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ABSTRACT 

Nuclear power generation will be key to meeting carbon free 
energy transition goals. However, nuclear power must 
provide agility and flexibility to fluctuating power demands 
when other sources of carbon-free energy like solar and wind 
may not be as flexible. This has led to small modular reactor 
(SMR) development where nuclear power will be generated 
from a distributed fleet of smaller reactors where units can be 
brought online or offline as needed. Due to its high 
operational and maintenance (O&M) costs as it is, a 
distributed fleet will put additional cost burden if remote 
monitoring and crew sharing is not enabled. This requires 
prognostics and health management (PHM) capabilities such 
as early warning, diagnostics, and prognostics to enable 
predictive maintenance with high accuracy. Typically, 
monitoring solutions are developed on component and 
subsystem levels targeting specific failure modes. However, 
it is argued that a systemwide monitoring, in addition to 
specific targeted analytics, would be of key importance. This 
paper presents a deep-causal unsupervised anomaly detector 
that has been successfully applied in various aerospace and 
renewable energy applications. In this paper we share our 
experience applying this method on a nuclear power plant 
(NPP) application. Specifically, we share how we dealt with 
practical challenges of data quality, ground truth labeling, 
performance evaluation and field validation in an unknown-
unknown setting where prior knowledge of failures and 
failure modes were not available to begin with. 

1. INTRODUCTION 

Nuclear power is considered a carbon-free energy source, yet 
it has one of the highest levelized cost of electricity (LCOE) 
compared to other generation sources (NEI, 2021). 
Regulatory requirements originating from safety and security 
concerns require an order of magnitude higher levels of 
staffing per plant as compared to their fossil fuel 
counterparts. Alignment with decarbonization-based climate 
goals is projected to significantly rely on nuclear power as 
part of the energy mix. This, however, will only be feasible if 
nuclear generation’s O&M costs can be substantially reduced 
without impacting safety risks.  

1.1. PHM for Nuclear Industry 

Traditionally large-scale nuclear power plants are designed 
for baseload operation, meaning they run at a constant power 
output and are not easily adjusted to follow load demand 
variations. SMRs and microreactors are a type of nuclear 
power technology that offers a modular and more flexible 
approach to generating electricity compared to traditional 
large-scale nuclear reactors. They are designed to be 
compact, transportable, and scalable, with a power output 
typically ranging from tens to a few hundred megawatts. 
Smaller form factor reactors can be deployed individually or 
in clusters, depending on the electricity demand of a 
particular location. This scalability allows for more flexibility 
in matching power generation capacity with varying needs, 
making them suitable for a wider range of applications, 
including remote communities, industrial sites, and smaller 
grids. This concept, however, will not scale as staffing levels 
cannot simply be scaled down proportionally from a large 
plant, thereby resulting in diseconomy of scale and inflated 
cost burden. Remote monitoring with centralized crew 
sharing is seen as a key enabler for this concept. Remote 
monitoring and early warning from a PHM system would be 
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essential to enable condition-based maintenance and outage 
planning. However, as with any critical application, 
uncertainty quantification, explainability, and runtime 
prediction robustness are key challenges to field deployment. 

1.2. Literature Review 

Remote condition monitoring has been pursued in the nuclear 
industry and more generally in power plants for a number of 
years. Most of these approaches have used traditional 
machine learning-based classification and regression models 
that do not scale well in real industrial environments with 
required levels of prediction accuracy (Yadav, et al., 2021) 
and are built to be static and fixed input based. Model-based 
approaches work well when models are developed for 
specific components and failure modes. Generalized 
multivariate anomaly detection techniques providing broad 
coverage of components and failure modes are not widely 
discussed in nuclear contexts. 

For instance, a simple first order polynomial regression 
model was developed as an anomaly detector using data with 
multiple failure modes (Moleda, Momot, & Mrozek, 2020) 
on a boiler feed water pump in a coal plant. Their approach 
required adjusting thresholds for each failure mode and a 
clear assessment of false detection and missed events was not 
provided. In (Ramuhalli, Walker, Agarwal, & Lybeck, 2021) 
a number of multivariate time series deep learning models are 
discussed for prognostics. Their findings indicate gap in 
systematically learning optimal model hyperparameters that 
would generalize over a wider set of operational conditions 
expected to be seen over time.  

