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ABSTRACT

This study introduces a novel three-stage diagnostic method-
ology aimed at enhancing the prediction and classification
of gearbox degradation under various operating conditions
and multiple degradation levels, addressing the complex-
ities encountered in real-world industrial settings. Lever-
aging the latest advancements in data-driven approaches,
from similarity-based methods to residual-based deep con-
volutional neural networks (CNNs) and pseudo-labeling
techniques, our approach systematically classifies data into
known, unknown, and undetermined categories, predicts
known degradation levels, and refines classification mod-
els with augmented pseudo-label data. The efficacy of our
methodology is demonstrated through its remarkable perfor-
mance using the data from the PHM North America 2023
Conference Data Challenge. It achieves scores of 600 / 800
on the testing data and 574 / 813 on the validation data, sig-
nificantly surpassing the first-place scores of 463.5 and 472
in the competition, respectively, setting a new benchmark in
the field of gear fault diagnosis.

1. INTRODUCTION

Over the years, the gear fault diagnosis domain has witnessed
the evolution of numerous data-driven approaches aimed at
identifying and diagnosing gear faults and degradation to
ensure the reliability and efficiency of mechanical systems.
Existing research has shown variant machine learning (ML)
and artificial intelligence approaches for gear fault diagno-
sis (Kumar, Gandhi, Zhou, Kumar, & Xiang, 2020; Zhu et
al., 2023; Su & Lee, 2024), including convolutional neural
networks (CNN) (Zhao, Kang, Tang, & Pecht, 2017; Kreuzer
& Kellermann, 2023), recurrent neural networks (RNN) (Tao,
Wang, Sánchez, Yang, & Bai, 2019; Durbhaka et al., 2021),
autoencoders (AE) (Saufi, Ahmad, Leong, & Lim, 2020;
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Z. He et al., 2020), deep belief networks (DBN) (X. Wang,
Qin, & Zhang, 2018; Li, Li, He, & Qu, 2019), etc. How-
ever, in real-world industrial settings, analyzing and diagnos-
ing gearbox degradation may become more complex. Gear-
boxes may operate under a variety of working conditions, and
sometimes, some states of gear health are not known in ad-
vance. This uncertainty adds a significant layer of difficulty
to gear fault diagnosis. Meanwhile, the small size of the data
sets also presents challenges for ML model deployment. Con-
sequently, there is a growing need to explore and develop
innovative solutions that reduce reliance on specialized ex-
pertise and enable the creation of more versatile, automated
systems for gear fault diagnosis. These advancements hold
the promise of making gear fault diagnosis more accessible
and efficient, paving the way for broader applications and en-
hanced operational reliability.

To address these limitations, we propose a novel three-stage
diagnostic approach for predicting gearbox degradation. The
initial stage introduces a similarity-based model designed to
classify data into known, unknown, and undetermined cate-
gories. Subsequently, the second stage employs a residual-
based CNN regression model, focused on the prediction of
known degradation labels. In the final stage, we transition the
regression model to a classification model. We incorporate
pseudo-labeling techniques to assign pseudo-labels to testing
data. The data, now augmented with pseudo labels, is then
used to refine the classification model further. This innova-
tive approach enhances the model’s robustness and its gen-
eralization capabilities, offering a comprehensive solution to
the challenges of gearbox degradation prediction.

The rest of this article is organized as follows: Section 2 in-
troduces the competition and dataset, reviews the relevant ap-
proaches, and data preprocessing module. Section 3 provides
a comprehensive analysis of three-stage ML model construc-
tion. Section 4 reports and discusses the performances of ML
models and summarizes the limitations of this study. Section
5 concludes this paper by highlighting its findings and contri-
butions.
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2. BACKGROUND

2.1. Literature review

Existing work in the field has increasingly pivoted towards
data-driven ML models that can handle data from complex
systems under varying conditions (Kumar et al., 2020; Zhu
et al., 2023; Su & Lee, 2024). Research has explored vari-
ous methodologies, from statistical models to advanced deep
learning techniques, for fault diagnosis and prognostics. For
similarity-based approaches, (Bettahar, Rahmoune, Benaz-
zouz, & Merainani, 2020) combined the wavelet transform,
Hilbert transform, and cosine similarity metric to extract use-
ful features for gear fault diagnosis. (Feng, Ni, Beer, Du, &
Li, 2022) proposed a methodology based on similarity-based
status characterization to thoroughly represent the degrada-
tion behaviors of gear systems.

