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ABSTRACT 

The 2023 PHM North America Data Challenge is intriguing 

because it requires one to predict outcomes and use data 

patterns that training models do not see. Modern machine 

learning models based on gradient boosting and neural 

networks are not designed to address such issues in usually 

circumstances. Our final approach to address the challenge 

consists of five steps. In our approach, we use an 

unsupervised method besides machine learning models to 

address the challenge. 

1. DETERMINE THE TYPE OF THE PROBLEM 

The training data consists of multi-dimensional vibration 

time series of 2016 samples from gear pitting experiments. 

The testing data set has 800 samples, and the validation data 

set has 813 samples.  

The testing subjects have the same gear parameters, but are 

under different pitting conditions, and tested under different 

settings. Pitting condition, also known as state in the data, is 

an ordinal response variable, which describes the degradation 

level of individual testing subjects. Testing settings consist of 

various levels of speed and torque combinations. The values 

are discrete numeric. The training data consists of seven 

pitting conditions and 78 testing settings. The testing and 

validation data consist of additional four pitting conditions 

and additional 15 testing settings. The task is to predict pitting 

conditions of samples in the testing and validation data.  

We consider the problem as a classification modeling 

problem in general, but with additional requirement to predict 

unseen labels. Normally, classification modeling treats 

response as a categorical variable. For such models, 

interpolation and extrapolation are undefined.  

The decision on the type of the problem is determined by the 

final methodology that we decide to use. Our choices of 

methodologies are two modern machine learning techniques: 

tree-based gradient boosting and neural networks. Both 

techniques are high performers in predictive modeling, given 

sufficient training data. But they are known to be unsuitable 

for interpolation and extrapolation in regular use cases. 

Our final strategy is to use training data to fit a typical 

classification model, using either methodology, then use the 

fitted model to predict outcomes of new data. The predictions 

are then used to interpolate and extrapolate to unseen labels. 

2. DETERMINE A CROSS-VALIDATION METHOD 

First, we need to clarify some terminologies for the remaining 

discussion. Cross-validation is a framework to train modern 

machine learning models. It requires one to partition existing 

data for modeling in two pieces. In some literature, the two 

pieces are called training and validation sets respectively. The 

names, however, are confounded with three data sets in the 

competition. In the competition, we have three data sets: 

“training”, “test”, and “validation”. The data that we use for 

modeling is the “training”. For cross-validation, we need to 

partition the “training” in two pieces. To avoid confusion, we 

use “training-partition” and “validation-partition” for the 

partitions during cross-validation. Next, we describe how we 

apply a cross-validation strategy to model this data. 

We notice the data set is huge, but the number of independent 

samples is small. Eventually, we decide to split long time 

series into shorter ones. But by such, we do not create more 

samples, and we need to avoid leaks. Therefore, when we 

train our model, we create cross-validation set based on the 

original sample identifications, not based on the shorter time 

series. 

Such cross-validation faces a challenge in the current task 

because there are not enough data in the training data. To 

properly creating cross-validation sets, we need to consider 

the distinct level combinations of state, speed, and torque. In 

the end, there are not enough data for every combination to 
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be split into training-partition and validation-partition. There 

are less than four samples on average for each testing setting. 

For example, a five-fold cross-validation split does not have 

enough data, because a five-fold cross-validation needs to put 

four fifth of samples in the training-partition, and one fifth of 

samples in the validation-partition. The partitions are iterated 

to have even opportunity to be either training-partition or 

validation-partition. But we still don’t feel that one five-fold 

cross-validation set is sufficient. To address the problem, we 

use the repeated five-fold cross-validation, which creates 

multiple cross-validation sets. By such, each combination 

will have even opportunities to appear among all training-

partitions and validation-partitions. A repeated five-fold 

cross-validation is an extension to simple five-fold cross-

validation. Instead of creating one five-fold cross-validation 

split, the repeated version creates multiple random splits. We 

use a patented method which provides a rigorous approach to 

create such partitions that have the optimal properties such as 

independence, randomness, and balance. The method 

(Lekivetz, et.al. 2020) is implemented in the proprietary 

software JMP. 

3. CREATE A DATA AND FIT A MODEL 

We define our classification model as follows. The response 

variable is the state, which is the degradation condition. The 

predictors are features from time series. We only use the first 

three time series in each sample. From each sample, we split 

the long time series of each sample into shorter time series 

segment with length 1000, discarding irregular or redundant 

beginnings of the long series. A segment is still a multivariate 

time series. Time series in each segment are then normalized 

by centering by mean and scaling by standard deviation. 

