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ABSTRACT

Model selection is a crucial aspect of Prognostics and Health
Management (PHM). However, many PHM models are de-
veloped for specific data sets and lack flexibility to adapt to
different data sets with varying data quality considerations.
To address this gap, we propose a generalizable model se-
lection pipeline for PHM. Our approach involves creating
a pipeline for testing models that users can tune in vari-
ous ways. We designed a sequential pipeline of steps for
model selection with a focus on implementation consider-
ations which include recommendations for handling envi-
ronmental variables, capabilities for remote and local work
environments, and storage considerations of the serialized
pipeline. Performance metrics are designed to consider data
quality characteristics such as ambiguous labeling. We illus-
trate the generalizability of our approach through a case study
of our model selection pipeline applied to a field data set with
ambiguous labels. Our design accommodates data character-
istics commonly found in field data, such as ambiguous labels
and data wrangling. Our contribution fills a gap in real-world
implementations of PHM by offering technology considera-
tions and recommendations for effective deployment.

1. INTRODUCTION

The components of implementing a PHM system include data
collection of the sensor variables as well as other contextual
data sources, development of PHM models, validation, and
designing policy around outputs of those models. In theory, a
PHM program should result from a formalized process based
on risk-assessments that consider the business case, the stake-
holders and the physical system. Thanks to recent advance-
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ments in technology such as faster data processing and tools
for advanced analytics, there are now additional opportunities
for purposing existing field data which may not have been
collected for a PHM program in mind for a PHM program.
This data may include sensor data collected during operations
or data from preexisting condition-based programs. Use of
such data may lead to challenges related to the structure or
quality of the data which may impact the suitability for PHM
tasks.

From a modeling perspective, a PHM system will incorpo-
rate one or more of three main PHM tasks, which are fault
detection, fault diagnosis and prognostics. Fault detection is
the detection of abnormal system behavior. Fault diagnosis is
the separation of the various failure modes of the system and
their classification into known classes. Prognostics (degra-
dation) are predictions about the evolution of system health
to return equipment lifetime predictions such as Remaining
Useful Life (RUL).

The different data characteristics, physical system character-
istics and business needs points to many decision variables in
attempting to develop a PHM model on field data. As a re-
sult, many PHM models are developed for specific data sets
based on its specific characteristics. In this work, we describe
a flexible and generalizable pipeline for testing and select-
ing models for PHM. Our contribution is an end-to-end, data
specific engineering process for ingesting unseen sensor and
maintenance data (of any quality). The end result is a flexi-
ble, modular framework with components that consider data
quality analysis, suitability metrics and model experimenta-
tion, developed in a way that the final model is deployable for
use.

The framework is tailored to handle the immense volume and
complexity of sensor data, data quality challenges, and non-
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integrated contextual data sources needed for labeling using
the following properties:

• Data-driven and generalizable enabling rapid scaling to
multiple systems

• Re-usable, repeatable, and extensible code libraries de-
veloped in both native Python and Apache Spark when
sensor data volume requires scalable computation.

• Incorporates a full data quality framework which identi-
fies, measures, and applies data conditioning where ap-
propriate.

• Integrated and standardized data model which includes
contextual data from various sources and enables exten-
sibility and repeatability.

The rest of the paper is organized as follows. Section 2 pro-
vides background information on model development and de-
ployment frameworks, presenting contextual definitions and a
review of existing literature. Section 3 outlines the method-
ology used for the model testing evaluation process. In Sec-
tion 4, an illustrative case study is presented to exemplify the
process. Sections 5 and 6 delve into the discussion and con-
clusion, respectively, summarizing the findings and offering
insights for future work.

2. BACKGROUND

The framework can be thought of as modular with a high
level structure each split into sub-modules containing differ-
ent operations specific for sensor based algorithms (SBA).
We call The high-level foundational structure a Prognostics
and Health Management Framework (PHMF), which is com-
posed of data operations, model operations, and operational-
ization (Figure 1).

For model development on a new data set, the data oper-
ations phase contains tools for formal and repeatable data
wrangling as well as bringing scientific rigor to the ex-
ploratory data analysis of sensor data. The primary purpose
of this process is to draw conclusions regarding the suitabil-
ity of data for modeling and to identify the requirements for
model pre-processing.

The model operations phase covers the training, validating,
storing and analysis of models. The data feasibility assess-
ment results help specify the data conditioning and modeling
task as well as the design for the modeling experiment. Model
performance metrics and validation tools are also included as
well as fine tuning and analysis of modeling experiments. The
outputs of the model operations stage are model inputs, out-
puts, and storage requirements.

Operationalization focuses on transitioning from model
training to prediction while ensuring scalability and robust-
ness of the deployed model. The rest of this section summa-
rizes related work, organized using these three major phases.