Except for similarity-based approaches, many deep learn-
ing approaches are deployed to address gear fault diagnosis.
(X. Wang et al., 2018) trained a DBN for the planetary gear-
box fault diagnosis utilizing time domain features extracted
from the vibration signal processed by the optimized Mor-
let wavelet and frequency domain features extracted from
the pulse signal. To address the challenge of limited sam-
ples in gearbox diagnosis, (Saufi et al., 2020) proposed a
powerful deep learning model based on a stacked sparse au-
toencoder (SSAE) using time-frequency images. To find the
optimal hyperparameters, the Particle Swarm Optimization
(PSO) algorithm was applied. (Mohamad, Abbasi, Kim, &
Nataraj, 2021) developed an innovative deep learning frame-
work that integrates a CNN module with a long short-term
memory (LSTM) network module. In this framework, the
CNN module extracts informative features, while the LSTM
module excels in time series modeling. The framework is ap-
plied to fault classification of gearbox data, thereby enhanc-
ing condition-based maintenance (CBM). Moreover, (Chu,
2023) introduced a novel three-stage diagnostic approach,
leveraging Domain2Vec structure (utilizing EfficientNet-B0
for feature extraction) for in-set health state classification,
then transitioning the model to regression for out-of-set pre-
diction, and employing KNN for error correction to boost per-
formance. (Liu, 2023) used tree-based gradient boosting and
neural networks to build the classification models for known
labels and used the nearest neighbor clustering method to in-
terpolate and extrapolate to unseen labels.(Vaerenberg et al.,
2023) introduced a diagnostic approach employing a CNN
optimized with an ordinal loss criterion. This method lever-
ages the power spectral density of three-channel vibration sig-
nals to assess the severity of pitting faults in gearboxes accu-
rately.

Moreover, pseudo-label-based methods have demonstrated
impressive results across various industrial applications. The
pseudo-label technique, as proposed by (D.-H. Lee et al.,
2013), is designed by assigning pseudo-labels to unlabeled

data and incorporating pseudo-labeled data into the training
sets, which can improve ML model accuracy and general-
ization capabilities. Given the prevalence of unlabeled data
in industrial settings compared to labeled data, the integra-
tion of information from unlabeled sources becomes crucial.
(Song, Li, Jia, & Qiu, 2019) proposed a weighted pseudo-
label-based retraining domain adaptation network to boost
the model generalization performance. (Oh et al., 2023) em-
ployed a pseudo-label-based deep learning approach to im-
prove fault diagnosis in hydrostatic rock drills.

2.2. Competition and dataset description

The data utilized in our study is from the PHM (Prognostics
and Health Management) North America 2023 Conference
Data Challenge1. This Challenge represents a cutting-edge
intersection of ML and mechanical system health monitor-
ing, focusing on gearbox degradation under diverse opera-
tional conditions and unseen degradation levels. The dataset
comprises training, testing, and validation subsets. It includes
2,016 samples in the training set, 800 in the testing set, and
813 in the validation set. Each sample data is the time-series
data recorded by a tri-axial accelerometer, capturing vibration
signals at a sampling rate of 20,480 Hz. Degradation sever-
ity increases in levels from 0 to 10. The training dataset for
the competition comprises 7 classes, including a healthy state
(degradation level 0) and six distinct degradation levels (lev-
els 1, 2, 3, 4, 6, 8). Notably, degradation levels 5, 7, 9, and 10
are excluded from the training dataset. There are 78 operating
conditions spread across these 7 health levels, with an average
of 3.69 repetitions for each operating condition of fault level
included in the training dataset. In contrast, the testing and
validation datasets cover whole degradation levels. Addition-
ally, some operating conditions that are absent in the training
dataset appear in both the testing and validation datasets. This
exclusion is designed to replicate real-world scenarios where
complete data across all operating conditions and degradation
levels might not be available, thus challenging participants to
develop models that can effectively handle partial or incom-
plete data.