As discussed in section 1.4, the intent behind this work was 
to apply a modeling framework successfully deployed in 
other industry domains to nuclear context without requiring 
new development work. Here we document our experience in 
terms of ease of model training and performance assessment 
from real operational environment towards establishing 
feasibility of deployment in nuclear plants. 

1.3. Opportunity 

Ongoing research and development in the field of advanced 
nuclear reactor designs, including small modular reactors, 
aims to enhance operational flexibility to integrate better with 
the grid of the future. Capability of a plant to adjust its power 
output within safety envelope as demand for electricity 
changes is key to such flexibility. The SMR designs 
incorporate inherent safety features and flexible operation 
modes, making them better suited for flexible grids with 
distributed generation sources such as wind and solar. GE 
Hitachi is currently developing BWRX-300, one of the 
leading SMR designs, which is expected to become 
operational by 2028 (GE Hitachi, 2017). Since the reactor is 
in its design phase, this presents a unique opportunity to 
develop and integrate PHM from an early phase. This reactor 
will be a first of its kind and there is no operational experience 

or reliability data available. Furthermore, PHM technologies 
even if proven to be successful in other industrial domains 
must be evaluated and adapted to a nuclear plant domain. 
Under DOE ARPAE’s funded program called Generating 
Electricity Managed from Intelligent Nuclear Assets 
(GEMINA) a number of machine learning (ML) and artificial 
intelligence (AI) techniques have been developed and 
evaluated towards enabling predictive maintenance using 
BWRX-300 as a reference design. Operational data from 
existing Boiling Water Reactor (BWR) plant fleets as well as 
plant simulators were collected for PHM analytics 
development. This paper describes results from one of the 
many workstreams that focused on unsupervised systemwide 
monitoring using historical plant data. 

1.4. Research Questions Investigated 

Industrial systems such as power plants generate large 
amounts of data that grow in size over several decades of 
operation. Throughout the life cycle of a plant numerous 
events and activities take place that affect measurement data. 
Labeling these multivariate data for machine learning tasks is 
next to impossible rendering the supervised class of methods 
of little use. In this work our intention was to use 
unsupervised methods and evaluate whether the outcomes 
can be meaningfully integrated into existing maintenance 
workflows. Specifically, the following research questions 
were pursued: 
- whether machine learning based health monitoring 

models can be demonstrated to generate an early 
warning in examples where faults went undetected 
until a late stage  

- whether generation loss from forced outage could be 
avoided/minimized in economically meaningful way 

- whether we can limit the false positive rate such that 
desired economic benefit can be achieved as set forth 
by performance targets based on cost-impact analysis 
of the historical maintenance burden data. 

We present our approach and results next. To the extent 
possible, we have collected and analyzed plant history to 
generate relevant context including discussion of these 
results with plant subject matter experts (SMEs) towards 
validation and further scope of expansion/refinement of the 
algorithms.  
It must be noted that to protect plant identity and company 
confidential information, data identifiers have been omitted 
and data are anonymized on purpose. 

2. PROBLEM FORMULATION 

The initial phase of the project engaged in analyzing large 
amounts of historical events data in existing nuclear plants as 
reported in Institute of Nuclear Power Operations (INPO) 
reports (INPO, 2021). Events resulting in generation loss 
(due to forced shutdown or power reductions) were identified 
to determine sites and timeframes of interest to obtain plant 
operational data.  
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2.1. Field Event Description 

In one particular scenario, an anomaly was detected during a 
routine tour and the site staff had to scramble to repair the 
near failed turbine driven reactor feedwater pump. Inspection 
of the inactive thrust bearing revealed non-uniform wear of 
pin and leveling pads and the evidence pointed to a lightly 
loaded thrust bearing. This was a Maintenance Rule 
Functional Failure (10 CFR 50.65 (NRC), 1974) that 
involved exceeding a plant-level monitoring criterion and 
was determined to be a consequential equipment failure even 
though there were no industrial safety or radiological 
consequences as a result of this event.  

 
Figure 1. Operational history for a 10-month period 
depicted through normalized plant power output. 
 