2.1. Design for PHM and PHM Frameworks

There are many complimentary PHM design and implemen-
tation frameworks. From the PHM lifecycle perspective, one
perspective is DE3, which is Design, Development and De-
cision (Hu, Miao, Si, Pan, & Zio, 2022). The design portion
of the lifecycle includes requirement analysis, framework de-
sign, and verification and validation. Guidelines for require-
ments specifications for a prognostics initiative which inte-
grates safety, reliability, cost and real-time viability are found
in (Saxena et al., 2010; Goebel et al., 2017; Walker & Kapa-
dia, 2009). In terms of frameworks which integrate model
development and operations, (Guo, Bao, Wu, Jin, & Lee,
2019) summarize the application of DevOps from software
development as a framework for managing the lifecycle of
prognostic models, using goal of reducing the time it takes
to bring industrial AI applications to market while effectively
addressing real world uncertainties. A framework for PHM
which addressed model design, development and implemen-
tation focusing specifically on considering relationship be-
tween data availability and PHM tasks is presented applied to
hydrogen storage systems (Corrêa-Jullian, Camila and Groth,
Katrina M, 2022). The scope of this paper is around the data
engineering and model development component of the full
system, with focus on use cases interested in leveraging ex-
isting data.

2.2. Data Operations

We further divide Data Operations into four major steps. The
first step is transmittal and storage, which evaluates data
characteristics such as scope, data sources, access, mode
of transmittal (batch or streaming), size, storage medium.
Completion checks of this stage test for sufficient depth and
breadth of the data such as specific checklist items for specific
data sources (Lukens, Rousis, Baer, Lujan, & Smith, 2022).

Exploration is primarily concerned with surveying the dif-
ferent data sources to assess the data structure and evaluating
different fields data completeness, for readability, identify-
ing join keys (if they exist) and validating the join keys be-
tween different data sources. Variable selection, through both
data analysis metrics and through surveying subject matter
expertise may occur here, which can reduce variables from
hundreds to a more manageable number (Griffiths, Corrêa,
Hodkiewicz, & Polpo, 2022; Cofre-Martel, Lopez Droguett,
& Modarres, 2021). For time series data, this phase also in-
cludes determining sampling frequency and how to summa-
rize information if the raw sampling frequency is more fre-
quent (descriptive statistic selection) or less frequent (inter-
polation/inference) (Cofre-Martel et al., 2021). One compo-
nent of this phase is identifying and implementing any histor-
ical data quality improvement approach such as imputation
for time series data sources or Technical Language Process-

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

Figure 1. PHMF Operations Framework

ing (TLP) (Brundage, Sexton, Hodkiewicz, Dima, & Lukens,
2021) for transactional data sources.

The third phase is alignment and integration. Alignment
refers to aligning different sensor variables at the same time
stamps. Griffiths, Corrêa, Hodkiewicz, and Polpo (2022) rec-
ommend approaches for aligning and merging different data
sources. These models include matching the frequencies of
time-readings, arranging the sensor data in wide form, align-
ing with contextual information, and preparing for fault de-
tection labeling. The fourth phase is preliminary analysis,
which is concerned with preparation of the data for model-
ing, which includes feature preparation and data reduction
techniques. Feature preparation includes generating features,
such as preparing lagged data. Feature selection includes data
reduction techniques (Griffiths et al., 2022; Cofre-Martel et
al., 2021). Feature extraction techniques are covered in many
places as a key area for data pre-processing in a PHM model
development pipeline (Atamuradov, Medjaher, Dersin, Lam-
oureux, & Zerhouni, 2017; Elattar, Elminir, & Riad, 2016),
and have different considerations when deep learning models
are introduced (Fink et al., 2020).

The ultimate design of the model for a PHM system depends
on many factors ranging from data characteristics, physical
properties of the system from which the data was collected to
organizational objectives. For any given PHM task, the data
must meet certain required properties for an effective model.
A data suitability assessment refers to assessing the suit-
ability of a prepared data set for a PHM task. In the liter-
ature, Chen, Zhu and Lee (2012) developed a methodology
for evaluating the quality of training data for PHM model
development, which measures suitability first for fault de-
tection, then diagnostics then remaining useful life (RUL)
prediction (Chen, 2012; Chen, Zhu, & Lee, 2013). Met-
rics for detectability (suitability for fault detection) and di-
agnosability were proposed using Maximum Mean Discrep-
ancy, a kernel-based approach for measuring the distance be-
tween multivariate distributions (Jia, Zhao, Di, Yang, & Lee,

2017). Coble and Hines recommend suitability metrics or
prognostics models based on three key qualities for prognos-
tics parameters: monotonicity, prognosability and trendabil-
ity (Coble & Hines, 2009). Calculation of these metrics helps
not only identify the suitability of data, but also helps in fitting
a prognostic parameters through methods such as regression.

A summary of different assessment measuring approaches for
the different PHM tasks are summarized in Table 1. The
data must not only exhibit required properties for an intended
task, but meet additional requirements on data collection and
data labeling processes. In order to train a fault detection or
anomaly detection model, the data must be labeled as healthy
or unhealthy. A diagnostic model requires labels based on
different possible failure modes or patterns. A prognostics
model requires some measure of remaining useful life. The
results of this assessment are the inputs to the model opera-
tions phase for determining a model.

