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ABSTRACT

Hybrid models combining physical knowledge and machine
learning show promise for obtaining accurate and robust
prognostic models. However, despite the increased interest
in hybrid models in recent years, the proposed solutions tend
to be domain-specific. As a result, there is no compelling
strategy of what, where, and how physics-derived knowledge
can be integrated into deep learning models depending on the
available representation of physical knowledge and the qual-
ity of data for the development of prognostic models for com-
plex systems. This Ph.D. project aims to develop a general
strategy for hybridizing prognostic models by exploring mul-
tiple methods to incorporate physical knowledge at various
stages of the learning algorithm. The project will prioritize
general expert knowledge as the primary source of informa-
tion, while domain-specific knowledge will serve as an addi-
tional feature when applicable.

1. PROBLEM STATEMENT

Efficient maintenance of complex systems, such as aircraft
or power plants, is critical for preventing failures and ensur-
ing optimal operability. Hence, traditional fixed-time inter-
val maintenance strategies have been replaced with condition-
based or predictive maintenance strategies by resorting to ad-
vanced monitoring technologies and Prognostics and Health
Management (PHM) methods to estimate the system’s current
and future health states.

On the one hand, PHM has made significant progress us-
ing model-based, i.e., physics-based approaches for sys-
tem health inference (Daigle & Goebel, 2013). However,
these approaches have limitations, as physical degradation
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processes are only well understood for simple components,
which has hindered their practical application. On the other
hand, deep learning-based solutions have shown promise in
several PHM applications, as they can automatically infer the
dynamics of a system without prior knowledge (Fink et al.,
2020). However, deep learning solutions’ accuracy and gen-
eralization capacities can be compromised as their solutions
may violate physical constraints. Moreover, deep learning
models are generally not robust to situations of limited data
availability and have a black-box nature, which makes their
predictions not easily interpretable. This limits their practi-
cal application in safety-critical domains, where a clear un-
derstanding of the model’s reasoning and decision-making is
required.

To address these challenges, hybrid models combining phys-
ical and data-based models have emerged as promising tech-
niques for obtaining accurate, robust, and interpretable mod-
els for PHM. While hybrid models have been applied to solve
a variety of tasks concerning complex systems, research in
the field of prognostics is still limited.

The widespread adoption of hybrid models for prognostics in
the industry is impeded by the fact that such models are of-
ten developed for specific systems, assuming specific physics
representations available during model development. As a
result, there is no clear guidance on how to transfer hy-
brid methodologies developed for different systems. More-
over, prior works do not generally evaluate the robustness
of the solution to changes in data quality or the fidelity of
physics, which can significantly impact the model’s perfor-
mance. Therefore, for the industry’s wide adoption of hy-
brid prognostic models, a compelling strategy is needed on
what, where, and how physics-derived knowledge can be in-
tegrated into deep learning models, depending on the fidelity
of physical knowledge and data available for the development
of prognostic models. Moreover, a general strategy must
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be adaptable to a diverse range of complex systems, where
the condition monitoring data quality and prior knowledge of
physics may vary in fidelity and representation.

2. EXPECTED CONTRIBUTIONS

The Ph.D. will focus on answering the following research
question: How to develop a robust hybrid framework for
prognostics applicable to multiple complex systems under
varying data quality and fidelity of physics? We will investi-
gate a wide range of complex systems, such as turbofan en-
gines, batteries, and bearings. To achieve this goal, we put
forth a two-fold hypothesis.

1) Integration of knowledge at multiple stages of the
learning algorithm will improve hybrid model perfor-
mance

The implementation of hybrid solutions for prognostics varies
due to the specific characteristics of complex systems and
the diverse technical knowledge available to different PHM
stakeholders. Models differ based on what, where, and how
physics-derived knowledge is integrated into deep learning
models. Figure 1 presents a hybrid method classification ta-
ble designed specifically for prognostics.

While for a specific system, the source and representation
of knowledge are often considered fixed, the integration of
knowledge into learning algorithms can be diverse. The re-
search community has adopted three hybridization strategies
for incorporating prior knowledge into learning algorithms
for PHM (Rueden et al., 2019). Observational bias is used
to augment the input data or input features to reflect the un-
derlying physics (Arias Chao et al., 2022). Inductive bias
alters the architecture of a learning algorithm so as to explic-
itly guarantee that the model predictions comply with given
physical knowledge (Nascimento et al., 2021). Learning bias
modifies the learning process of an algorithm in order to let
it converge to a solution manifold that is consistent with the
underlying physics (Cofre-Martel et al., 2021).