As shown in Figure 1, the event of interest (feedwater pump 
vibration related failure) is marked as one of the long 
unplanned outages (U). It must be noted that a planned outage 
was scheduled within a month of this event. Hence, the key 
value proposition of a health monitoring would be to detect 
impending failure early enough to prevent pump damage 
from exceeding plant level monitoring criterion and perhaps 
continue operating with that pump until the planned outage 
period. Failures of these kinds are known to show exponential 
growth rates as degradation progresses, hence even a few 
days of early warning would be sufficient to catch this 
degradation earlier (than when it became noticeable to the 
area operator) and identify a potential intervention to allow 
plant operation to continue without violating maintenance 
criterion. 

2.2. Data Description 

Industrial plant data evolve over time due to usage, wear and 
tear, and maintenance and repair operations. This requires 
any monitoring model to continuously update and adapt as 
plant characteristics change. In this work we assume that 
plant characteristics do not change significantly enough in 
less than a year timescale and any model trained or updated 
within the last six to eight months can be considered current 
unless there are specific maintenance or upgrade activities 
carried out. Using our reference failure event described 
above, we collected operational data from about six months 
prior to the event and also few months following the repair. 
After consulting with subject matter experts from the plant, 
we concluded that examining the operational history 
spanning 6 to 8 months would likely encompass the majority 
of operational deviations. This timeframe also allows us to 

work within the limitations of data volume. It's important to 
note that while collaborating in a research endeavor across 
different organizations, the data access constraints we 
encountered were more aligned with the overall program 
goals rather than being purely technically oriented. 
 
It was previously shown in other industrial domains (Huang 
& Kasiviswanathan, Streaming anomaly detection using 
randomized matrix sketching, 2015), periodic model updates 
have proven effective in maintaining low false positive rates 
while not missing any key events of interest. Therefore, we 
make an assumption that similar model management 
techniques will be applicable in nuclear plant context and that 
our model needs to be trained/updated with data from recent 
timeframes. 
 
Plant data are typically gathered at various time resolutions 
depending operational needs. However, historical data are 
often compressed (in time or frequency domains) for long 
term archiving. In this scenario, due to various technical and 
resource availability constraints, we could obtain data only at 
an hourly resolution for the requested period. While this 
resolution is not ideal for detecting high-frequency and fast 
progressing failures, our hypothesis was that mechanical 
failure of this kind often exhibit symptoms over several days 
before catastrophic failure and we may be able to catch it 
soon enough even with this resolution. Specifically, we 
investigated the pump failure issue with a temporal deep 
causal anomaly detection method described in the next 
section. A total of 35 channels of time-series data were made 
available for the requested 10-month period. Additionally, 
periods of planned and unplanned outages were collated by 
identifying issue reports (IRs) generated from this time range 
for generating additional context during performance 
validation. A number of statistical data analyses were carried 
out to detect correlated parameters, assess noise levels, or 
ascertain data integrity and data quality. We omit details of 
data-preprocessing steps (these data cleaning steps are typical 
to all data-science projects) to focus on health monitoring 
model development and analysis in this paper. 

3. TECHNICAL CHALLENGES 

The chosen scenario for constructing the model was solely 
based on an incident related to vibrations in the feedwater 
pump (FWP). However, as depicted in Figure 1, there were 
numerous planned and unplanned power de-rates and 
shutdowns during the span of 10 months, which is a common 
occurrence in nuclear power plants. While unsupervised 
anomaly detection methods are effective at identifying 
previously unseen irregularities, in their early stages, they 
often generate numerous alerts that lack practical 
significance or operational interest. Examples of such alerts 
include deliberate power reductions, routine chemical dosing, 
or planned maintenance activities conducted online. 
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Such alerts require domain-driven post processing to isolate 
true anomalies from those of less significance (often 
considered as false positives). At this stage the key bottleneck 
is domain validation that requires a lot of effort from SMEs 
combing through documentation of plant history. However, 
as more examples of a class of anomalies accumulate over 
time through these types of validation activities, a supervised 
approach to detection and diagnosis can be effective in 
improving the accuracy and explainability of a model.  