2.3. Data preprocessing

The preprocessing phase involves a systematic procedure that
includes signal segmentation, Fast Fourier Transform (FFT),
and data visualization, shown in Figure 1. Initially, each time
series data is divided into 22 segments, each lasting 1 second.
As the data is measured on the output shaft, which operates at
5/9 the speed of the input shaft, for the lowest rotational speed
condition (100 rpm), the input shaft speed equates to 4/3
Hz, while the output shaft speed is approximately 0.92 Hz.
This setup ensures each segment captures at least one full pe-
riod. Moreover, given the high sampling rate, segmenting the

1https://data.phmsociety.org/phm2023-conference
-data-challenge/
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original sample into smaller parts can effectively shorten the
data length, increase sample size, capture local patterns, and
make computational processes more efficient, finally benefit-
ing deep learning model training. Following segmentation,
the time domain data is converted into the frequency domain
by using FFT, facilitating a comprehensive analysis. Through
data visualization, both the time series’ configuration and its
frequency domain characteristics can be promptly assessed,
laying a solid foundation for subsequent analytical steps.

Figure 1. Process of data preprocessing.

3. METHODOLOGY

In this section, a novel three-stage diagnostic method is in-
troduced. It involves a similarity-based model, a residual-
based CNN regression model, and a refined CNN classifica-
tion model using augmented pseudo-label data.

3.1. Stage 1: a similarity-based model for known, un-
known, and undetermined class classification

The dataset utilized for testing encompasses data across
eleven degradation levels, comprising a healthy status and
ten levels of degradation. Notably, data from certain degra-
dation levels and operational conditions are excluded from
the training datasets. Initially, we devise a similarity-based
model aimed at precisely classifying the test data into three
categories: known, unknown, and undetermined. The cate-
gories are defined as follows: the ”known” category includes
degradation levels 0, 1, 2, 3, 4, 6, and 8, which are repre-
sented in the training dataset. The ”unknown” category en-
compasses levels 5, 7, 9, and 10, which are not present in
the training dataset. The ”undetermined” category is applied
when the similarity-based model cannot conclusively deter-
mine whether the data belongs to the known or unknown cat-
egories. It consists of 4 steps.

Step 1: Categorize the training and testing set. For a
time series of length T with C distinct variables, each data
in the frequency domain is represented as X ∈ R[T2 ]×C .
Consequently, the dimension of the training set (XTrain)
is RNtrain×[T2 ]×C , while the dimension of the testing set
(XTest) is RNtest×[T2 ]×C .

For the training set and testing set, we segregate the frequency
domain data based on varied operating conditions (19 differ-

ent rotational speeds and 5 different torque) as follows:{
Xs,t

Train

}
= Categorize(XTrain) (1){

Xs,t
Test

}
= Categorize(XTest) (2)

where s denotes a specific rotational speed∈ {100, 200, ..., 3600}
and t denotes a specific torque ∈ {100, 200, ..., 500}.

For each category defined by a specific combination of rota-
tional speed s and torque t in the training dataset, the subset
Xs,t

Train is represented as RNs,t
train×[T2 ]×C , where Ns,t

train is the
number of samples in that category. The arrangement of rows
in this matrix is based on the degradation levels, ascending
from least to most severe. Similarly, the corresponding subset
in the testing dataset, Xs,t

Test is represented as RNs,t
test×[T2 ]×C

Step 2: Compute the training set similarity matrix. After
categorizing the training set, a similarity matrix defined as
Sim Xs,t

Train is calculated for each category. We calculate
the Euclidean distance between two samples to quantify the
similarity. The element Sim Xs,t

Train(i, j) is calculated as
follows:

Sim Xs,t
Train(i, j) =

√
(Xs,t

Train[i, :]−Xs,t
Train[j, :])

2 (3)

A lower Euclidean distance value suggests a higher degree of
resemblance between the paired samples. Typically, samples
having the same degradation levels exhibit smaller Euclidean
distance values compared to those with differing degradation
levels. For samples classified under the same degradation lev-
els, we compute the mean (Means,t,k

Train) and standard devia-
tion (Stds,t,kTrain) of their similarity values, where k represents
specific degradation levels, such as 0, 1, 2, 3, 4, 6, 8. For
example, if the rows from a to row b in Xs,t

Train correspond
to the degradation level k, then the mean and standard devia-
tion for this specific degradation level within the training set
similarity matrix are computed as follows:

Means,t,k
Train = 1

(a−1)(b−1)

∑b
i=a

∑b
j=a,j ̸=i(Sim Xs,t

Train(i, j)) (4)

Stds,t,kTrain =

√∑b
i=a

∑b
j=a,j ̸=i(Sim Xs,t

Train(i,j)−Means,t,k
Train)

2

(a−1)(b−1) (5)

These statistical measures are later utilized to assess whether
the testing data correspond to the same labels as the training
data.