2.3. Model Operations

Solutions to PHM problems typically fall into two categories:
physics-based and data-driven. Our approach is data-driven
modeling, which can be generalized to other systems via
transfer learning and do not require expert knowledge of the
physical processes or underlying mechanisms governing their
operations. Different modeling approaches for different PHM
tasks are covered in PHM textbooks such as (Vachtsevanos,
Lewis, Roemer, Hess, & Wu, 2006; Goebel et al., 2017). Re-
cent review articles PHM modeling methodologies include
reviews of the full model space (Jimenez, Schwartz, Vinger-
hoeds, Grabot, & Salaün, 2020) and reviews specific to deep
learning approaches which has shown great performance and
flexibility in the past decade (Rezaeianjouybari & Shang,
2020; Y. Wang, Zhao, & Addepalli, 2020; Zhao et al., 2019).

Model operations pipelines for the development and deploy-
ment of data-driven models, which specifically consider data
quality challenges observed in field data have recently been
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Table 1. Summary of metrics for assessing a PHM dataset for suitability for a given PHM task. The data must not only exhibit
required properties for an intended task, but meet additional requirements on data collection and data labeling processes.

PHM Task Suitability Criteria Labeling Requirements Data Requirements

Fault Detection Detectability: equipment
abnormality can be detected as
an outlier or as a different
distribution from normal

Binary labels such as faulty or
healthy state

Anomalies must be detectable
from normal conditions. Must
have sufficient training data to
cover all possible states.

Diagnostics Diagnosability: a clear decision
boundary can be obtained to
classify multiple failure modes

Multiple labels based on
different failure modes

Data must be separable within
the different desired prediction
classes.

Prognostics Trendability: related to
machine degradation, which is
typically slow and monotonic.

Equipment or component
lifetimes

Methods for assessing RUL are
typically based on assumption
of monotonic fault progression.
Proposed metrics for
determining the suitability of a
“trajectory”, and data must
contain some indicator of
lifetime.

developed and are of practical importance. Common data
quality challenges with sensor data include data of insuffi-
cient volume to fully capture system complexity and class
imbalance, both which lead to the challenge of generalizing
poorly. Modeling approaches for fault diagnosis when the
data is small and imbalanced are reviewed in (Zhang et al.,
2022).

Another challenge in field data is around ambiguous labeling.
One specific pipeline was developed for fault classification of
sand rakes system in mineral processing, where each stage of
the model experiment pipeline was well-defined with a set of
experiments across different labeling strategies (Corrêa et al.,
2022). Another framework addressing the ambiguous label-
ing in field data collecting in a mining processing line used a
rule-based approach for labeling health states based on when
the system was stopped and the failure mode at the time of
stoppage (Cofre-Martel, Sergio and Corrêa-Jullian, Camila
and López Droguett, E and Groth, Katrina M and Modarres,
MM, 2021). A framework was developed and implemented
where model experiments could be run and compared for dif-
ferent hyperparameters on the stoppage windows on the la-
bels. Experiments with model performance with the removal
of data outliers in field data for wind turbine SCADA data
in (Marti-Puig, Blanco-M, Cárdenas, Cusidó, & Solé-Casals,
2018).

2.4. Operationalization of PHM models.

Operationalization of models transitions the model from
training to prediction while ensuring scalability and robust-
ness, and can follow machine learning operations process
flow. Considerations for operationalization of PHM models
include mechanisms in place for monitoring model drift, con-
tinuous model updating, mechanisms and interface for de-
cision support(Guo et al., 2019). Additional considerations

around model storage, containerization and incorporation to
front-end interfaces are here as well.

3. METHODOLOGY

In this section, we outline the key steps and implementation
details involved in model operations, which encompass test-
ing and development for the purpose of model operational-
ization. Through pipeline development and serialization, this
framework allows for more structured model operations.

3.1. Requirements definition

We first define the following requirements for the develop-
ment of a toolkit for PHM model development following the
framework.

1. Single tool (application) which can perform all or most
functions related to performing exploratory analysis,
model development and model deployment.

2. Handle field data with varying quality and ambiguous la-
beling.

3. Allow data (in any stage of processing) and saved models
to be accessible to multiple individuals for collaboration.

4. Tune multiple types of decisions related to data pre-
processing and model training.

5. Load and overwrite (processed) data remotely.

6. Configure variables to prepare data for staging.

7. Serialization of pipelines for repeated experimentation
and models for implementation.

The framework is designed and implemented such that as new
data and tasks are encountered, modules can be added at vari-
ous points. This paper specifically focuses on the stages of the
Model Operations phase. In any modeling pipeline, there are
several, often intersecting, choices to be made on how data
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is included, split, normalized, modeled, and labeled. Over-
all, the design space – that is, the total count of the number
of possible variations – is massive, number, in conservative
cases, in the billions. SBA Tools was developed in order to
be flexible in pipeline design.

3.2. SBA Tools Framework

As each module of our framework for handling sensor (and
other relevant contextual) data for PHM applications handles
sensor-based algorithms (SBA), we call it “SBA Tools” de-
noting the collection of different capabilities. The SBA Tools
Framework spans exploratory analysis, model development,
and model deployment.

