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Integrating Advanced Prognostic Methods for Accurate  

Remaining Useful Life Prediction in Industrial Systems 

 
ABSTRACT 

Accurate remaining useful life (RUL) prediction of industrial 

system is critical to ensure smooth operation and its safety. 

Various prognostic methods have been developed but there 

still exist critical challenges for field applications. One 

challenge is the unhealth degradation exhibiting the change 

of state from those of normal degradation. Another is the 

prediction in the face of severe noise with limited data (i.e., 

early prediction) using empirical models. Final challenge is 

the prediction under varying operating conditions, which 

occurs in practice in various industrial applications. To 

overcome these challenges, this research proposes advanced 

prognostics methods with different recipes featured by high 

adaptability, physical constraints, and monotonic health 

indicator (HI). The developed methods are validated with 

specific case studies involved with the challenges. 

1. PROBLEM STATEMENT 

Prognostic is to predict the RUL of in-service systems based 

on the condition monitoring data. A variety of algorithms are 

available to this end such as data-driven (Nguyen et al., 

2022), model-based (Chen et al., 2020) and hybrid 

approaches (Xu et al., 2023). However, obtaining accurate 

RUL prediction is difficult due to various conditions that can 

actually occur in practice. 

First, there are circumstances when the degradation is 

accelerated at some point in time to end up with earlier 

failures. It may occur for example in the unhealthy battery 

made of poor manufacturing process (Vetter et al., 2005). 

Without accounting for this, the prediction may be inaccurate, 

resulting in an incorrect decision for the end of life (EOL).  

Second, the accuracy of RUL prediction is significantly 

affected by the uncertainties such as the measurement noise 

and the model inaccuracy when the empirical models are 

employed. These can lead to the poor accuracy of the RUL 

prediction. 

Lastly, when the operating condition fluctuates over time, the 

health indicator developed by the feature engineering of the 

sensor signal can fluctuate accordingly, which is hard to use 

for the prognosis. Therefore, the goal of dissertation is to 

develop advanced prognostic methods that can solve these 

issues to achieve prediction accuracy. The advantages of the 

proposed methods are demonstrated with real case studies.  

2. EXPECTED CONTRIBUTIONS 

The research is focused on solving three main challenges in 

RUL prediction: (1) How to enhance the adaptability of 

prognostic method when the degradation is accelerated (2) 

How to improve prognostic method by exploiting physical 

knowledge (3) How to extract monotonic HI under varying 

operating conditions. 

Research for the first challenge focuses on the state change 

detection and adaptation to the new degradation pattern. Next 

research investigates on integrating low-fidelity physical 

information to the prognostic method to reduce the effect of 

large random noise and uncertainty associated with empirical 

models, especially in the early stages of degradation. Final 

research plans to come up with new indicator that is 

monotonic while minimizing the sensitivity to varying 

operating conditions. 

3. RESEARCH PLAN 

Research 1: One of the model-based approaches, Particle 

filter (PF) algorithm, is utilized to conduct the RUL 

prediction. The PF uses a physical or empirical degradation 

model and estimates model parameters recursively by taking 

one measurements at a time to predict the future state. 

However, since the particle impoverishment occurs in the 

original PF, a regularized PF (RPF) is employed in this study 

which uses the kernel function to transform the discrete 

particles into the approximate continuous posterior estimates 

(Orchard et al, 2009). The change point detection technique 

and way to quickly adjust estimation to the changed 

degradation are implemented for the RPF process. Then the 

performance of original RPF and our proposed method is 

compared for the real battery degradations. 

Research 2: In addition to RPF, Bayesian method (BM) is 

considered in  the research 2, which takes all the data until 

current time to estimate model parameters and to conduct 

prediction. Physical constraints based on the behavior of low-

fidelity physical information are incorporated in the 

algorithms. The low-fidelity physical information is the 
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lowest level of available physical information that represents 

the crude behavior of parameters for degradation (Kim et al., 

2022). Three different approaches are explored on how to 

embed physical constraints in the BM and RPF methods. 