Step 3: Compute the testing set similarity matrix. Similar
to the approach in step 2, the similarity matrix for the testing
set, Sim Xs,t

Test, is derived by computing the Euclidean dis-
tance between the rows of the training set (Xs,t

Train) and rows
of the testing set (Xs,t

Test). The element Sim Xs,t
Test(i, j) is

calculated as follows:

Sim Xs,t
Test(i, j) =

√
(Xs,t

Train[i, :]−Xs,t
Test[j, :])

2 (6)
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Calculating the similarity matrix for the testing set allows for
a direct comparison with the training set, enabling the identi-
fication of similarity patterns and deviations between the two
datasets.

For each column j in Sim XTest, the similarity value
is calculated using all the rows from the training set and
the specific row j from the testing set. Subsequently,
the mean (Means,t,k

Test[j]) for each degradation level k
∈ {0, 1, 2, 3, 4, 6, 8} is computed. The degradation level
kmin[j], which has the lowest mean value, is then identi-
fied. The rows in the Sim XTest[:, j] that correspond to
this degradation level kmin are used as a reference to clas-
sify the test data in column j. Within these reference rows,
max sim[j] and min sim[j] denote the highest and lowest
similarity values, respectively, which further assist in the
classification process.

Step 4: Classify testing data into known, unknown, and
undetermined classes. The classification process utilizes
the previously calculated Sim Xs,t

Train and Sim Xs,t
Test for

each set of operational conditions. For each operational con-
dition, according to the degradation levels observed in the
training data, the mean (Means,t,k

Train) and standard devia-
tion (Stds,t,kTrain) is calculated from the training set similar-
ity matrix (Sim Xs,t

Train) in step 2 and degradation level
kmin, max sim[j] and min sim[j] are obtained in step 3.
Therefore, a detailed representation of the similarity predic-
tions is designated as Sim Pred ∈ RNs,t

test×4. This matrix
meticulously captures the relationship between testing data
points and their most proximate degradation labels, alongside
their categorization into known, unknown, and undetermined
classes. The process for classifying the testing data is shown
in Algorithm 1.

The decision to use thresholds of 3 × Stds,t,kTrain and 10 ×
Stds,t,kTrain comes from the assumption that the dataset follows
a normal distribution. Under this assumption, about 99.7%
of the data falls within three standard deviations from the
mean. Consequently, setting a threshold at Means,t,k

Train +

10 × Stds,t,kTrain helps in identifying extreme outliers, as this
threshold significantly exceeds the typical range of data vari-
ation.

3.2. Stage 2: a residual-based CNN regression model for
known degradation level prediction

In this stage, we propose a residual-based Convolutional Neu-
ral Network (CNN) model, specifically designed for the pre-
diction of gearbox degradation levels. Our model draws in-
spiration from the renowned ResNet architecture—a deep
learning framework known for its efficacy in tasks ranging
from image recognition (K. He, Zhang, Ren, & Sun, 2016)
to speech recognition (Vydana & Vuppala, 2017), as well as
applications in condition monitoring and PHM (Duan, Shi,

Algorithm 1 Classify testing data into known, unknown, and
undetermined classes for speed rotational speed s and torque
t

Get kmin, max sim and min sim from Step 3.
Get Means,t,k

Train and Stds,t,kTrain from Step 2.

Initialize Sim pred ∈ RN
s,t
test×4 with value 0.

j ← 0

while j ̸= Ns,t
test do

if max sim[j] ≤Mean
s,t,kmin[j]
Train + 3× Std

s,t,kmin[j]
Train then

Sim pred[j, 0] = 1 // known class
else if min sim[j] ≥Mean

s,t,kmin[j]
Train +10×Std

s,t,kmin[j]
Train then

Sim pred[j, 1] = 1 // unknown class
else

Sim pred[j, 2] = 1 // undetermined class
end if
Sim pred[j, 3] = kmin[j] // the most similar degradation level
j ← j + 1

end while

Zhou, Xuan, & Wang, 2021; Zhou et al., 2022). The original
training data is divided into three subsets: ”Training Train
Data,” ”Training Validation Data,” and ”Training Test Data,”
following a 3:1:1 ratio. In this stage, the regression model is
trained on the ”Training Train Data,” validated on the ”Train-
ing Validation Data,” and finally tested using the ”Training
Test Data.”