The framework effectively handles various qualities of field
data and addresses challenges in labeling clarity. Addition-
ally, it promotes cross-collaboration by integrating with a
shared remote environment and supports the serialization of
pipelines and models. This serialization facilitates practical
implementation and repetitive experimentation. Each stage
in the pipeline has various inputs and decisions that can be
customized according to specific requirements. Options for
stages specific to Model Operations include the following:

Labeling: This stage defines the rules for labeling train-
ing data. Depending on the task, this may include labeling
healthy and unhealthy states (fault detection task) or remain-
ing useful life (prognostics task) on historical training data
instances. A specific column and function are utilized to cre-
ate these labeling rules.

Interval Filter: By “Interval”, we refer to a collection of data
observations segmented by a time window, such as a collec-
tion of time series of readings of one component or system
from healthy to failed. The interval filter stage removes cate-
gories in the data (such as time intervals) if they do not meet
a certain requirement such as a specified minimum number of
observations required in an interval.

Test-Train-Validation: In this stage, the data is divided into
test, train, and validation sets. Users have the flexibility to
specify the split based on an attribute, ensuring that attributes
of the same type are grouped together.

Modeling: Modeling is the model training and selection
stage. Users can choose from a range of available models.
Hyperparameters can also be specified in this stage to fine-
tune the models. In addition, a subset of the sensor variables
can be selected to train and predict on for feature selection
testing.

Performance: This stage enables users to assess the perfor-
mance of the models. Performance metrics can be averaged at
different levels, such as across time intervals or split groups.
Users can select the desired performance metrics they wish to
analyze and retrieve.

3.3. SBA Tools Implementation

We developed a toolkit instance in Python where objects are
created for different types of components within the overarch-
ing pipeline containing methods that allow users to extract in-
formation, load information, and perform operations. While
the toolkit itself is proprietary, in this section we outline the
general design and architecture so the approach may be re-
producible.

The toolkit is implemented as a library of tools which sim-
plifies the end-to-end stages of the PHM data-driven model-
ing process, leaving a data scientist to spend the most capac-
ity on model development and abstracting away many engi-
neering and Continuous Integration and Continuous Delivery
(CI/CD) tasks. The tool is implemented with a simple Ap-
plication Programming Interfaces (API’s) with which to save
models so that they may be later loaded by the build machine
and incorporated into prediction pipelines.

This implementation approach includes a thin wrapper
around the most common machine learning (and anomaly
detection) algorithms, developed by third parties and open-
sourced, with-out having to learn the specifics of each library.
Additionally, the team can work collaboratively by saving not
just model building scripts that normally version controlled,
but data, models, and pipelines to centralized locations. Any
updates to data conditioning, transforming, or stages of a
pipeline that required high computation cost, could be per-
formed once then saved and re-used in later stages model
building.

A configuration file utilizes a key-value format to specify data
fields as time columns, interval identifiers, inputs, and tar-
get variables. The framework components are structured as
classes and subclasses, namely object-related and process-
related classes. Object-related classes are serializable and
encompass storage capabilities, while process-related classes
accept data set instances as input and enact specific processes.

The primary class, termed SBAToolsObject, serves as the
core and facilitates serialization and storage of essential class
objects: Pipeline and DataSet. These objects are stored
locally based on the home directory and remotely through
SSH, using environment variables SBA TOOLS USER and
SBA TOOLS HOST.

The data set class can be initialized or loaded from lo-
cal/remote sources and subsequently used as input for the
pipeline. It inherits methods from SBAToolsObject and intro-
duces functions for sampling and data retrieval. Underlying
the data set object is a pandas dataframe.

The Pipeline object, which can be initialized or loaded from
a local/remote location, enables the insertion of stage classes.
These stages execute sequentially, encompassing data prepro-
cessing, labeling, data division for training/testing, applica-
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tion of a modeling layer, and the computation of performance
metrics. Serializing this objects allows it to be treated as a
full queue of processes which can be easily rerun on other
data sets.

The final primary class, Stage, acts as a parent for all stages.
It furnishes methods to configure stage-specific seeds and an
execution method to enact processes.

All remaining class objects inherit from the Stage class, facil-
itating their integration into a pipeline. This arrangement al-
lows for consecutive application of multiple processes, serv-
ing data preprocessing and model development purposes. Pa-
rameter specifics differ for each stage:

The modeling layer accepts algorithm input from a prede-
fined model list, including scikit-learn classifiers (e.g., logis-
tic, random forest, SVC), as well as alternatives like AAKR
and Autoencoders utilizing keras. Hyperparameters for the
algorithms are additional inputs.

Other stages include:

• Labeling stage, which incorporates a labeling rule as in-
put.

• Normalizing stage, requiring a normalization method
and category column for operation.

• Splitting stage, dividing data into train, test, and valida-
tion sets, with seed values and proportions as parameters.

• Performance stage, tailored to interval or aggregate lev-
els, accepting a list of metrics as input.

Figure 2 provides additional details on the class objects, sub-
classes, and their methods:

4. CASE STUDY

Development of the model building functionality of the SBA
Tools framework was motivated by a project which entailed
identification and development of a model using sensor data
for a specific asset which could be used for PHM applica-
tions. The sensor data was field data which was already be-
ing collected for process control purposes. Identification of
specifically what PHM tasks and which data would be useful
was part of the project requirements.