4. TECHNICAL APPROACH 

4.1. Unsupervised Anomaly Detection 

While we are working with a specific failure mode, our goal 
is to build a generic anomaly detector for the pump system 
without explicit knowledge of a failure mode. Generally, it is 
common industry practice to build monitoring solutions for 
known failure types, however, in autonomous paradigms the 
system must be guarded against all anomalies so appropriate 
attention can be given in timely manner. Traditional 
approaches to building predictive maintenance models have 
focused on addressing known failure modes on key 
components and are limited to low dimensions (few sensor 
inputs). They fail to scale when a larger number of 
subsystems or components in a plant require coverage against 
a larger set of respective failure modes. It must be noted that 
for effective remote monitoring coverage should be provided 
against all plant systems to effectively reduce labor 
headcount. Furthermore, upwards of several hundreds of 
measured or derived parameters are available from a typical 
reactor subsystem. At the cutting-edge of deep learning for 
time series data, GE Research developed deep causal models 
that encode hi-dimensional (several hundred variables) 
multivariate causality between model input parameters to 
detect anomalies (previously seen or unseen). These twins 
have been successfully demonstrated in other safety-critical 
domains like aviation jet engines and wind turbines (Huang 
& Kasiviswanathan, Streaming anomaly detection using 
randomized matrix sketching, 2015) (Huang, Yoo, Yu, & 

Qin, 2015). Unlike many other available deep learning 
architectures, this architecture has been designed to encode 
time-series characteristics that are often important for health 
assessment in industrial settings (Huang, Yan, Wang, & Xue, 
2018)For instance, all measurements (e.g., currents, 
temperatures, pressures, flows from reactor core, etc.) can be 
used together to generate a causal graph of the nominal core 
operations. In the event of anomalies, relationships between 
related measurements are likely to change, which reflects as 
changes in causal graph and identify the parameters that have 
deviated from their nominal relationship with other 
parameters. Identified parameters provide explainability 
necessary to drive diagnosis and corresponding corrective 
actions.  

4.2. Deep Causal Anomaly Detection Model Architecture 

Full technical and implementation details of the model are 
provided in (Huang, Yan, Wang, & Xue, 2018)  and (Feng 
Xue, 2020), we explain the key intuition behind this 
architecture in this paper. This model learns variable 
association by modeling a nonlinear Granger causal graph, 
where each node represents a variable in the time series, and 
each edge is directed and weighted, describing the Granger 
causality (Granger, 1969) between the two connected nodes. 
Figure 2 illustrates the model architecture that consists of 
three modules.  
 
Module 1 learns temporal features by implementing a 
residual neural network (ResNet) (Kaiming He, 2016), (Alex 
Tank, 2018) to learn univariate non-linearity. Module 2 
learns a Granger causal graph form “normal” timeseries, i.e. 
determines all contributing temporal features (output from 
Module 1) that contribute to predicting values of a given 
parameter and does so for all parameters parallelly. Finally, 
Module 3 implements a time-series regression, which 
combines the output of Module 2 in a non-linear combination 
to predict n future values of a parameter.  
 

 
Figure 2. Deep causal anomaly detector network architecture (Huang, Yan, Wang, & Xue, 2018). 
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Once trained, the network is used as anomaly detector for any 
incoming input by predicting n future values of all parameters 
and computing residuals from actual values for n future time 
instants (note this results in a slight delay of n-timesteps in 
assessing an anomaly). Furthermore, analyzing the 
parameters with highest residuals and their relative 
contributions to the anomaly score we determine presence of 
an anomaly and the signature of that anomaly. This process 
is illustrated with the feedwater pump data in the next section. 

5. APPLICATION & RESULTS 

The deep causal anomaly detection neural network described 
above underwent training using data extracted from segments 
where no identified issues were present. In a standard 
operational context, achieving this involves employing an 
extended historical time-series record of the asset, assuming 
that a substantial portion of this extended history accurately 
represents normal operational behavior. However, given the 
limitations in available historical data in this instance, we 
isolated periods characterized by normal behavior for 
training. These selected periods were intentionally chosen to 
be distant from repair and outage events. 

The complete collection of normal data was subsequently 
divided into training and validation sets, utilizing an 80-20 
split. The remaining data was never shown to the model and 
was included in test set for evaluation. The network's training 
was geared towards predicting parameter values for the 
upcoming two hours, relying on a moving window 
encompassing the previous five hours. The optimization 
process aimed to minimize the Mean Squared Error (MSE) as 
the loss function, continuing until a predefined training 
termination condition was met for both the training and 
validation loss. 

