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ABSTRACT 

Deep learning (DL) models have gained significant 

popularity for the prognostics of systems experiencing 

degradation. However, there are two major concerns with 

such models. Firstly, they require a substantial amount of 

training data due to their large number of parameters. 

Secondly, they disregard the underlying physics and solely fit 

the available data, leading to potentially weak generalization 

capabilities when faced with unseen out-of-distribution data 

in the field. This study aims to tackle these challenges by 

incorporating the underlying physics of degradation into DL 

models. The objective is to develop a novel DL-based 

approach in conjunction with Bayesian filtering, enabling 

physics-informed probabilistic life prediction for systems 

subject to environmentally induced degradation. The 

proposed framework consists of two main components: 

physics discovery and degradation prediction. The former 

involves identifying the dominant stress agents and 

formulating the underlying physics of degradation. The latter 

predicts the degradation of the system by incorporating the 

discovered physics into a DL model. It is expected the results 

indicate that by combining data-driven DL with physics-

based insights, more robust and reliable life predictions can 

be achieved, addressing the limitations of DL approaches. 

This framework holds promise for enhancing decision-

making processes related to maintenance strategies in various 

industries. 

1. PROBLEM STATEMENT 

Physics-based models are powerful tools that can be used to 

predict the degradation of systems based on their 

fundamental underlying principles. These models are 

typically developed empirically in a controlled laboratory 

environment and have been widely used for prognostics in 

various engineering systems. One of the most well-known 

examples of a physics-based model is the Paris law (Paris, 

Gomez, Anderson, & Pelloux, 1961), which establishes a 

relationship between the rate of crack propagation and stress 

intensity. However, the applicability of these models in real-

world conditions can be limited due to their inability to 

capture complex interactions when there are multiple 

environmental factors.  

Therefore, there is a need for more robust models that can 

account for the complexity of real-world conditions and 

accurately predict the lifetime of systems in a more general 

setting. In recent years, deep learning (DL) models have 

emerged as an increasingly prominent approach to address 

this challenge. Unlike physics-based models, DL models 

possess the ability to consider all relevant environmental 

factors and their complex interactions, owing to their capacity 

to effectively fit high-dimensional feature spaces. This 

capability makes DL models more applicable for predicting 

systems degradation in real-world scenarios. 

However, employing DL models encounters two significant 

challenges: data scarcity and interpretability. These 

challenges cause limitations on the effectiveness and 

practicality of DL models for the prognostics of systems. DL 

models are characterized by a large number of trainable 

parameters, and as a result, they typically require large 

datasets to effectively train a prognostic model. However, 

collecting sufficient data from degradation is often time-

consuming due to the slow nature of degradation mechanisms 

such as corrosion, fatigue, and creep. As a result, data scarcity 

is a common challenge when training DL models for 

prognostics. 

Furthermore, DL models are purely data-driven approaches 

that just fit the data without any understanding of physics. 

The purely data-driven nature of DL models as well as the 

lack of interpretability in such models may cause them to 

unknowingly violate the underlying physics of degradation. 

This violation can consequently lead to poor generalization 

when these models are deployed in real-world settings, where 

they may encounter out-of-distribution field data that was not 

present during training. 
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Both the issues mentioned above, namely data scarcity and 

weak generalization, can be effectively addressed by 

integrating the physics of degradation into DL models.  

Incorporated physics imposes constraints on the search space 

of model parameters, leading to more efficient training with 

limited data. In addition, this integration forces the model to 

adhere to the physics besides fitting the data, thereby 

enhancing its ability to generalize well beyond the training 

data. 

However, the extent to which physics can aid DL models 

varies, as physics can be a simple understanding of the 

degradation phenomena (e.g., degradation irreversibility) or 

more sophisticated relationships discovered from data. That 

represents the major issue in using physics-informed models 

for the prognostics of systems since for the complex process 

of degradation in real-world conditions, where multiple 

stresses impact degradation synergically, the underlying 

physics is usually highly unknown. 

2. EXPECTED CONTRIBUTION 

This study proposes an integrated approach to discover the 

underlying physics of degradation in a complex system and 

incorporate it into a predictive model to improve the 

robustness and accuracy of degradation predictions. By 

integrating the discovered physics into the predictive model, 

the training efficiency of the model can be improved 

significantly even when data availability is limited. 

In addition, the study proposes the utilization of Bayesian 

filtering to leverage prior knowledge which may exist from a 

potentially available empirical physics-based model for the 

considered system. By employing Bayesian filtering, the 

approach not only benefits from the potential prior 

knowledge but also can quantify the associated uncertainty 

with the predictions. 

Figure 1 shows the different components of the proposed 

approach for the prognostics of systems under degradation. 