Previous research in prognostics primarily focuses on using a
single method to integrate prior knowledge into learning algo-
rithms. However, studies outside of prognostics have shown
that integrating multiple biases at various stages of the learn-
ing algorithm can be advantageous. For instance, inductive
and learning biases were utilized to predict the power genera-
tion of multiple wind turbines (Park & Park, 2019). Incorpo-
rating multiple biases into the learning algorithm allows for
additional knowledge to be used, which can improve perfor-
mance.

2) Hybrid models should rely on expert knowledge since
it is available more often than system-specific scientific
knowledge

To implement a hybrid PHM approach, it is necessary to draw
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Figure 1. Main consideration for integrating prior knowledge
into learning algorithms (adapted from (Rueden et al., 2019))

on additional prior knowledge beyond the available condition
monitoring data. This prior knowledge can come from either
scientific or expert sources. Scientific knowledge is typically
characterized by its formal nature, while expert knowledge is
less formal and is based on the general knowledge and expe-
rience of those working in the PHM field.

However, current hybridization methods tend to disregard
valuable expert knowledge available to maintenance stake-
holders. For example, experts may have knowledge about the
degradation problem structure, e.g., the dependency of the
failure time on current health and future operative conditions.
They may also have non-formalized knowledge about corre-
lations between sensor data or knowledge about the shape
of the degradation curve, such as monotonicity. This ex-
pert knowledge is rarely integrated into the current hybridiza-
tion methods along with scientific knowledge (Kim, Choi,
& Kim, 2022). As a result, by neglecting this valuable ex-
pert knowledge, current hybridization methods may fail to
achieve good generalizability across multiple systems, espe-
cially when system-specific scientific knowledge is not equiv-
alent in representation and fidelity. To address this, a gen-
eral hybridization framework should primarily rely on expert
knowledge. By incorporating expert knowledge alongside
available scientific knowledge, we aim at developing a more
robust and effective hybrid method that can be applied across
a wide range of complex systems.

3. RESEARCH PLAN

The research plan consists of four parts that aid in answering
the main research question through sub-questions.

3.1. Comparative Analysis

First, we would like to answer the question: Which hybridiza-
tion method is most robust to the fidelity of physics knowledge
considered and data availability? To answer the question, we
propose to perform a comparative analysis to evaluate current
methods integrating physics into deep learning algorithms for
prognostics, considering observational, inductive, and learn-



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

ing biases. Firstly, we will identify case studies where hy-
brid prognostic methods have been proposed and, for each
case study, determine the type of knowledge integrated, the
representation of knowledge, and where the knowledge is
integrated into the machine learning pipeline. As a result,
we will provide a clear survey of the current hybridization
techniques in the context of PHM. Secondly, we will evalu-
ate the strengths and weaknesses of each method regarding
their ability to withstand changes in data quality and fidelity
of physics. We will alter data quality by truncating end-of-life
data, removing specific fault modes and operative conditions,
and generating out-of-distribution scenarios. We will imple-
ment scenarios with varying physics fidelity by adding noise
and bias to the physics knowledge and observing the resulting
impact on prognostic performance.

3.2. Unsupervised HI discovery

Next, we investigate the questions: How can expert knowl-
edge be used to discover the degradation of a system, and how
can information about degradation be used to improve prog-
nostic performance? To address these questions, we focus
on the problem of unsupervised health index (HI) inference
from sensor readings under realistic scenarios. Previous re-
search has demonstrated the benefits of accurately determin-
ing the HI, which can lead to better performance of prognostic
models (Lovberg, 2021). However, the existing methodolo-
gies for determining HI in complex systems are mostly semi-
supervised and rely on assumptions that may not hold in real-
world scenarios. In particular, the existing methods usually
involve using a reference set of healthy sensor readings or
run-to-failure data to infer HI. Moreover, most of the exist-
ing unsupervised methods only consider scenarios where the
sensor readings are clearly dominated by degradation, which
is of limited applicability. We hypothesize that reliable un-
supervised HI inference can be achieved in scenarios where
the operating conditions largely mask the effect of degrada-
tion by relying on expert knowledge about degradation and
integrating this knowledge as learning and inductive bias.