Following successful training, the model was employed to 
assess the entirety of the 10-month time-series. This 
evaluation involved generating prediction residuals for all 
output parameters. Anomalies were identified based on two 
primary criteria: 

1. An aggregate of residuals surpassing a 
predetermined threshold. 

2. A significant departure in the distribution of 
residuals from uniformity across all residuals. 

Aggregated residuals that fulfilled both anomaly criteria 1 
and 2 were denoted as alerts, visually represented as red dots 
in the top graph of Figure 3. These alerts were further 
classified in four classes of alerts based on alert signatures. 
Instances where only one or no criterion was satisfied did not 
trigger alerts, and were respectively indicated by blue and 
gray dots. 

The lower chart in Figure 3 illustrates the plant's power 
output, providing a reference point and contextualizing the 
plant's historical performance, including planned or 
unplanned outages, de-rates, repairs, and more, thus 
providing context during the analysis of results. The 
subsequent step encompassed the analysis and 
summarization of the alerts generated and is presented next. 

5.1. Alerts Analysis 

Table 1 shows an aggregated output generated by the model. 
Each row represents an alert or a group of alerts persisting 
over more than an hour period (called anomaly period), for 
which anomaly criteria were met. Column 1 shows average 
anomaly score for all alerts in an anomaly period. Parameter 
1 identifies the input that contributes to the anomaly score the 
most (e.g. in row 1, FEEDWATER DISSOLVED O2 
parameter contributes to 84% of the total anomaly score of 
0.33). Based on past experience, the top 3 contributing 
parameters and their contribution percentages are generally 
enough in identifying the nature of the anomaly. The last two 
columns are the output of the validation exercise, where we 
sought plant SME input in understanding the cause of the 
anomaly and if that matched with known events in the plant 
history, and subsequently mark the anomaly as True Positive, 
False Positive, or a Positive (late detection) for performance 
quantification. 
 
As color coded alike in Table 1 and Figure 3 below, a total of 
13 anomaly periods spanning 4 types of anomalies were 
identified. Apart from four alerts due to elevated oxygen 
levels, all others were deemed relevant alerts in which plant’s 
systems engineers would be interested from predictive 
maintenance perspectives. Although, our model was clearly 
able to catch elevated dissolved oxygen on specific days, it 
was determined to be an effect of operator intervention to 
manually adjust oxygen level. Analytically our model 
detected unusual changes (in oxygen level) correctly, it failed 
to detect the deteriorating oxygen level with early warning 
and only alerted after intervention was applied, we treat these 
as late detections. Following this observation, we have agreed 
to expand the model to include additional chemistry 
parameters if such data are available in the database. 
Otherwise, we will improve our model to avoid alerts on this 
condition, as these are not directly pump related issues. SMEs 
noted that incorrect oxygen levels are known to lead to 
cavitation issues on pump internal parts, but whether any 
correlation exists here needs separate investigation. 
Quantification of model performance is provided next. 
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Figure 3. Summary of alerts generated by FWP model over a 10-month period from an existing NPP. 

 
Table 1. Summary of alerts, dispositions and SME feedback for FWP model output. 
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1 102 3 4 5 6 7 8 9

Avg 
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Parameter1

 Top 
parameter 

contribution 
Parameter 2 Parameter 3 Params 2+3 

contribution
SME Notes Resolution

0.33 FEEDWATER DISSOLVED 02 84% RFP 1B INBD SHAFT VIB TDFWPBVP 8% oxygen level was adjusted manually positive
0.34 FEEDWATER DISSOLVED 02 76% TDFWPBVP  RFP 1B INBD SHAFT VIB 12% oxygen level was adjusted manually positive
0.34 FEEDWATER DISSOLVED 02 82% RFP 1B INBD SHAFT VIB TDFWPBVP 16% oxygen level was adjusted manually positive
0.58 RFPT 1B ECCENTRICITY 71% TDFWPBVP RFP 1B INBD SHAFT VIB 13% feedwater pump issue (4/13) true positive

0.84 RFP 1B INBD SHAFT VIB 74% RFP 1B OUTBD SHAFT VIB TDFWPBVP 15%
RFP 1B INBD SHAFT VIB sensor is 
broken, reporting zero vibration.

true positive

0.29 RFPT 1B ECCENTRICITY 56% RFP 1B OUTBD SHAFT VIB RFP 1B INBD SHAFT VIB 32%

Pump was wobbling a little bit 
resulting in eccentricity higher than 
normal. The issue was fixed after 
rebalancing.