From the processed segment, we extract features, which 

include univariate summary statistics of univariate time 

series, univariate time series features such as autocorrelation 

functions, multivariate summary statistics such as 

correlation, and multivariate time series features such as 

cross-correlation. We use extracted features and testing 

settings as predictors, together with the response state, we 

form a data for model fitting. The testing settings are treated 

as continuous variables. The data has about a quarter million 

rows and over five hundred columns. 

We experimented two types of models: gradient boosting and 

multilayer perceptron neural networks. Their performances 

are similar. Our best performing model on the test data is a 

gradient boosting model. Gradient boosting is a general 

technique developed by Friedman (2001). The specific 

implementation that we use is known as the XGBoost 

developed by Chen (2016). XGBoost is usually used through 

either R or Python. We use XGBoost through a software 

developed by Wolfinger (2020).  

To use XGBoost, one usually needs to tune hyperparameters 

to achieve the best performance. For this task, we did not do 

so but accept all default settings, except increasing the 

number of iterations. The reason is, given the default settings, 

the fitted model performs very well on the validation-

partitions, which is independent of training-partitions for 

independent assessment of the model performance. The other 

reason that we did not put effort in tuning is the nature of this 

competition which requires predicting unseen labels. We 

anticipate that the uncertainty due to that nature will outpace 

improvement by hyperparameter tuning within the 

framework of our approach. 

Our final model on the validation data is a multilayer 

perceptron neural networks model. We use the software 

PyTorch by Paszke et. al. (2019) through a developing 

interface in JMP (2023). Similarly, we did not spend effort 

on tuning hyperparameters, but choose an epoch value so the 

performance of the model on the validation-partition appears 

to converge and does not deteriorate. The main reason to use 

this method is because the speed of model fitting is much 

faster than fitting XGBoost models, while cross-validation 

performances are similar. 

4. PRODUCE PREDICTIONS 

The prediction outputs of our cross-validated classification 

models are probabilities of observed seven states, from 

individual short time series. Recall the short time series are 

segments of length 1000 from longer series, so we calculate 

the average of the probabilities by the original sample 

identifications. The results are averaged probabilities of 

seven possible states. For example, there are 800 independent 

samples in the testing data. The predictions on the testing data 

consist of 800 vectors of length 7, each entry of a vector is an 

averaged probability of being in the corresponding state 

Meanwhile, we have 816 vectors for the validation data. 

5. PREDICTIONS TO UNSEEN LABELS 

There are four states that are unseen in the training set and we 

need to predict them in the testing and validation sets. During 

our research, we use the training data to mimic the situation 

by intentionally excluding samples of a couple states and 

predict their outcomes by pretending they haven’t been seen. 

And we used the learned knowledge to decide our 

extrapolation strategy. 

We use the nearest neighbor clustering method, which is an 

unsupervised learning approach, to predict unseen labels. For 

example, the training data has 7 states. We exclude samples 

whose state is 3 from model fitting process. The fitted model 

is trained to predict just 6 states. The prediction is a vector of 

6 entries, as we described in the previous section. We then 

apply the nearest neighbor clustering to cluster all predicted 

vectors into 7 clusters, which is the true number of levels of 

states. We use this approach to learn how the clustering result 

behaves to seen and unseen labels. 

Figure 1 illustrates the result from such an experiment. The 

model was training by excluding samples whose state is 3. 
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The training process does not see samples whose state is 3. 

The predictions are done on the validation-partitions and the 

excluded samples whose state is 3. The predictions are 

clustered into 7 clusters. The plot in Figure 1 is known as the 

parallel coordinate plot. There are 7 sub-plots for 7 clusters. 

Each sub-plot has a cluster ID beneath it. In each sub-plot, a 

connected line draws the prediction vector of 6 entries. For 

example, in cluster 1, a red connect line connects 6 estimated 

probabilities values of predicting which state the 

corresponding sample is at. In cluster 1, the probability of 

state=0 remain highest for all samples in that cluster. 

 

Figure 1. Clustering result with state=3 excluded. 

 

Similarly, we can observe that samples in cluster 2 have 

highest probability prediction at state=1. And cluster 4, 5, 6, 

7 have their clear highest probability prediction, 

corresponding to states 4, 8, 6, 2, respectively. Samples in 

cluster 3 appear to have multiple peaks. It is tempting to 

assign state = 3 to that cluster. If so, it seems that the 

prediction of the unseen label state = 3 spreads probabilities 

in the neighborhood of state = 3, such as 1, 2, 4, and 6. There 

is very little probability on state = 0 or 8, which are further 

away from state 3. 