Numerical examples and case study are considered for the 

study. 

Research 3: Focus of this research is on developing more 

appropriate HI under the time-varying operating conditions 

while most of previous studies have been made on the 

constant operating condition. The initial idea is to cluster the 

operating condition regimes, and develop HI based on the 

distance method using the optimal features subset in each 

operating regime. Final goal will be developing HI not only 

within trained operating conditions but also under 

unobserved operating conditions. The proposed HI is 

compared with other features using the bearing run-to-fail 

datasets. 

3.1. Work Performed 

Research 1: First step of the research is to detect change 

point in degradation by introducing decision function in the 

RPF algorithm. To this end, the likelihoods of each particles 

are computed in the update step of PF algorithm. Then a 

decision function (𝑑𝑘) is defined which is the negative log of 

mean likelihood as  

𝑑𝑘 = −𝑙𝑛 (
1

𝑁
∑ 𝐿(𝑦𝑘|𝜽𝒌

𝒊)𝑁
𝑖=1 )   (1) 

where 𝑘 is the time/cycle index, 𝑦𝑘  is the measurement data, 

𝜽𝒌
𝒊
 is model parameters of the 𝑖 th particle and 𝐿  is the 

likelihood. In case the observed state is close to those of the 

predicted state, the likelihood is high, resulting in the 

negative value. If the state degrades in a different fashion, 

e.g., accelerates due to abrupt faults, the decision function 

value moves toward a positive direction. If it exceeds a set 

threshold, it is regarded as the change point.  

Next step is to shift the kernel functions for the resampling 

process in the RPF algorithm. If the state change is detected, 

which means that the degradation deviates from the normal, 

the resampling is employed with Gaussian kernel function 

having bandwidth sequentially increased by twice over each 

cycle until the 𝑑𝑘  falls below the threshold. This means the 

improved RPF adjusted to the new degradation with high 

likelihood. In the result, the kernel returns to the normal and 

follows the ordinary RPF with the newly identified model 

parameters.  

Fig. 1 illustrates 12 degradation datasets of the capacity fade 

of Li-ion batteries used in the study. They were obtained by  

accelerated life test to the batteries manufactured from 

different lots. The state-of-health (SOH) represents the health 

of battery and if it drops below the failure threshold, the 

battery has reached its EOL. As shown in Fig. 1, while most 

of the batteries follow a normal capacity fade process, some 

battery undergoes unexpected state change and its EOL 

occurs earlier. This battery is defined as an unhealthy battery, 

and our method is applied for RUL prediction and its 

performance is compared with those by original RPF. 

 
Figure 1. Plot for state-of-health (SOH) data 

 

Research 2: A Bayesian approach with physical constraints 

is proposed for robust prediction under early prediction 

scenarios with severe random noise, as shown in Fig. 2. Two 

algorithms, BM and RPF are considered for the prediction. 

Physical constraints, such as monotonicity(Mon) and 

curvature(Cur), are defined with respect to the degradation 

model. Mon is that the damage state should increase over 

time (i.e., 𝑑𝑥/𝑑𝑡 ≥ 0) and Cur is the slope of degradation 

should be a positive trend (i.e., non-linearly increasing trend, 

𝑑𝑥2/𝑑𝑡2 ≥ 0 ). Three methods are investigated to embed 

physical constraints: imposing prior distribution, adding 

acceptance criteria in the sampling, and penalizing the 

likelihood function. Prediction performance is compared by 

quantifying the degree of uncertainty due to noise 

randomness. 

 

Figure 2. Proposed methodology for prognostics guided by 

physical constraints 

 

The method 1 is to truncate the initial prior distribution based 

on the obtained model parameter boundaries. The boundary 

information is identified by combining monotonicity and 

curvature grid. Thus, the truncated initial prior information is 

used to estimate the posterior density function of model 

parameters.  
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The method 2 incorporates the physical constraints by the 

acceptance criteria in the sampling process of BM and RPF. 

