a regression
model using fault-free data and identify time series with high
prediction residuals during inference as anomalies. To evalu-
ate the anomaly detection results, we use the Area Under the
Precision-Recall Curve (AUPR), which ranges from 0 to 1,
with 1 indicating perfect detection. AUPR is chosen because
it is not sensitive to class distribution. Table 1 illustrates the
anomaly detection performance for all 20 types of TEP faults
using various algorithms. We observe that the anomaly detec-
tion capability of our DRA, driven by Model 1, exhibits com-
parable detection accuracy to all the baselines, thereby laying
a robust foundation for the subsequent root cause analysis. It
is worth mentioning that all algorithms struggle to detect con-
trollable faults (Faults 3, 9, and 15, as described in Figure 10.
This difficulty arises because controllable faults, being man-
ageable by the control system, often return to normal regions,
leading to patterns that are not significantly different from
normal patterns Xue et al. (2021). This finding is consistent
with Filonov et al. (n.d.); Xiao et al. (2023), confirming the
challenging nature of detecting controllable faults.

Implementation Details. As mentioned in Section 5.1, the
objective of our LDRA is to provide a sorted list of P (poten-
tial root causes channels) based on their impact on S (symp-
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tom channels) using LLMs. Our LDRA system is imple-
mented utilizing PyTorch for the deep learning components
and GPT4All Anand et al. (2023) for integrating GPT-3.5-
Turbo as the LLM objects. The Tennessee Eastman Pro-
cess Dataset, a well-known benchmark in the process control
and chemical engineering communities, has extensive litera-
ture, including research papers, descriptions, and discussions
available online, which were part of GPT-3.5-Turbo’s training
database. This combination leverages state-of-the-art neural
network frameworks and advanced large language models to
ensure robust and accurate root cause analysis. In practice,
we select channels with scores larger than 1.5/

√
m from the

ℓ2-norm normalized scores of m channels for S and P . In the
multi-LLM debate, we use five LLMs by default.

Table 1. AUPR score and std for all the 20 faults.

DRA AE LSTM CNN TRNS
F1 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F2 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F3 0.50(.005) 0.49(.005) 0.47(.003) 0.49(.005) 0.47(.005)
F4 1.00(.000) 1.00(.000) 0.99(.001) 1.00(.000) 1.00(.000)
F5 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F6 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F7 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F8 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F9 0.55(.005) 0.55(.004) 0.50(.004) 0.55(.006) 0.51(.006)

F10 1.00(.000) 1.00(.000) 0.99(.001) 0.99(.001) 0.99(.001)
F11 1.00(.000) 1.00(.000) 0.99(.001) 1.00(.000) 1.00(.000)
F12 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F13 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F14 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F15 0.58(.008) 0.57(.003) 0.53(.005) 0.58(.010) 0.54(.006)
F16 1.00(.000) 1.00(.000) 0.98(.001) 0.99(.001) 0.99(.001)
F17 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F18 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)
F19 1.00(.000) 1.00(.000) 0.98(.001) 0.99(.001) 0.98(.001)
F20 1.00(.000) 1.00(.000) 0.99(.001) 1.00(.000) 1.00(.000)
avg 0.9315 0.9305 0.9210 0.9295 0.9240
p-v — 0.0813 0.0043 0.0210 0.0122

Table 2. Ranks (std) of truth root cause by each method.

DRA(50) LDRA(50) AE LSTM CNN TRNS
F1 1.0 (0.0) 1.0 (0.0) 6.2 (0.5) 8.0 (0.0) 7.6 (2.0) 7.2 (1.5)
F2 1.0 (0.0) 1.0 (0.0) 8.5 (0.7) 12.2 (0.4) 11.4 (0.5) 11.2 (0.5)
F4 6.0 (1.1) 1.7 (2.4) 47.2 (2.3) 48.2 (1.6) 49.4 (1.5) 49.0 (2.0)
F5 1.6 (1.2) 1.0 (0.0) 1.1 (0.2) 2.6 (1.5) 3.8 (0.4) 1.3 (0.8)
F6 1.6 (0.8) 1.0 (0.0) 9.0 (0.4) 25.0 (0.0) 32.6 (0.4) 9.2 (0.3)
F7 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 41.6 (0.5) 42.4 (1.0) 5.3 (2.2)
F8 1.0 (0.0) 1.0 (0.0) 6.1 (0.6) 9.2 (0.8) 8.0 (1.8) 8.2 (0.6)