true positive

0.48 FEEDWATER DISSOLVED 02 59% RFP 1B OUTBD SHAFT VIB RFP 1B SEAL WTR FLOW 18% oxygen level was adjusted manually positive

0.24  RFPT 1B ECCENTRICITY 53% RFP 1B OUTBD SHAFT VIB RFP 1B INBD SHAFT VIB 30%

Pump was wobbling a little bit 
resulting in eccentricity higher than 
normal. The issue was fixed after 
rebalancing.

true positive

0.32 RFP 1B OUTBD SHAFT VIB 75% RFPT 1B HP STOP VLV TEMP RFP 1B INBD SHAFT VIB 9%
Outboard vibration sensor power 
supply out

true positive

0.20 RFP 1B OUTBD SHAFT VIB 50% TDFWPBVP  RFPT 1B ECCENTRICITY 30%
Outboard vibration sensor power 
supply out

true positive

0.59 RFPT 1B ECCENTRICITY 77% RFP 1B OUTBD SHAFT VIB TDFWPBVP 16% Increased eccentricity observed true positive
0.56 RFPT 1B ECCENTRICITY 58% RFP 1B OUTBD SHAFT VIB  RFPT 1B HP BRG SHAFT VIB 27% Increased eccentricity observed true positive
1.52 RFPT 1B ECCENTRICITY 79% FEEDWATER DISSOLVED 02  RFPT 1B HP BRG SHAFT VIB 8% Increased eccentricity observed true positive
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5.2. Performance Analysis 

Quantification of anomaly detection performance in 
continuous time-series data can be viewed from at least two 
different perspectives. If the objective is to measure 
performance of a machine learning based method, one must 
tabulate all predictions (in our case every hour), we call it 
sample-level performance evaluation. However, in 
operational settings, plant operators are more interested in 
whether all events of interest (effects of which typically 
persist over longer periods) were successfully detected 
without resulting into many repeated alarms and false alarms, 
referred to as event-level performance evaluation. Here we 
present outcomes from both methods of performance 
quantification. 

5.2.1. Coverage Period 

In industrial applications data-driven models are typically 
trained on a subset of operational modes for an asset and 
hence only cover a subset of overall operational time period. 
If models are built to operate on very specific operational 
condition(s) out of many for an asset, the model output is not 
generated for untrained modes. For instance, a model trained 
on steady-state mode of a motor does not cover transient 
portions of data. For slow progressing failures, coverage on a 
subset of operational modes typically suffices, but in many 
cases, assets must be monitored or covered under all 
operational modes. Therefore, model coverage is yet another 
metric that must be tracked along with model accuracy. 
Coverage is defined as the percentage of time period for 
which model generates an output versus total period for 
which operational data were available from the plant. It must 
be further noted that time durations where the asset is known 
to be non-operational (e.g. during outages) model output 
should be ignored. Generally, in most implementations, 
models do not generate predictions when the asset is down, 
even though data acquisition systems may still be recording 
data. In-situ determination of periods where model coverage 
can be considered valid is important to properly identify to 
assess whether the model outputs should be accepted or 
ignored. Methods to determine covered periods is beyond the 
scope of this paper, but coverage is important to calculating 
performance metrics. 

In our 10-month long data, there were 7322 hours of data 
available. Excluding periods of outages for this pump train, 
our model produced predictions for 6826 hours, i.e. a 
coverage of 93.23%. Total 496 hours were lost in outages 
(planned loss of 308 hrs (4.21%)) and unplanned loss of ~188 
hrs (2.56%)). Performance metrics were calculated for the 
rest of the covered period. 

5.2.2. Event-level Performance Evaluation 

Event-level performance evaluation is summarized in Table 
2, which was carried out to answer the specific questions that 
were important to the operational staff. For reference, Table 

3 describes unplanned outage or power de-rate events (as 
labeled in Figure 3) that form the basis of ground truth 
determination of the plant conditions. Given sensor inputs 
used for the algorithm SME opinion was used to determine 
whether the model is applicable in detecting and determining 
the cause of unplanned outage event. In other words events 
that are not likely observable from chosen input sensor 
channels are excluded from the analysis and only outage U3 
and other issues related to same system are considered 
meaningful for performance evaluation. 

Table 2. Event-level performance evaluation summary. 