3.3. Controllable physics-informed data generation

We also seek to answer the question: How does incorporat-
ing observational bias in the form of synthetic data improve
prognostic accuracy in situations of limited failures or trun-
cated data? In several industrial applications, current hybrid
methods for prognostics are generally insufficient to compen-
sate for the lack of representative condition monitoring data.
Often, the collected data does not represent all possible fault
modes and operative conditions and is truncated before fail-
ure. To overcome this challenge, we aim to develop a con-
trollable, physics-informed data generation process that im-
proves prognostic performance. To achieve this objective, we
build on the unsupervised HI discovery and focus on incor-

porating observational bias in the form of synthetic data into
the prognostics model.

3.4. General Hybrid framework for PHM

Finally, we aim to extend the hybrid framework by adding
additional expert knowledge about the system in combina-
tion with system-specific knowledge to develop a robust hy-
brid framework applicable to various complex systems. The
hybrid framework will primarily rely on expert knowledge
and will have the option to integrate system-specific knowl-
edge when it is available. For instance, we hypothesize that
the topology of system components is widely available and
can be represented by a graph. If more detailed interactions
between components are known, then detailed physics can
be embedded into the nodes or edges of the graph. Hence,
graph neural networks will be used as the learning algorithm.
In addition to inductive bias, we will investigate the use of
additional knowledge by modifying the objective function to
reflect correlations between sensor data and the degradation
curve’s shape. Ultimately, the hybrid framework will incor-
porate all learning biases, including its structure, inputs, and
objective function influenced by prior knowledge.

4. WORK IN PROGRESS
4.1. Physics-informed AE for health index discovery

We demonstrate the possibility of integrating multiple
sources of expert knowledge into a learning algorithm by
developing an unsupervised hybrid model for HI discov-
ery. We first introduce a new graphical representation that
illustrates the relationship between sensor readings, operat-
ing conditions, and degradation in a typical system (Figure
2). We demonstrate how this representation can inform the
design of an autoencoder’s architecture for the purpose HI
discovery (Figure 3). Finally, we incorporate an extra soft
constraint based on expert knowledge of the degradation
process to guide the autoencoder to uncover the degradation
in its bottleneck layer.
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Figure 2. Graphical representation of degradation

We evaluate the effectiveness of our approach on realistic data
scenarios commonly seen in the industry. These scenarios
include uncertain amounts of healthy data during training,
significant variation in the initial health state of each unit,
different distributions of operating conditions, and situations
where most of the data is healthy. We compare our proposed
approach with the state-of-the-art method, the residual ap-
proach, that models the normal healthy behavior of the sys-
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tem and discovers HI by calculating the reconstruction error
of predictions. The residual approach usually requires health
state labels to select appropriate data for training or makes
assumptions about the system’s health state.
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Figure 3. AE derived from the graphical representation

Our results show that the proposed method outperforms the
residual approach in most experiments, especially when the
initial health state of each unit differs (Figure 4).
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Figure 4. Discovered HI of test unit 10. 1,y health index
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These findings demonstrate the potential of our method to
provide more accurate and robust HIs for prognostic models.
A paper regarding unsupervised HI discovery was submitted
to the PHM?23 conference.

4.2. Cyclic Generative Adversarial Networks for control-
lable data generation

Creating a prognostic model in the absence of a representative
set of run-to-failure data can be a highly challenging task. To
compensate for the lack of representativeness, we developed
a controllable and physics-informed data generation process
that can be used to improve prognostic performance. Inspired
by the work done in (Chu et al., 2021), we have adapted
the cyclic Generative Adversarial Network (cGAN) structure
for the problem of a controllable data generation process for
PHM (Figure 5).

Our developed model has a specific focus on prognostics, as
it has the capability to predict remaining useful life (RUL)
based on sensor readings while also having the ability to gen-
erate sensor readings conditioned on a certain RUL value.

Our proposed solution directly incorporates prognostic pre-
dictions into the data generation process to find an explicit
relationship between RUL and the degradation of a system.
And by incorporating degradation into the data generation
process, we can generate sensor readings informed by the sys-
tem’s degradation behavior.
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Figure 5. ¢cGAN model architecture for generation of syn-
thetic data

Preliminary tests using the popular N-CMAPSS dataset for
turbofan engines show that the combined cyclic training of
models D and G produces better results than if the models
were trained independently.

Model | Evaluation | RMSE | MAPE
G RUL 8.4(1.3) [ 31.2(4.5)
D Sensors | 70.8(0.3) | 6.1(0.1)

cGAN RUL 7.5(0.7) | 29.5(3.7)

cGAN | Sensors | 67.6(0.2) | 5.9(0.1)

Table 1. Results of individual model training versus com-
bined framework
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