The regression model is tailored to address the challenge of
predicting the levels of gearbox degradation. The architecture
of the proposed model is illustrated in Figure 2 (A). It incor-
porates a batch size of 32 and leverages frequency domain
features. These frequency-domain features are derived from
1-second segments of time-domain vibration signals by using
FFT. The core of the model comprises four one-dimensional
convolutional blocks, supplemented by a residual block de-
signed to facilitate deeper model training to prevent the van-
ishing gradient issue. Each convolutional block consists of
a convolutional layer followed by a Rectified Linear Unit
(ReLU) activation function. The detailed architecture is as
follows: The initial convolutional block includes 24 filters of
size 128, followed by the first Max Pooling layer (pool size =
2). The reason for using wide filters in the first convolutional
block is that previous research has demonstrated promising
results by using wider filters in the initial layers could en-
hance CNN model performance (W. Zhang, Peng, Li, Chen,
& Zhang, 2017; A. Zhang et al., 2019; Yu & Zhou, 2020;
Cao, He, Wang, & Yu, 2020; Shao, Ra, Kim, et al., 2024).
Then it is followed by a second convolutional block (32 fil-
ters of size 3), and the second Max Pooling layer (pool size
= 2). Subsequently, a residual block is introduced. The left
branch contains two convolutional blocks each with 32 fil-
ters of size 3, while the right branch consists of a convolu-
tional layer with a filter size of 1, tailored to adjust the signal
dimensions for subsequent addition. Following the merging
of both branches, the third Max Pooling layer is applied to
reduce the feature vector size. The network concludes with
a flatten layer, a dense layer with 200 neurons, a dropout
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Figure 2. Network architecture of the proposed residual-based CNN model. (A) Regression model for stage 2. (B) Classification
model for stage 3.

layer (a dropout rate of 0.25) to prevent overfitting, another
dense layer with 20 neurons, and finally, an output layer that
predicts the degradation level. The output of the regression
model is defined as Reg Pred ∈ Rd.

3.3. Stage 3: a fine-tuned classification model by using
pseudo label techniques

Following the successful training of the residual-based CNN
regression model for known degradation level prediction, we
proceed to fine-tune a classification model aimed at predict-
ing unknown degradation levels. A significant distinction
between this classification model and the preceding regres-
sion model lies in the approach to leveraging model outputs.
Instead of directly utilizing the regression model’s final out-

put, we employ the final embedding from the best regression
model from stage 2 as the representation of the classification
model’s input. The classification outcomes are then derived
from this representation via a Softmax activation function,
with the model’s architecture detailed in Figure 2(B).

A further distinction involves the dataset employed for train-
ing. Whereas the regression model in Stage 2 is trained
solely on training data, Stage 3 also incorporates testing data
with pseudo labels into the training process of the classifi-
cation model, without prior knowledge of the actual degra-
dation level labels. This is achieved by leveraging the pre-
dictions made by the residual-based CNN regression model
(Reg Pred) on the testing dataset from Stage 2, alongside the
similarity predictions (Sim Pred) from Stage 1. A compre-
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Algorithm 2 The overall process for pseudo label assignment

Get Sim Pred ∈ Rd×4 from Stage 1.
Get Reg Pred ∈ Rd from Stage 2.
Initialize Pseudo label ∈ Rd×11 with value 0.
k ← 0
while k ̸= d do

// known class
if Sim Pred(k,0) == 1 then

Pseudo label(k,Reg Pred(k)) = 1
// undetermined class

else if Sim Pred(k,2) == 1 then
Pseudo label(k,Reg Pred(k)) = 1

// unknown class
else if Sim Pred(k,1) == 1 then

Pseudo label assignment based on Table 1
end if
k ← k + 1

end while

hensive evaluation of these predictions is conducted to gen-
erate pseudo labels for the testing data, as outlined in Al-
gorithm 2. Specifically, for testing data classified as either
known or undetermined, the pseudo label is directly assigned
based on the regression model’s prediction, while the detailed
strategy for the unknown class is shown in Table 1.

Table 1. Pseudo-label assignment strategy for unknown class.