Q1. Given data have known pump related events, have we 
discovered them and how many? 
• Yes, all events were identified and verified with plant 

records (see Table 1). 
• True Detection: 13/13 
• 4/13 were late detections from operational value 

perspective, i.e. not enough early warning period 
• False Detection: none 

Q2. If discovered, can we calculate detection horizon 
(early warning) compared to when it was recorded in 
field? 
• Yes, a minimum of 2 days and 18 hrs prior to when it 

was first detected in the field during routine rounding. 
Potentially, 5+ days of early warning (see next section). 

Q3. Did we discover any events that were not documented 
apriori? 
• No. While not known to us when data were originally 

provided, all alerts were successfully tallied subsequent 
to model building and evaluation with documented plant 
history. 

Q4. How many alerts were late positives or false positives, 
if any? 
• Oxygen Level Adjustment Events – technically 

speaking, detection is accurate (from an anomaly 
detection model’s perspective), but alerts were not 
generated based on detecting low O2 levels, rather on 
detection of manual intervention (spike in O2 level). 
Since these won’t be of any practical use in reducing 
costs and are considered late positives it was suggested 
these alerts be suppressed as these are non-pump related 
events. 

Q5. Did we miss any events of interest (false negatives)? 
• No. We define events of interest where the root cause of 

an unplanned outage was related to pump and adjacent 
subsystems to determine if the cause should have been 
covered by our model and if yes, did we detect it. 

• As shown in Table 3 below, only one outage was caused 
by a pump related issue and hence we don’t expect our 
model to detect other unrelated outage root causes 
elsewhere in the plant. 
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Table 3. Analysis of known unplanned outages (U1-U6 in 
Figure 3) to assess missed detection. 

Outage Resolution Applicable Result 

U1 Feedwater Heater related outage NO N/A 

U2 Drain Cooler and FW Heater related NO N/A 

U3 Feedwater Pump Vibration Issue and 
Repair 

YES Detected 

U4 Main Steam Bypass Valve 
Malfunction 

NO N/A 

U5 Heater Drain Valve Failure NO N/A 

U6 Discharge Thermal Limits NO N/A 

5.3. Sample-level Performance Evaluation 

Sample by Sample accuracy evaluation computes machine 
learning algorithms’ performance in terms of traditional 
metrics using confusion matrix. This requires labeling all 
time-series data points (samples) with a ground-truth label to 
compare with the predicted state. Such a ground-truth is hard 
to establish in real field data as there are several challenges 
described below: 
• Failure reports document when a failure was detected in 

the field but determining the onset of preceding 
degradation that should have been detectable in data is a 
challenging task towards labeling the time series data. 
When precise knowledge is lacking, any assessment of 

the model's performance can, at best, provide indicative 
rather than precise results. In our specific scenario, we 
annotate the time series data using our understanding of 
known issues and the point at which their impact first 
became discernible in the data. 

• In the initial phase of degradation, the symptoms are 
often intermittent. While it is important to detect as early 
as these symptoms first emerge, they may not always be 
consistently observable in periods following that 
detection, which affects this type o f evaluation. 

• There may be a number of confounding and overlapping 
periods where multiple issues/degradations may have 
been present. From detection point of view, a model 
should continuously flag the presence of degradation, 
however the root-cause may not appear consistent 
between those alerts. Detangling of these alerts is a 
manual process and can be hard to get it exact. 
 

Keeping these challenges in mind we used the following 
approach for this evaluation. We labeled the time series with 
known anomalies based on consistency of the fault signature 
prior to an event. For example, if there is a bearing related 
fault observed through high vibrations, we use trends in 
vibration sensors to determine when they have statistically 
changed behaviors. Likewise, each known event can be 
characterized by corresponding best known signatures to 
label the data. 

 
Figure 4. Trade-off between early warning vs. alert persistence condition: 

 5+ days for earliest indicator (no persistence) vs. 2+ days with a four-hour alert persistence. 
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Noisy data and model errors can result into several 
predictions that cross anomaly threshold intermittently. Such 
prediction would result into false alerts unless high anomaly 
scores persist over longer periods. Persistence is indicative of 
systematic change in operational characteristics, often due to 
degradation or operational environment changes. Therefore, 
alert generation is a post-processing step, where based on 
downstream process and operator preference additional 
conditions must be satisfied before predictions are converted 
into an alert. Once such requirement is that of persistence, 
which requires a certain minimum number of predictions to 
persist above anomaly threshold before an alert is raised. It’s 
often a trade-off between early warning and false positives. 
 