Data. The data set contains time-series measurements col-
lected on a system for power generation as well as relevant
maintenance history logs. The data set contains several sub-
systems of a larger asset with different time series collec-
tions each corresponding to a unique maintenance event. The
sensor data was collected before and after each maintenance
event. The volume of data available for each event varies de-
pending on the system’s data availability during the fault pe-
riod, but typically spans 60 days prior to and 60 days follow-
ing the repair. We call each collection of readings associated
with a single event an interval. The data set includes categori-
cal variables such as equipment identifier, reading timestamp

Figure 2. Class Object Organization and Methods. The rela-
tionship of class object between each other and their methods
are shown here.

and corresponding sensor readings for the component. The
final data set contained around 125 intervals spanning about
100,000 total sensor observations.

Due to the proprietary nature of the data, while we report
actual observed data characteristics and data quality chal-
lenge, an open source data set is used to report numerical
results of the pipeline. The model testing pipeline was re-
produced using C-MAPSS, NASA’s Aircraft Engine Simula-
tor data, which provides data on the degradation of engine
quality across multiple engines (Saxena, Goebel, Simon, &
Eklund, 2008). The data set consists of 21 sensor values, an
indicator for engine/time intervals, and time information. For
simplicity, the most basic C-MAPSS data subset (FD001) is
used which has 100 units, one fault mode and one operating
condition. Use of an open source data set also promotes re-
producibility of our results.

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

4.1. Data Operations

The Data Operations phase of the framework includes a data
feasibility assessment stage which determines modeling de-
cisions to be made. For the Case Study, the Data suitability
metrics indicated that fault detection was the most promising
PHM task on this data, as there were no observable degra-
dation signatures but some indicator of detectability between
the data before and after a significant event. Consequently,
the task was defined to distinguish between healthy and un-
healthy component states by leveraging supervised training
techniques to identify patterns in sensor data.

There were three data quality challenges identified which in-
fluenced the model development experiment, reported in Ta-
ble 2 along with our identified mitigations. The first ma-
jor challenge was that the labels on the sensor data inter-
vals were ambiguous (label when the fault occurs). To ad-
dress this challenge, we added the exploration of various la-
beling approaches for partially or fully labeling the data and
tested their effectiveness to our model testing and selection
pipeline. For instance, we experimented with treating all data
pre-repair as unhealthy and post-repair as healthy. However,
this approach could be problematic, as the component may be
in a healthy state at the beginning of the analysis and then de-
teriorate closer to the repair date. Therefore, we also explored
other labeling techniques such as segmenting the data into
different time intervals based on features such as the type of
fault. For example, we considered labeling a specified num-
ber of days before a repair as unhealthy and evaluated this ap-
proach for different fault types. We recognize that some faults
may be gradual, while others can be more abrupt, which we
tested for to find better suited labeling methods for different
fault types.

The second challenge was that there was low data volume for
fault detection model. Anomaly detection algorithms tradi-
tionally require a sufficient amount of observations capturing
all possibly “normal” states, which may not completely be
present but this data was collected 60 days before and 60 days
after a significant event. Two design decisions were made
here: first, to use not only anomaly detection algorithms,
which are trained on healthy data alone, but to also look at
classification models with two states in order to use all of the
data.

The third challenge driving our model pipeline was class im-
balance between intervals. To account for this, we designed
performance metrics and our experiments to both measure the
variability from the different class sizes and to look at the in-
tervals individually.

Fault Detection Modeling Formulation. Associative and
classification models were both explored for anomaly detec-
tion. Both modeling approaches take pre-processed data (nor-
malized, labeled, etc.) apply a trained fault detection model,

which returns a real value. This real value is then applied
to a decision function, which returns a model prediction of
healthy or faulty based on applying some sort of threshold to
the fault detection model output.

Associative models, such as autoencoder or auto-associative
kernel regression (AAKR), are trained on data under normal
conditions and where the model output is the prediction of the
input under normal conditions. In this case, the real-valued
output of the fault detection model comes from a residual
function which is the difference between the actual reading
and the predicted reading under healthy conditions.

Classification models make predictions through categorizing
input data into predefined classes or labels, here the labels
being “normal” or “fault”. In this case, the real-valued output
of the fault detection model can be viewed as the probability
of membership to the normal class.

Measuring Model performance. We use balanced accu-
racy (BA) as the key performance metric, recommended for
addressing class imbalance for fault detection algorithms in
(Corrêa et al., 2022). BA is defined as the average of the true
positive rate (TPR), which can be thought of as the correct
prediction rate on the healthy data, and the true negative rate
(TNR), which can be thought of as the correct prediction rate
on the unhealthy data (BA = (TPR + TNR)/2). BA is a
useful indicator that high accuracy is not because the model
is predicting everything to be in one class.

As our class imbalance is more across the different intervals
(rather than having exceedingly more healthy observations
than unhealthy), we compare two forms of BA. To determine
the balanced accuracy at the interval level (which will be re-
ferred to as “Interval Level”), each time interval is considered
a fault interval if it contains at least one unhealthy state. For
a time interval to be accurately labeled as a fault interval, the
model must correctly predict the presence of an unhealthy
state at least once during that interval.