If we predict that samples in clusters 1, 2, 4, 5, 6, 7 are from 

state 0, 1, 4, 8, 6, 2, respectively, and samples in cluster 3 are 

from state 3, the accuracy can be seen from Table 1. The table 

tabulates the actual states of individual samples and their 

predicted states by clustering. The row labels are the actual 

states. The column titles are predicted states. The values in 

individual cells are the counts that are associated with 

corresponding row label and column title. For example, the 

value 287 in the upper left corner of the table represents the 

number of samples from state 0 and also correctly predicted. 

Another example, the cell with value 4 on the row of state = 

3, under the column title where “state by cluster = 0”, is the 

count of misclassification of 4 samples of state = 3 to state = 

0. 

Table 1. Accuracy of interpolation. 

 

  state by cluster 

state 0 1 2 3 4 6 8 

0 287 0 0 0 0 0 0 

1 0 294 1 0 0 0 0 

2 0 0 291 0 0 0 0 

3 4 114 5 59 85 0 0 

4 0 0 0 4 300 0 0 

6 0 0 0 0 0 276 0 

8 0 0 1 1 0 0 294 

 

From Table 1, we learned that assigning clusters with clear 

peaks to the corresponding states is a reasonable way to make 

prediction of seen labels. But probably due to unseen labels, 

there are misclassifications. For example, in the second 

column in Table 1, under the column title “state by 

cluster=1”, there are 114 misclassified samples from “state = 

3”. The samples under “state by cluster = 4” include 85 

misclassified samples from “state = 3”. 

 

Figure 2. Clustering result with state=8 excluded. 
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Similarly, we studied the approach by excluding state = 8. 

And Figure 2 is the parallel coordinate plot of such a study. 

In this study, we assign predictions to individual clusters as 

follows. Assign cluster 1 to state = 0, cluster 2 to state = 1, 

cluster 4 to state = 4, cluster 5 to state = 2, cluster 6 to state = 

6, and cluster 7 to state = 3. The assignment is based on the 

peak probabilities in individual sub-plots. The samples in 

cluster 3 are not assigned. Because we do not know how to 

handle the pattern in the study. We assign state = -1 to 

indicate that we are unable to assign a valid prediction. Table 

2 is the tabulated misclassification table. 

Table 2. Accuracy of extrapolation. 

 

  state by cluster 

state -1 0 1 2 3 4 6 

0 2 285 0 0 0 0 0 

1 2 4 288 1 0 0 0 

2 4 0 0 287 0 0 0 

3 0 0 1 0 265 1 0 

4 0 0 0 0 2 302 0 

6 3 0 0 0 0 1 272 

8 89 1 0 58 0 0 148 

 

From Table 2, the unseen label state = 8 is misclassified into 

the state = -1, 2, and 6. But many congregate at state = 6.  

From what we learned, we can conclude that our approach to 

make prediction perform well on seen labels, but there are 

uncertainties on unseen labels. For unseen labels that require 

interpolation, the predicted probabilities appear to be around 

the truth. For the unseen labels that require extrapolation, a 

large number of samples congregate at the highest observed 

state. 

Based on what we learned in the experiments, we tested 

different decision rules to assign clusters to predicted states. 

The main strategy is to decide threshold probabilities in 

individual clusters, such that the samples with predictions 

above the thresholds are assigned to corresponding predicted 

states. The ones under the thresholds are undetermined. The 

cluster that has the peak probabilities at state = 6 has two 

thresholds. The samples above the upper threshold are 

assigned to state = 6. The samples below the lower threshold 

are undetermined. The ones in the middle are assigned to state 

= 9. All the undetermined samples are assigned zero 

probabilities to all prediction entries and zero confidence. 

The process of finding the thresholds is a trial-and-error 

process by monitoring our scores on the leader board. We 

choose the result that had the highest score as our final result.  

6. CONCLUSION AND FUTURE WORK 

The data challenge is intriguing because it requires predicting 

unseen labels. Modern and power machine learning models 

are not designed for such tasks. Our approach combines 

modern machine learning models and an unsupervised 

method to address the challenge. The result is promising, but 

we also see a lot of room for improvement. We can think of 

at least following two directions to study further. The first 

one is how to make short time series segment from the longer 

time series based on the individual testing conditions. We use 

an arbitrary length of 1000 in our modeling process, but we 

think that different segmentation rules may result different 

results. The second direction is how to conduct the 

unsupervised learning more objectively. Maybe, there is a 

less arbitrary way. 
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