Evaluation: As shown in Figure 4 the first alert with relevant 
signature (indicative of high vibrations) was briefly observed 

at about 5 days and 10 hours (t1) prior to when it was detected 
at the plant. However, the alert subsided after that before 
becoming persistent about 2 days and 18 hours (t2) prior to 
manual detection. For the purpose of evaluation, if we 
consider t1 as the first desired indication of early warning, all 
subsequent data points must be labeled with fault label 
ground-truth. This results in a total of 995 hours that span 
anomalous time-series segments, if no persistence condition 
is applied. This would allow for an early warning for 5+ days 
for the key event of interest related to the FWP. However, 
with a persistence condition of 4 hours or more total 
anomalous segments reduce to 881 hours, and the best early 
warning horizon reduces to only 2+ days. 

 

 
Table 4. Quantitative performance metrics. 

Nactual , Aactual  are number of nominal and anomalous labels, and 
 Npred , Apred are model predicted nominal and anomalous points. 

 
Without a persistence logic: early warning of 5+ days 
       Hourly evaluation       Percentage hours 

  Npred Apred totals    Npred Apred 
Nactual 5823 8 5831 hrs  Nactual 99.86% 0.14% 
Aactual 245 750 995 hrs  Aactual 24.62% 75.38% 

 
With alert persistence of four hours: early warning of 2+ days 

  Npred Apred totals    Npred Apred 
Nactual 5937 8 5945 hrs  Nactual 99.93% 0.07% 
Aactual 131 750 881 hrs  Aactual 14.86% 85.14% 

 
 

6. CONCLUSIONS 

As shown in evaluations above, the FWP early warning 
model is shown to provide warning with persistence at least 
2 day and 18 hr. prior to when it was detected at the plant. 
Such warning could have prevented the catastrophic event 
and unplanned downtime through careful derating of the 
pump or switching to a redundant system.  This supports 
O&M cost savings potential through detection and early 
warnings. It must be noted that more validation using other 
examples of similar issues may be valuable if data became 
available. The key learning experience from applying such an 
approach in real plant data was to tackle the challenges of 
obtaining a reasonable ground truth. While metrics like 
precision, recall, accuracy and confusion matrix can be used 
to optimize the algorithms, it was important to evaluate 
performance in terms of operational metrics relative to events 
of interest and whether those events were detected and with 
what lead times. Operational staff mainly cared about when a 
particular event was detected and if the algorithm provided 
explanations in terms of leading contributors to the anomaly 
scores. Some events (e.g. oxygen dosing) that were 

anomalous operations from algorithm’s point of view were 
not interesting to the operational staff, which suggests that 
alert generation must be accompanied with post processing to 
suppress non-degradation related alerts, which is 
accomplished as a joint exercise with SMEs. Therefore, while 
sophisticated algorithms can be effective in industrial 
environments substantial domain knowledge is required to 
make these systems trustworthy and usable to realize 
meaningful cost savings. 

6.1. Deployment 

Work presented in this paper is still in proof of concept stages 
and far from deployment. However, the results obtained so 
far have been promising enough to the operational staff to 
allow continue investigation and further validation. 
Experience from other domains, where this modeling scheme 
has been successful deployed, and a positive outcome from 
this analysis thus far is encouraging and point to applicability 
of this approach for industrial environments in general. 
Future work plan has been put together towards maturing this 
method for a broader implementation in power plants. 
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6.2. Ongoing and Future Work 

Work presented here continues in several directions to further 
validate our findings. For instance, on one side we are 
working on establishing reusability of model on a similar 
asset from another train in the plant. If the same model, as 
learned here, doesn’t generalize as is we plan to investigate 
how to adapt/update to the new asset of similar kind through 
incremental training. On the other hand, we are also exploring 
if our algorithm can be used for different makes and models 
of the same asset as well as generalize to other types of assets 
at the plant through transfer learning. We are also working on 
expanding the model with chemistry parameters, to 
potentially detect deterioration in oxygen levels early on and 
use them as alerts to operators, rather than detecting the 
intervention as an anomaly. Finally, we plan to explore if 
expanding the model with parameters from the reactor core 
(e.g. reactor water level) can provide a more accurate 
assessment of operational mode of the plant. 
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DOE (US) Department of Energy 
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