The approach is structured into three levels. At the first level, 

the underlying physics of degradation is discovered using 

previously collected data from either a similar system or 

short-term tests within the range of operating conditions. The 

dominant environmental factors 𝒙  impact the degradation 

rate 
𝜕𝐷

𝜕𝑡
 non-linearly (Equation 1) and this non-linear function 

𝑓 can be determined using the physics discovery model. The 

dominant environmental factors can be identified using 

feature importance measurement methods in machine 

learning such as random forest and permutation. The three 

potential methods that can be employed for discovering the 

underlying physics of degradation (i.e., function 𝑓) are based 

on Deep learning (Raissi, Perdikaris, & Karniadakis, 2019), 

symbolic regression (Sun, Ouyang, Zhang, & Zhang, 2019), 

and sparse regression (Brunton, Proctor, & Kutz, 2016). 

 
𝜕𝐷

𝜕𝑡
= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (1) 

At the second level, the predictive model not only fits the 

training data but also follows the physics, which was 

discovered at the first level. This integration enables the 

model to make predictions that are consistent with the 

underlying physics. In Equation 2, cost function 𝐿  for the 

predictive model is presented, comprising two terms: 1) 

𝐿𝑑𝑎𝑡𝑎  for fitting the data and 2) 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠  for following the 

underlying physics learned by the physics discovery model. 

The model is trained using the labeled data and 𝐿𝑑𝑎𝑡𝑎  

represents the error between the estimates (i.e., the model’s 

output) and the observed (true) values. 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠  acts as a 

constraint in the optimization process of the model’s cost 

function, with a scalar parameter λ serving as the weight for 

this constraint. 

 𝐿 = 𝐿𝑑𝑎𝑡𝑎 + 𝜆 × 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 (2) 

 

Figure 1. Proposed approach 

At the third level, when a previously developed empirical 

model exists for a considered target system, it can be 

leveraged as prior knowledge. Through Bayesian filtering, 

the estimation of the empirical model can be updated by 

incorporating the output of the predictive model as 

observations. This integration allows for the fusion of the 

physics-based and data-driven models, harnessing the 

strengths of both approaches for more accurate and robust 

predictions. In addition, this approach enables the 

quantification of uncertainty in the predictions, which is 

necessary for facilitating robust decision-making processes. 

To accomplish this, the Particle Filtering technique is 
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proposed, which is a recursive Bayesian approach based on a 

sequential Monte Carlo method. 

3. RESEARCH PLAN 

The initial step of this study is to conduct a comprehensive 

literature review to understand the current state of the art. The 

proposed approach can be further divided into three main 

parts, all of which can be initiated concurrently: 

1. Development of a physics discovery model: This 

part involves the exploration of various methods for 

discovering the underlying physics from data. A 

comparative analysis is necessary to evaluate the 

performance of these methods within the proposed 

framework. 

2. Development of a predictive model: In this part, a 

predictive DL model is trained to predict 

degradation intensity by fitting the training data 

while adhering to the discovered underlying 

physics. 

3. Development of a Bayesian filtering technique: This 

step focuses on implementing a Bayesian filtering 

approach to integrate a physics-based model with 

the DL model and quantification of associated 

uncertainties. 

Although the approach's performance can be evaluated and 

optimized using simulated datasets, to validate its 

effectiveness it is essential to conduct experiments using 

benchmark datasets. Therefore, it is crucial to conduct a 

comprehensive search to identify suitable benchmark 

datasets for validating the proposed approach. 

3.1. Work Performed 

Some progress has been made in the first two parts of the 

proposed approach, and based on simulated datasets, it has 

been shown how the incorporation of underlying physics into 

the predictive model can enhance the accuracy of degradation 

predictions. Figure 2 illustrates a comparison of the actual 

degradation intensity with the estimated degradation intensity 

for both a purely data-driven predictive DL model and a 

physics-informed predictive DL model. The results clearly 

demonstrate that integrating the underlying physics into the 

predictive model improves the accuracy of degradation 

predictions significantly. 

3.2. Remaining Work 

While the physics discovery and predictive models have been 

partially developed for a noise-free simulated dataset, it 

remains unclear whether these models perform well under 

real-world conditions with noisy data. Further investigations 

are required to address this concern. 

In the case of the predictive model, it is important to quantify 

the extent to which incorporating physics improves its 

performance when dealing with out-of-distribution data. 

Also, a sensitivity analysis of model parameters should be 

conducted to assess their impact on the model's performance. 

The remaining work also involves the development of 

Bayesian filtering, which enables the fusion of the predictive 

model with an empirical physics-based model.  

Finally, as mentioned earlier, validating the proposed 

approach using an appropriate dataset is essential to 

demonstrate its effectiveness. This task should be prioritized 

as it provides a means to evaluate and verify the performance 

and reliability of the approach in practical scenarios. 

 
(a) 

 
(b) 

Figure 2. Actual vs. estimated degradation intensity for a) 

purely data-driven predictive model and b) physics-

informed predictive model 

4. CONCLUSIONS 

The objective of this study is to propose a novel approach that 

addresses the issues of data scarcity and weak generalization 
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for out-of-distribution data in DL models by integrating the 

physics of degradation. To enhance the performance of the 

predictive model, advanced methods for discovering 

sophisticated physics will be employed, leveraging state-of-

the-art techniques. The outcome of this research work will 

contribute to the development of efficient predictive 

maintenance strategies in various industries. 
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