F10 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F11 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 2.0 (0.0) 2.0 (0.0) 1.0 (0.0)
F12 3.0 (1.4) 1.1 (0.3) 4.3 (1.5) 10.4 (1.2) 9.6 (0.5) 6.0 (0.8)
F13 4.0 (1.4) 1.2 (0.5) 15.7 (2.1) 24.0 (0.6) 22.0 (1.3) 18.2 (2.3)
F14 1.7 (0.2) 1.1 (0.3) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 3.2 (0.5)
avg 1.99 1.09 8.59 15.52 15.98 10.07

6.2. Performance of Root Cause Analysis

Table 2 presents the comparison of root cause analysis qual-
ity. Each method generates a ranking of input channels based
on their likelihood of being the root cause, and we recorded
the rank of the ground truth root cause channel for each
method, considering the top-ranking channel if there are more
than two ground truth root cause channels. In this analysis,

Table 3. Ranks (std) of truth root cause by DRA and LDRA
with different sizes of detected anomaly (i.e. 30, 50, 100).

DRA(30) DRA(50) DRA(100) LDRA(30) LDRA(50) LDRA(100)
F1 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F2 2.6 (1.4) 1.0 (0.0) 1.0 (0.0) 1.5 (0.3) 1.0 (0.0) 1.0 (0.0)
F4 9.8 (1.3) 6.0 (1.1) 5.6 (2.2) 3.5 (1.3) 1.7 (2.4) 1.2 (0.5)
F5 3.6 (2.2) 1.6 (1.2) 1.0 (0.0) 1.5 (0.3) 1.0 (0.0) 1.0 (0.0)
F6 2.0 (0.9) 1.6 (0.8) 1.2 (0.9) 1.1 (0.2) 1.0 (0.0) 1.0 (0.0)
F7 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F8 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F10 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F11 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F12 3.2 (1.3) 3.0 (1.4) 2.8 (1.5) 1.8 (0.8) 1.1 (0.3) 1.1 (0.2)
F13 4.8 (1.7) 4.0 (1.4) 3.6 (1.5) 2.1 (1.1) 1.2 (0.5) 1.1 (0.2)
F14 4.2 (1.6) 1.7 (0.2) 1.2 (0.8) 1.55 (1.1) 1.1 (0.3) 1.1 (0.2)
avg 2.93 1.99 1.78 1.55 1.09 1.04

we assumed the training set of our models contains 500 nor-
mal time series and 50 detected faulty time series by Model 1
from each fault type. The detected faulty time series are those
with prediction residuals above a predefined threshold, set to
be 1.5 times the maximum residuals from the validation set.
The experiments are conducted for each fault type separately.

Table 2 reveals that both our previous DRA Huang et al.
(2024) and our proposed LDRA exhibit the best average per-
formance, outperforming all other methods across all fault
types. Overall, LDRA shows a 45% improvement over DRA,
ranking the true root causes as the highest score for over 80%
of all faults.

Table 3 presents the root cause analysis quality of our DRA
and LDRA with different sizes of detected faulty time series
for a more comprehensive evaluation. The training set for
Model 2 includes 30, 50, and 100 randomly selected detected
faulty time series from each fault type. The results indicate
that even with a small number of detected anomalies (30),
both DRA and LDRA can detect true root causes with high
ranks. Moreover, increasing the number of detected faulty
time series to 100 allows for a closer approximation to the
true root cause on average. Overall, LDRA clearly outper-
forms DRA across all sizes of detected anomalies.

6.3. Analysis on Representative Faults

In Figure 11, we present the analysis results for Faults 1 and 6
as examples. From left to right, each figure shows the symp-
tom channels with high residuals from Model 1, the poten-
tial root causes detected by Model 2, and the conclusion of
the multi-LLM debate. This demonstrates that our LDRA has
high accuracy in identifying actual root causes compared to
deviation-based methods, while also providing physical ex-
planations. Specifically, this supports our assertion that: 1)
recognizing the most deviated features doesn’t guarantee ac-
curate pinpointing of true root causes, as high deviations are
often symptomatic rather than direct causes; 2) DRA is more
effective than deviation-based methods in learning potential
root causes; and 3) LDRA increases the accuracy of detecting
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((a)) TEP fault 1.

((b)) TEP fault 6.