For the averaged balanced accuracy (which will be referred to
as “Averaged Intervals”), the balanced accuracy calculations
are performed within individual intervals, and then the results
are averaged together to provide an overall assessment. The
last measure used was the first time of detected fault in each
interval. This measure requires no label and is useful for com-
paring two models in terms of which model can predict earlier
and by how much.

Test/Train/Validation split. Test-train-validation sets were
selected by splitting different intervals (over selecting random
time points) and were split at 70% of intervals for the training
set, 20% of intervals for testing with 10% of intervals held
out for validation. Seeds were set to keep the splits consistent
across runs.

Adjustments to the open source data set. Unlike the pro-
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Table 2. Data quality challenges identified from data suitability assessment. Decisions for design on the model selection and
testing pipeline were informed by these identified data characteristics.

Data Quality Challenge Mitigation

Low data volume for anomaly detection handle the “normal” data in aggregate
Include classification models which use both the healthy and the faulty data

Class imbalance among the different
intervals

Use and compare performance metrics both across and within the different intervals

Perform cross-validation experiments which accounts for different intervals to
understand sensitivity of interval size on model response

Ambiguous labeling Design and include performance metrics which account for ambiguous labels
Perform experiments which accounts for different labeling strategies to understand
sensitivity of labels on model response

prietary data set, the C-MAPSS data does not have class im-
balance issues between the different intervals. However, for
a fault detection task the data does not have labels as to when
a fault is initiated (the data set is labeled for the remaining
useful life). Therefore, the ambiguous labeling data quality
challenge is also relevant for applying fault detection algo-
rithm to the C-MAPSS data set. We adjust the initial labeling
experiments as follows. For each time interval, the earliest
10% of data is treated as healthy and the latest 10% of data
is treated as unhealthy because the engine continuously de-
grades in quality. This creates an expected distinction be-
tween healthy and unhealthy for model exploratory and re-
porting purposes and later in the pipeline different labeling
choices will be explored.

4.2. Experiment design for Model operations

For the case study data, it was determined to use a greedy,
step-wise heuristic for a fault detection modeling pipeline
which for model selection. Some plausible settings “down-
stream” in the modeling pipeline are fixed, leveraging the best
settings found in “up-stream” portions. With all that fixed, we
identify the optimal setting in the portion of the pipeline un-
der inspection akin to “per axis” optimization. While there
is no guarantee of optimality coming out of a process imple-
mented in this way, we retrospectively tested a large array of
“off-path” pipelines and none compared favorably with the
best pipelines found via this method, giving us confidence
that we found, at least, a strong local maximum.

The different modeling and pre-processing decisions tested
against multiple performance metrics to find optimal solu-
tions for better performing models, allowing for making dif-
ferent decisions in iterations for both performance and ad-
dressing data challenges observed. The step-wise, iterative
approach was used to address the massive optimization for
the case study is shown in Figure 3. These stages are bro-
ken into two categories: stages which are common to general
model development and validation, and stages which are spe-
cific to an observed data set or task.

Figure 3. Step-wise iterative testing approach. Best perform-
ing decision continues through the remaining tests. Stages
colored gray indicates stages specific tailored to tackling the
observed data quality challenges.

1. Normalization: identify normalization scheme for mod-
eling.

2. Feature Selection: identify feature importance of the sen-
sor variables

3. Model Assessment: identify a high-level idea of which
families or types of models perform better or worse. The
output are candidate modeling approaches for hyperpa-
rameter tuning.

4. Hyperparameter Tuning: turning the shortlist of models
identified in the previous step.

5. Specific to the data: Filtering Time-intervals Experi-
ment: Experiment for gauging the impact of class im-
balance between the different intervals on model perfor-
mance.

6. Specific to the data: Labeling Experiment: Experiment
for gauging the sensitivity of the model performance on
the choice of label.

4.3. General Model Development Stages

Normalization. It is possible to experiment with different
normalization approaches as well as different grouping cat-
egories for normalization. Here, z-scores were calculated at
every data point. Different grouping categories (populations
where mean and standard deviations were calculated for nor-
malization) include “All data” which refers to normalization
by the mean and standard deviation across all of the data,
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Table 3. Normalization Test Results

# Rows
Filtered

BA
(Interval
Level)

BA
(Averaged
Intervals)

Time
After

Failure

all data 0.998 0.994 2 days 5 Hours
within time
interval

0.998 0.996 2 days 08 Hours

Table 4. Performance for feature selection exercise of 21 sen-
sor variables for the C-MAPSS data.

# Rows
Filtered

BA
(Interval
Level)

BA
(Averaged
Intervals)

Time
After

Failure

21 0.996 0.992 2 days 09 Hours
14 0.998 0.996 2 days 06 Hours
12 0.997 0.994 2 days 10 Hours
8 0.998 0.996 2 days 07 Hours
5 0.998 0.998 2 days 07 Hours
3 0.995 0.994 -7 days 04 Hours
1 0.979 0.947 -38 days 10 Hours

“within time interval” which refers to normalization by each
interval independently and normalization by asset or system
(which may span several intervals). As the C-MAPSS data
does not have engine specific identification to calculate, re-
sults for the first two normalization approaches are shown
in Table 3. For the C-MAPSS test case, both normalization
schemes provide very good results, with slightly improved
performance for the “within interval” category. The outcome
of this pipeline stage is the use of normalization within an
individual interval for the duration of the pipeline.