The criteria are set by calculating the monotonicity and 

curvature values of the new predicted sample not only in the 

interpolation region (until current time) but also to the 

extrapolation region (in the future). It means that all the 

parameters are eliminated that predict the degradation 

incorrectly in the future, namely, not satisfying the physical 

constraints: Mon and Cur.  

Finally, the method 3 gives penalties in the likelihood 

function in BM and RPF. The physical constraint is violated 

whenever the monotonicity and curvature are negative. they 

are handled by the inequality constraints in the optimization 

problem, which are turned into an unconstrained problem by 

using a Lagrange multiplier.   

In order to explore and compare the three methods, numerical 

example is considered, in which the degradation data are 

generated with different noise level. As shown in Fig. 3, the 

original BM prediction is unsatisfactory because the 

estimated posterior state does not accurately reflect the true 

underlying degradation process and susceptible to the noise. 

The median of predicted distribution (solid red color) violates 

the monotonicity and decreases over time. In contrast, the 

predictions based on the proposed methods are satisfactory 

since their medians are not only increasing monotonically but 

also close to the true degradation with reduced uncertainty. 

The methods are applied to the real case dataset, which are 

the thrust degradation of each motor in the quadcopter. The 

results are given in Fig. 4 which the constraint BM show 

more accurate prediction than the general BM.  

 

Figure 3. Prediction result using BM and proposed methods 

 
Figure 4. Case study result of BM and BM by method 3 

Research 3: A simple RTF experiments are conducted for 

the bearing in which two operating conditions are applied 

alternately in terms of load and rotating speed. Fig. 5 shows 

raw vibration signals and its root-mean square (RMS) which 

is widely used as a health indicator for monitoring. The figure 

shows that the raw signals fluctuate between the two 

conditions, which means that it cannot be used as the HI, 

since the HI should be monotonic if it represents the 

degradation over cycles. 

  
(a) (b) 

Figure 5. (a) Raw vibration signal (b) RMS value of RTF 

 

In order to construct monotonic HI, one of the RTF datasets 

is used for the training. In the training, regime clustering is 

conducted using the k-means algorithm. Features exhibiting 

monotonicity over cycles are selected for each regime. Then 

best subset of features are selected from each regime that 

maximizes the correlation of HI which is defined by the 

Mahalanobis distance between those at the current and initial 

normal conditions. Finally, it is validated with the new test 

RTF dataset. As shown in Fig. 6, the new HI shows the health 

degradation much better in monotonic way regardless of the 

regime. 

 

Figure 6. Health indicator of RTF datasets 

 

3.2. Remaining Work 

Currently, the research still has a strong assumptions or 

limitations Therefore the future work will focus on solving 

these issues as follows: 

Research 1: (1) Performance comparison to various RTF 

datasets of batteries. (2) Proper threshold to detect the 

anomalies due to state changes  

Research 2: (1) Apply to more Bayesian-based algorithms 

such as Particle Filter (PF) and Kalman Filter (KF) (2) How 

to optimize the Lagrange multiplier value in various 

applications.  
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Research 3: The methodology is largely dependent on the 

historical operating conditions. In practice, the operating 

conditions are rather random which might be included in the 

training set. Thus, developing monotonic HI under 

unobserved operating conditions is required.  

Moreover, integrating proposed solutions and providing 

overall prognostic strategy from data acquisition will be 

further studied. 

4. CONCLUSION 

This research aims to develop advanced prognostic methods 

to solve three challenges in the RUL predictions. The first 

method integrates state change detection and kernel transition 

to enhance the flexibility of prognostic algorithm and adapt 

to new degradation trend. The second method proposes a 

Bayesian approach to incorporate physical constraints in the 

prediction process to improve RUL prediction accuracy with 

severe noise. Finally, the third method investigates a 

methodology to construct a monotonic HI under various 

operating conditions which will enhance prediction 

performance. These methods have been validated through 

numerical simulations and real case studies showing 

promising results. The remaining work will focus on solving 

limitations of each method and integrating them to further 

improve prognostics capacity in the field applications.  
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