Pseudo Label
Assignment

Stage 1
0 1 2 3 4 6 8

Stage 2

0

5 (p=1)
9 (p=0.5)
10 (p=0.5)

1
2
3
4
5 5 (p=1)

6
5 (p=0.5)
7 (p=0.5) 5 (p=1) 7 (p=1)

7
7 (p=0.5)
9 (p=0.3)
10 (p=0.2)

7 (p=1)
7 (p=0.3)
9 (p=0.4)
10 (p=0.3)

8
9 (p=0.5)
10 (p=0.5)

9 (p=0.5)
10 (p=0.5)

9 9 (p=1)
10 10 (p=1)

In the table, the format “Num (p=x)” is used, where “Num”
denotes a specific label and “x” indicates the probability asso-
ciated with that label. Since the degradation label directly re-
flects the severity of degradation, the relationship between the
predictions of Sim Pred and Reg Pred is critical. When
the predictions are close (i.e., the difference is less than or
equal to 2), it suggests that the highest probability for the
true label lies between these two values. However, when the
prediction difference is significant (i.e., greater than 2), addi-
tional considerations must be made. If Sim Pred exceeds
Reg Pred, it indicates that the regression model’s predic-
tion in stage 2 may be less reliable, necessitating greater re-

liance on Sim Pred. Conversely, if Sim Pred is lower than
Reg Pred, it suggests that the similar model’s prediction in
stage 1 may be less accurate, and Reg Pred should be given
more consideration. Additionally, data from unknown classes
will be assigned pseudo labels of 5, 7, 9, or 10 with certain
probabilities. Overall, both the training test data with actual
labels and the testing data with pseudo labels are utilized to
fine-tune the classification model, enhancing its accuracy and
robustness in identifying unknown degradation levels.

4. RESULT AND DISCUSSION

In this section, we discuss the performance of ML models
across various stages using different evaluation metrics. For
the stage 2 regression model’s training and evaluation, the
2016 data points from the training dataset were segregated
into training, validation, and testing subsets following a 3:1:1
ratio. In the meantime, the division ensures that the strat-
ified distribution of operating conditions within each sub-
set mirrors the overall dataset composition. To fine-tune the
stage 3 classification model, we utilize 398 training test data
points with true labels alongside 800 testing data points with
pseudo labels. And another 813 validation data points are
used to validate, ensuring our model’s robustness and gener-
alization. Both the regression and classification models are
trained with a batch size of 32, initial learning rates set be-
tween 0.0001 and 0.00005, and a decay rate of e−0.015 deter-
mined through preliminary experiments. The training session
concludes once the validation loss ceases to decline through-
out 15 epochs for stage 2 and 10 epochs for stage 3. Each
experiment is repeated 10 times to demonstrate the stability
of the model.

4.1. Performance of stage 1 similarity-based model

Figure 3. The confusion matrix for known labels and un-
known labels classification.

In the first stage, a similarity-based model is developed to
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Figure 4. The confusion matrix for the residual-based CNN model. (A) Classification for testing data. (B) Classification for
validation data.

classify testing data into known, unknown, and undetermined
classes. The findings, illustrated in Figure 3, indicate that
out of the 800 test data points, 168 are assigned as the un-
determined class due to the absence of corresponding speed
values in the training set or the similarity-based model’s in-
ability to classify the data as either known or unknown. For
the remaining 632 data points, we achieve a remarkable clas-
sification accuracy of 96.99%. This result underscores the
effectiveness of utilizing similarity comparisons as a reliable
approach for discerning known and unknown classes in ML
classification tasks, highlighting the model’s robustness and
precision.

In this study, we choose Euclidean distance to measure sam-
ple similarity over cosine similarity or Manhattan distance
due to its suitability for our specific application. While co-
sine similarity captures the angle between vectors and ignores
magnitude, and Manhattan distance provides robustness to
outliers but can be less effective in high-dimensional spaces,
Euclidean distance excels in capturing absolute differences
between feature values. Furthermore, Euclidean distance of-
fers a straightforward geometric interpretation and computa-
tional efficiency, making it well-suited to the dimensionality
and nature of our dataset. Therefore, this choice ensures pre-
cise classification of degradation levels and enhances the re-
liability of our diagnostic model.

4.2. Performance of stage 2 residual-based 1D-CNN re-
gression model

In the second stage, we focus on training a residual-based
CNN regression model to predict known degradation levels.
The division for training data resulted in 1219 data points for
training (”training train data”), 399 for validation (”training
validation data”), and 398 for testing (”training test data”).

The regression model provided predictions for each of the
398 testing data points, which were then averaged across
their respective 22 segments. The R2 value for the regres-
sion model is 0.9947. To further determine the degradation
level label, we rounded these averages to the nearest inte-
ger. The classification results for the training test subset (398
data points) are illustrated in the confusion matrix in Fig-
ure 5. This figure demonstrates that the classification accu-
racy is 97.99%, indicating that our model can accurately pre-
dict known degradation levels.

