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1. DATA PREPROCESSING

1.1. Downsampling

The original dataset, recorded at a high sampling rate of
20,480 Hz, presents a considerable volume of data. To facil-
itate efficient processing and analysis, we implement a data
reduction strategy, which involves downsampling the signal
to a more manageable frequency of 2,048 Hz.

1.2. Short-Time Parametric Power Spectral Density (ST-
PPSD)

Upon downsampling, we employ the Short-Time Parametric
Power Spectral Density (ST-PPSD) technique. This method
divides the vibration data into short, overlapping segments
with a 50% overlap. For each segment, ST-PPSD applies a
parametric model, specifically the Yule-Walker autoregres-
sion model, to estimate the underlying signal characteristics.

In this approach, the assumption is that the signal is generated
by a known underlying model. Consequently, parameters of
this model are estimated for each short segment, allowing
for a more precise characterization of the signal’s frequency
spectral curve.

The frequency spectral curves obtained from ST-PPSD are
subsequently concatenated column by column, forming a 2D
spectral heatmap. This heatmap provides insights into how
the vibration data evolves in the frequency domain over time.
For the purpose of feature extraction, we calculate the average
of these spectral curves over a defined time period.

There are two primary reasons for averaging the spectral
curves:

• Through observation, we have noted that the pattern
within the two-dimensional heatmap remains relatively
consistent over time. Averaging the spectral curves en-
ables us to capture the signal’s stable features while sim-
plifying the subsequent analysis.
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• Averaging also has the potential to mitigate the impact of
noise in the spectral density. By smoothing out variations
introduced by noise, we obtain a more stable and robust
representation of the underlying signal. This, in turn, en-
hances the accuracy and reliability of our analysis.

Following the averaging of ST-PPSD results, we are left with
2,049 features (representing magnitude in the frequency do-
main) for each of the x, y, and z coordinates.

1.3. Autoencoder for further dimension reduction

With the 2,049 features obtained from the previous step, we
further use autoencoder to achieve additional dimension re-
duction in our feature set for gear degradation prediction.

The autoencoder architecture consists of two main compo-
nents: an encoder and a decoder.

• Encoder: The encoder takes the original 2,049 features
as input and compresses them into a lower-dimensional
latent feature vector.

• Decoder: The decoder then takes the compressed latent
feature vector and attempts to reconstruct the original
2,049 features from it.

Once the autoencoder is trained, we extract the latent fea-
ture vector from the encoder. This vector represents the most
salient information from the original 2,049 features while re-
ducing dimensionality to 512 features. While reducing di-
mensionality, the autoencoder focuses on the most informa-
tive aspects of the data, which can also help suppress some
of the noise presented in the original 2,049 features obtained
from ST-PPSD.

2. MODELING WITH 1D CNN NETWORK

In this section, we delve into our 1D Convolutional Neural
Network (1D CNN) model. Our focus lies on the intricacies
of our network structure.

Our 1D CNN model (as shown in figure 1) features several
convolution blocks, each consisting of a convolutional layer,
max-pooling layers for downsampling, batch normalization
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Figure 1. 1d CNN structure

for regularization, and activation functions for introducing
non-linearity. The output of the activation function serves as
input for the subsequent convolution block.

After the convolutional layers, we flatten the output vectors
and introduce fully connected layers. To enhance the model’s
comprehension of the data, we augment it with operational
condition features, specifically speed and torque, which are
concatenated with the fully connected layers. Dropout layers
are placed between these fully connected layers to mitigate
overfitting.

For the output layer, we initially employed the softmax acti-
vation function to generate probabilities for different classes.
However, we observed challenges when dealing with unseen
classes. To address this issue, we used identity activation
function and adopted Mean Squared Error (MSE) loss, essen-
tially treating the problem as regression. This modification
enables the model to extrapolate to unseen classes to some
extent.

To generate class probabilities, we devised a method based
on the distance between the rounded-up and rounded-down
integers of the raw continuous output. This approach assigns
probabilities to the two classes nearest to the raw output, set-
ting others to 0.

3. HYPERPARAMETER TUNING WITH BAYESIAN OPTI-
MIZATION (BO)

As demonstrated in the previous section, the architecture of
a 1D CNN can become quite intricate, involving several cru-
cial hyperparameters. The success of utilizing a 1D CNN
for gear degradation level prediction depends on identifying
the appropriate network architecture and hyperparameters. To
tackle this challenge, we turn to hyperparameter optimization
techniques, with a specific focus on Bayesian Optimization
(Li, Chen, Huang, & Qu, 2022).

Hyperparameter optimization typically involves methods like
grid search and random search, which systematically explore

the hyperparameter space. However, BO offers several dis-
tinct advantages over these traditional methods:

• Better Results: BO often yields superior hyperparame-
ters when compared to grid or random search. It utilizes
probabilistic models to pinpoint promising regions in the
hyperparameter space, resulting in improved optimiza-
tion outcomes.

• Resource Saving: BO’s efficient exploration of the space
conserves computational resources. This is particularly
beneficial in scenarios where objective function evalua-
tions are computationally expensive or time-consuming.

In our application, we leverage BO to explore a total of
eight hyperparameters. These hyperparameters encompass
elements related to the network structure and training, such
as the number of convolution blocks, the number of filters,
kernel sizes of the filters, activation functions, and dropout
ratios in the fully connected layer. The parameter names,
their respective search ranges, and the selected value by BO
are outlined in the table 1. The search range for each hy-
perparameter is determined by considering commonly used
values and reasonable bounds. For surrogate model and ac-
quisition function, we used Gaussian process and Expected
Improvement. These are commonly used choices within the
BO framework.

Hyperparameter Name Range (select value)
No. of Conv Block 1 to 5 (4)
No. of filters 8, 16, 32 (16)
Kernel Size 3 to 15 (3)
Padding type Same, Valid (same)
Activation Function ReLU, Tanh, Leaky ReLU (ReLu)
No. of FC layers 2 to 5 (3)
No. of nodes in FC layers 64 to 512 (step 32) (64)
Dropout ratio 0, 0.1, 0.2, 0.3, 0.4, 0.5 (0.1)

Table 1. Hyperparameter Configuration and Selection by
Bayesian Optimization (BO).

4. CONCLUSION

Our approach combines ST-PPSD and Autoencoder for ef-
ficient data preprocessing and feature extraction. Then we
used an optimized 1D CNN model to solve the complex gear
degradation level classification problem. Bayesian Optimiza-
tion is employed for hyperparameter tuning, by which the
model’s performance is further enhanced.
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