Feature Selection This testing process involved using a ran-
dom subset of the sensor variables to be used for testing for
each iteration. Table 4 shows results for a variable num-
ber of randomly selected sensors from the possible 21 sen-
sors available. For the C-MAPSS data, 5-8 sensors appear to
be optimal combination, which is consistent with other stud-
ies on this data source. For example, seven were identified
in (T. Wang, Yu, Siegel, & Lee, 2008) and 11 identified in
(Coble & Hines, 2011)).

Model Assessment Model assessment uses a variety of both
associative and classification models for anomaly detection.
Seven different models were tested which included autoen-
coder (using The Tensorflow Karas package; (Abadi et al.,
2015)), logistic regression, support vector regression, random
forest (using the Sklearn package; (Pedregosa et al., 2011)),
aakr (using the aakr package; (Myrberg, 2022)), pulearner
(using the pulearn package; citation), and aggregation based
models which treat multiple sensor readings as single predic-
tions.

The performance results for the model assessment on the C-
MAPSS data are shown in Table 5 for model selection. From
the C-MAPSS data, all of the models performed extremely

Table 5. Results on Model Assessment for the C-MAPSS
data.

# Rows
Filtered

BA
(Interval
Level)

BA
(Averaged
Intervals)

Time
After

Failure

Autoencoder 0.432 0.445 -141 days 1
Hour

Logistic 1.00 1.00 2 days 04:33:36
Random Forest 0.999 0.998 2 days 04 Hours
SVR 1.000 1.000 2 days 04 Hours
Multi-Row
Predictor

0.996 0.993 2 days 09 Hours

PuLearner 1.00 1.00 2 days 04 Hours

well with the exception of the Autoencoder. Due to our sys-
tematic, step-wise iterative testing, the Autoencoder did not
continue through testing to the hyperparameter step. We be-
lieve that the starting architecture for the model is too simple
and the model is therefore unable to predict well. Through
tuning the model’s architecture and hyperparameters, the Au-
toencoder would have a better performance outcome.

We selected the random forest model with row aggregation
because, while it had slightly lower performance than other
types of model, the the row aggregation created more flexi-
bility to additional parameters among models which all have
similar and high performance. In the context of time series
sensor readings, row aggregation proves to be a suitable ap-
proach as it allows for decisions based on multiple readings
occurring around the same time, rather than relying solely on
a single sensor reading to trigger alerts.

Hyperparameter Selection. Hyperparameter testing was
performed on the random forest model using grid search
to define a grid of parameters that encompassed a wide
range of hyperparameter combinations while taking model
run time into consideration. In situations where the reason-
able parameters resulted in excessive run-times, we used a
random search option. The hyperparameters were selected
through pairing the random forest model with row aggrega-
tion. Specifically, three hyperparameters were varied for the
random forest model on the C-MAPSS data set: number of
rows aggregated, method of aggregation (mean, median, per-
centile) and number of decision trees. Under aggregation
method, if percentile was the chosen aggregation method, the
percentile value was additionally included.

C-MAPSS results for the hyperparameter testing stage are
shown in Table 6. The test results shown are selected from
the highest performing and lowest performing hyperparame-
ter combinations for comparison. For the C-MAPSS data set,
the random forest model already performed very well out of
the box and all of the experiments also performed well. The
most significant difference in results observed was a slight
decrease in balanced accuracy and increase in detection time
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for the fifth experiment results (five rows aggregated, median,
25 decision trees).

4.4. Tuning Stages Specific to Observed Data Quality
Challenges

Other stages performed and tuned relate more closely to PHM
and help address some of the data challenges shown on Ta-
ble 2. Filtering Time-Interval Experiments addresses issues
with data quality related to class imbalance by conditionally
removing intervals which don’t meet some criteria. In this ex-
perimentation, we used overall interval size as the condition.

Ambiguous labeling is also a challenge which benefits from
testing different labeling strategies and thresholds related to
those strategies. We observed results from labeling data as
healthy and unhealthy using different thresholds for splits.

Filtering Time-intervals Experiment The experiments for
gauging the impact of class imbalance between the differ-
ent intervals on model performance was designed through
excluding intervals from the test/train/validation set that did
not meet a minimum requirement of rows (observations).
The experiment varied the minimum row size. This was
done to train the data on higher-quality intervals that may
have more clearly show differences between healthy and un-
healthy. However, there is a trade-off between having more
data to train on and having longer, possibly better-quality in-
tervals. Testing involved producing results for intervals with
a minimum of 0, 30 and 50 rows.

C-MAPSS results are shown below for time-interval filter-
ing in Table 7. For 0 drops, intervals remained at 100 and
dropped to 94 and 17 for the 30 and 50 row filters. Results
show a slight increase in balanced accuracy when averaging
across intervals and slightly earlier detection time for drop-
ping intervals with less than 30 rows. As we increase to 50
rows required, the amount of data drops significantly and bal-
anced accuracy slightly drop. Detection time has a significant
increase of nine days.