Figure 11. Here, we present the analysis results for Faults 1 and 6 as example. From left to right, each figure shows the symptom
channels with high residuals from Model 1, the potential root causes detected by Model 2, and the conclusion of the multi-LLM
debate. This demonstrates that our LDRA has high accuracy in identifying actual root causes compared to deviation-based
methods, while also providing physical explanations.

root causes by utilizing domain knowledge and experience
from pre-trained LLMs, and provides physical explanations.

Fault 1 involves a step change in the A/C feed ratio in Stream
4 (a closely related variable that is not monitored). This
change directly affects the stripper, leading to a decrease in
the A feed stream (0th channel) and an increase in the A feed
flow (43rd channel). While these two downstream effects
are captured by high prediction residuals (left part in Figure
11(a)), the actual root cause, which is directly related to the
change in stripper pressure (15th channel) Ji et al. (2021);
Kim et al. (2019), is identified by Model 2 (middle part of
Figure 11(a)) and further confirmed and top-ranked by the
multi-LLM debate (right part of Figure 11(a)).

Fault 6 is caused by the loss of A feed, with the A feed flow
valve (43rd channel Tian et al. (2013)) being the actual cause.
Traditional methods, especially deviation-based ones, iden-
tify the compressor recycle value (45th channel, left part of
Figure 11(b)) as the most likely cause, which is incorrect. Our
model 2 captures the correct root cause (43rd channel) in the
driven factors (middle part of Figure 11(b)), and further con-
firmed and top-ranked by the multi-LLM debate (right part of
Figure 11(b)).

6.4. Ablation Study and Sensitivity Test

We conducted a comprehensive analysis of the LDRA frame-
work through an ablation study, examining the individual
contributions of its components. The study focused on root
cause ranking, and Figure 12 illustrates the ranks of the true
root cause channels achieved by five versions of the model:
the full version of LDRA, and four ablated/alternative ver-

sions. The full model (LDRA) consistently outperformed the
other versions, underscoring the synergistic integration of all
components. Specifically, using Model 1 alone to identify
root causes as the most deviated channels exhibited the lowest
performance, highlighting the pivotal role of the driven chan-
nel learning by Model 2 and the integration of multi-LLM
debate. Our previous work, DRA Huang et al. (2024), sig-
nificantly improved performance over using Model 1 alone,
demonstrating the necessity of Model 2 for extracting poten-
tial root causes. Although the combination of DRA with a
single LLM and a judge system improved the ranking of the
true root cause to some extent, it still performed worse than
our LDRA. This highlights the efficacy of our proposed It-
erative and Self-Exclusionary Multi-LLM Debating strategy
detailed in Section 5.2.

Figure 12. Ablation study on root cause ranking.

7. CONCLUSION

In this paper, we introduced a novel framework, LLM-
Enhanced Deep Root Cause Analysis (LDRA), designed to
enhance the accuracy and reliability of root cause analysis
in complex industrial processes. Our approach leverages the
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strengths of large language models (LLMs) and integrates
them into a multi-LLM debating strategy that iteratively re-
fines the identification of potential root causes through self-
exclusionary voting.

Our experimental results, conducted on the Tennessee East-
man Process (TEP) dataset, demonstrated that LDRA out-
performs traditional data-driven methods and our previous
model, DRA Huang et al. (2024). The incorporation of do-
main knowledge from LLMs significantly boosted the ac-
curacy of root cause detection, as evidenced by the higher
ranking of true root causes across various fault types. The
ablation study further highlighted the critical contributions
of each component within the LDRA framework. The iter-
ative multi-LLM debating strategy, in particular, proved to be
highly effective in mitigating individual LLM biases and en-
hancing the robustness of the analysis. The findings underline
the necessity of combining Model 1’s initial anomaly detec-
tion with Model 2’s driven channel learning, along with the
added value brought by the multi-LLM debate integration.

Our work underscores the importance of adopting advanced
AI techniques in industrial applications, particularly for tasks
as critical as prognostics and health management (PHM).
By addressing the inherent biases and response variability in
LLMs, LDRA sets a new benchmark for root cause analysis,
paving the way for more reliable and interpretable AI-driven
solutions in the industrial domain. Future work will focus
on further refining the LLM integration, exploring additional
datasets, and expanding the application of LDRA to other
complex systems. We are confident that our approach will
inspire future innovations and applications within the PHM
community.
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