Figure 5. Classification for training test data using the stage
2 model.

However, the model’s performance decreases when applied
to testing and validation data, as depicted in Table 3. The
average classification accuracy for both testing and valida-
tion data is 44.3%. The best model achieves an accuracy

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 6. The confusion matrix for the residual-based CNN classification model. (A) Classification for testing data. (B)
Classification for validation data.

of 46.25% for both datasets. Figure 4 shows the confusion
matrix to represent classification results for the testing and
validation data. This figure reveals that the stage 2 model
struggles to accurately predict unknown and undetermined
classes, particularly for unknown degradation levels 5, 7, 9,
and 10. This indicates that while the model effectively pre-
dicts known classes, it fails to perform well for unknown and
undetermined classes. Even for known degradation levels,
some predictions are also not satisfactory. Upon closer exam-
ination, we find that the poor predictions predominantly orig-
inate from data with unknown operating conditions. This dis-
crepancy underscores the model’s limitations and highlights
the need for further refinement to enhance its predictive capa-
bilities across a broader spectrum of degradation levels.

4.3. Performance of stage 3 fine-tuned 1D-CNN classifi-
cation model

The final stage involves the refinement of the classification
model through the integration of both training test data with
true labels, and testing data with pseudo labels. The integra-
tion of pseudo labels is instrumental in bridging the gap be-
tween known and previously unidentified or unknown degra-
dation states, thus enriching the model’s training dataset. The
performance of the refined classification results are presented
in Table 3. As demonstrated in Figure 6, there is a notable
improvement in predicting unknown degradation levels for
both testing and validation data. The classification accuracy
of the fine-tuned model has increased by approximately 21%,
achieving 67% on the testing data. Furthermore, the perfor-
mance of the model on the validation data also shows sig-
nificant enhancement, with an accuracy of 60.4%. This el-
evation in performance metrics underscores the efficacy of
our approach, particularly the utilization of pseudo labels, in

enhancing the model’s predictive precision. Such an achieve-
ment not only demonstrates the model’s capacity to adapt and
learn from a composite dataset of true and pseudo labels but
also highlights its potential applicability in real-world scenar-
ios where distinctions between different states of degradation
are critical.

Table 2. Health state score calculation standard.

Distance from true label (k) Points (Q) Reported prediction Probability (P)

0 (correct prediction) 1.0 P0

1 0.5 P1

2 0 P2

3 -0.5 P3

4 -1 P4

5 -1.5 P5

6 -2.0 P6

7 -2.5 P7

8 -3.0 P8

9 -3.5 P9

10 -4.0 P10

In the competition, a unique evaluation metric is provided to
verify the classification results which is calculated using the
following formula:

Scoretotal =
∑

(confidenceFactor×
∑

(predictionProbability× healthStateScore))

where the confidenceFactor takes a value of 0.2 for a low-
confidence prediction and a value of 1 for a high-confidence
prediction. The sum of the predictionProbability for all health
states should be less than or equal to 1 for each observation.
The healthStateScore is determined by a predefined point sys-
tem based on the accuracy of the health state prediction. The
health state score for each sample is calculated based on the
distance difference between prediction and true labels. The
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Table 3. Evaluation metric of validation and testing. (Average ± Standard deviation)

Evaluation Metric Accuracy Weighted Precision Weighted Recall Weighted F1-Score Competition Score (best)

Decision Tree Testing 0.303 ± 0.006 0.234 ± 0.012 0.303 ± 0.006 0.235 ± 0.008 -9.5

Validation 0.319 ± 0.006 0.249 ± 0.009 0.319 ± 0.006 0.252 ± 0.006 5

Random Forest Testing 0.317 ± 0.004 0.268 ± 0.005 0.317 ± 0.004 0.267 ± 0.005 11.5

Validation 0.334 ± 0.001 0.287 ± 0.006 0.0.334 ± 0.001 0.283 ± 0.001 41

Stage 2 Model Testing 0.443 ± 0.016 0.48 ± 0.034 0.443 ± 0.016 0.412 ± 0.017 389

Validation 0.443 ± 0.014 0.461 ± 0.021 0.443 ± 0.014 0.415 ± 0.012 402.5

Stage 3 Model Testing 0.644 ± 0.011 0.659 ± 0.034 0.644 ± 0.011 0.629 ± 0.020 600