Labeling Experiment The experiment for gauging the sen-
sitivity of the model performance on the choice of label was
designed through testing different distributions of healthy and
unhealthy intervals split from earliest 10% to latest 10% to a
50-50 split. The balanced accuracy values were found to be
highly similar across the various labeling methods, both in the
original case study and in the C-MAPSS data (shown in Table
8). Balanced accuracy usually dropped with the exception of
a 30% split. First detection was also more delayed on average
as the split increased. This is likely due to the nature of the
degradation of the sensors. Data near the same time period
is more likely to be similar, meaning that data at the opposite
side of earliest 10% and latest 10% are more likely to be dif-
ferent compared to some of the data closer to the middle in a
50-50 split.

5. DISCUSSION

The utilization of SBA Tools proved advantageous in facili-
tating a streamlined testing process, allowing for the creation,
tracking, and management of various components. Through-
out the testing phase, we consistently incorporated additional
elements that directly aligned with the case study, resulting
in notable enhancements to the testing tool and the devel-
opment of features specifically tailored for PHM modeling.
Our experimentation involved running hundreds of iterations,
each exploring different tuning decisions to discern optimal
choices that significantly improved performance.

During the experimentation process, certain challenges
emerged, particularly in relation to run times. Notably, the
selection of one model type over another and the fine-tuning
of hyperparameters for specific models (such as increasing
the number of decision trees in a random forest or design-
ing a more complex autoencoder architecture) often led to
prolonged execution times. In assessing the effectiveness of
these choices, we primarily relied on balanced accuracy and
distance-based metrics, which gave insight into the average
time of first alerts generated relative to the closing period.

6. CONCLUSION AND FUTURE WORK

The SBA Tools framework was developed through PHM ap-
plications aimed at the development and deployment of data-
driven models using to historical maintenance and sensor data
of physical systems. Our implementation approach allows
users to upload and load data sets from a remote location or
locally. Users can also identify key columns in the data set
such as sensor, labeling, and interval columns. Through this
tool, a user can select stages that are built into it and push
the data set into pre-processing, model training/testing, and
performance phases to prepare for model deployment.

The scope of this paper was focused on the design and im-
plementation of the framework, and our case study supported
an instance of the framework for illustrative purposes. Fu-
ture work for the pipeline includes incorporation of additional
steps to match similar pipelines in the literature to bench-
mark model performances. Benchmarking results using simi-
lar pipelines requires the addition of additional modules in the
pipeline, such as incorporation of a sliding window approach
in feature engineering following (Corrêa et al., 2022). More
generally, formalization of benchmarking regarding model
development pipelines which consider field data character-
istics is an emerging and open research topic in the PHM
community. Traditional benchmarks on open source data sets
typically follow specific guidelines where the data is assumed
clean and well structured. For example, benchmarks using
CMAPSS data typically follow the performance baselines set
by the PHM 2008 data challenge (Ramasso & Saxena, 2014).
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Table 6. Hyperparameter Test Results. Explain here that there are 3 hyperparameters and what we’re looking at

Case Rows Aggregated Aggregation Method # Decision Trees
BA

(Interval
Level)

BA
(Averaged
Intervals)

Time
After

Failure

Top 1 # Rows Aggregated: 20 median 500 0.9964 0.9956 2 days 09 Hours
Top 2 # Rows Aggregated: 20 mean 100 0.9966 0.9978 2 days 09 Hours
Top 3 # Rows Aggregated: 50 median 500 0.9969 0.9978 2 days 08 Hours
Top 4 # Rows Aggregated: 5 median 100 0.9946 0.9934 2 days 10 Hours
Top 5 # Rows Aggregated: 10 median 25 0.9956 0.9934 2 days 10 Hours
Bottom 3 # Rows Aggregated: 50 percentile-100% 100 0.9968 0.9978 2 days 09 Hours
Bottom 2 # Rows Aggregated: 10 mean 500 0.9959 0.9978 2 days 10 Hours
Bottom 1 # Rows Aggregated: 20 percentile-25% 100 0.9966 0.9978 2 days 09 Hours

Table 7. Remove Time Intervals Based on Minimum Row
Requirement

Min
Row

# Intervals
Included

BA
(Interval
Level)

BA
(Averaged
Intervals)

Time
After

Failure

0 100 0.997 0.990 2 days 08 Hours
30 94 0.997 0.995 2 days 06 Hours
50 17 0.985 0.991 11 days 07 Hours

Table 8. Labeling experiment

Labeling
split

BA
(Interval
Level)

BA
(Averaged
Intervals)

Time
After

Failure

10% 0.982 0.989 3 days 07 Hours
20% 0.978 0.982 7 days 01 Hour
30% 0.985 0.990 9 days 10 Hours
40% 0.985 0.981 8 days 10 Hours
50% 0.943 0.945 14 days 12 Hours
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NOMENCLATURE

PHM Prognostics and Health Management
RUL Remaining Useful Life
PHMF Prognostics and Health Management Framework
API Application Programming Interface
SBA Sensor-based Algorithms
CI/CD Continuous Integration and Continuous Delivery
API Application Programming Interface
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