Validation 0.607 ± 0.009 0.618 ± 0.028 0.607 ± 0.009 0.591 ± 0.017 574

Notice: The first place in the competition: Testing (463.5 / 800) & Validation (472 / 813)

detailed information is shown in Table 2. Our proposed mod-
els have yielded remarkable results in terms of scoring on the
test set, with scores of 600 and validation set with scores of
574, respectively. These outcomes are particularly notewor-
thy when benchmarked against the competitive landscape of
the 2023 PHM Conference Data Challenge. Our best model
outperformed the first-place score of the competition, which
stood at 463.5 (testing data) and 472.0 (validation data), by a
substantial margin of 136.5 and 102 points.

4.4. Performance comparison results with other machine
learning methods

In addition, we also evaluate tree-based methods, including
decision tree and random forest models, using the training
data as a baseline and tested their performance on both the
validation and testing datasets to compare with our proposed
method. Direct application of these models to the original
high-dimensional input is impractical due to the substantial
feature space. To address this, we first apply principal com-
ponent analysis (PCA) to reduce the dimensionality to 100
features before training the decision tree and random forest
models. As shown in Table 3, the classification accuracy of
both tree-based models is approximately 30% lower than that
of our best model. Furthermore, these models struggle signif-
icantly with predicting unknown classes, particularly classes
9 and 10, often misclassifying them as one of the classes (0
to 8), resulting in almost no correct predictions for these un-
known classes. Moreover, many of these misclassifications
involve predicting smaller classes when the ground truth is
class 9 or 10. This results in a large discrepancy between the
predicted and true classes, with a distance often exceeding
6, which significantly reduces the competition score for the
tree-based models (refer to Table 2).

4.5. Limitations and Future Work

This study, while contributing valuable insights into gearbox
diagnosis, still has several limitations and directions for fu-

ture research. First, the methodology for classifying data as
known, unknown, or undetermined based on similarity com-
parisons, particularly when considering rotational speed and
torque, presents a foundational approach. Yet, the capac-
ity to differentiate among various degradation levels within
the unknown classes, given their potentially different simi-
larity degree, poses a challenge for the first stage of analy-
sis. This raises the question of whether it’s feasible to dis-
tinguish between different degradation levels from the out-
set. Furthermore, while the CNN architecture employed has
demonstrated promising results, exploring more architectures
such as inception module (Szegedy et al., 2015), and hy-
brid residual-inception module, could potentially yield im-
provements. Additionally, investigating the application of
transformer models for this task presents an exciting oppor-
tunity for innovation (Vaswani et al., 2017). Currently, our
ML model is trained exclusively on frequency domain fea-
tures. Incorporating diverse data modalities—such as the
original time domain, Short-Time Fourier Transform (STFT),
and Power Spectral Density (PSD), among others—into the
training process could be beneficial. Evidence from previ-
ous studies indicates that multimodal machine learning mod-
els have the potential to significantly enhance model capa-
bilities (Jiang et al., 2019; D. Wang, Li, Jia, Song, & Liu,
2021; Su, Song, & Ahmed, 2023). Moving forward, there
is a critical need to explore more effective and efficient deep
learning techniques. Advancements in these areas are crucial
for developing robust and comprehensive diagnostic tools for
gearbox health monitoring. These improvements can serve
as foundational resources for future Industrial Large Knowl-
edge Models (ILKM) (J. Lee & Su, 2024), paving the way for
significant enhancements in predictive geabox diagnosis.

5. CONCLUSION

In this study, we develop and implement a three-stage diag-
nostic approach that represents a significant advancement in
the field of gear fault diagnosis. By integrating a similarity-
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based model, a residual-based CNN regression model, and
a refined classification model utilizing pseudo-labeling, we
have addressed the inherent challenges of diagnosing gear-
box degradation under uncertain and various operating con-
ditions. Our methodology not only showcases the potential
of ML models to transcend the limitations of traditional di-
agnostic methods but also highlights the importance of deep
learning and pseudo-label techniques in enhancing model ro-
bustness and generalization capabilities. The outstanding per-
formance of our models, as evidenced by the scores (600
(testing data) and 574 (validation data)) in the 2023 PHM
Conference Data Challenge, underscores the viability of our
approach in contributing to the broader applications and en-
hanced reliability of mechanical systems.
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