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ABSTRACT 

Physical fatigue accounts for many injuries in the workplace, 

sports arena, or battlefield. The traditional approaches to 

monitor fatigue rely on detecting and measuring shifts in the 

person’s muscular surface electromyography (sEMG) 

signals. However, assessing neuromuscular fatigue based 

purely on sEMG signals fails to account for the changing 

muscle dynamics during long dynamic physical tasks. To 

combat this dilemma, a system-based methodology has been 

recently developed and applied to several upper-extremity 

tasks. In this paper, we validate the efficacy of this novel 

methodology on the lower extremities during a dynamic 

activity. Specifically, the system-based monitoring 

methodology was applied to a cycling endurance task. It was 
statistically demonstrated that the system-based methodology 

resulted in a more-sensitive and less noisy metric, in 

comparison with an EMG-based methodology. The efficacy 

of the methodology was further illustrated by analyzing the 

inter-segmental recovering and fatiguing trends, which 

aligned with each muscle’s expected inter-muscle synergistic 

relationship. 

1. INTRODUCTION 

There are two forms of physical fatigue: central and 

peripheral. Central fatigue is defined as a decrease in the 

voluntary activation of the muscle. Peripheral fatigue is seen 

as a decrease in the contractile strength of the muscle fibres 

and any change in the underlying dynamics of the muscle 

(Boyas & Guével, 2011). Physical fatigue can be seen in the 

various physical tasks undertaken by workers (Antwi-Afari, 

Li, Edwards, Pärn, Seo & Wong, 2017), athletes, and soldiers 

(Gefen, 2002). For example, those in the construction 

industry experience the damaging effects of unmitigated 

fatigue (both physical and/or mental) (U.S. BLS, 2016).  

A common method for assessing peripheral fatigue involves 

analyzing the surface electromyographic (or sEMG) signals 

of the physiologically relevant muscles during a given 

physical task. Fatigue is commonly identified and tracked via 

a downward shift in the instantaneous mean frequency, 

and/or an upward shift in the instantaneous amplitude of the 

sEMG signal (Vøllestad, 1997). A limitation of this method 

is that it only considers the inputs (sEMG) into the muscle, 

ignoring the ever-changing muscle dynamics during a 

physical task. This situation is analogous to analyzing the 

condition of an automotive engine based solely on the 

engine’s temperature and vibration levels, while ignoring the 

position of the gas pedal, engine’s previous mileage, or 

current road conditions. The limitation of this method is 

exacerbated during an endurance task, such as submaximal 

cycling. As time progresses, the participant’s muscles will no 

longer respond in the same way for a variety of reasons (e.g., 

less oxygenated blood, muscle activation history, body 

temperature, etc.) (Enoka & Duchateau, 2008). 

Fortunately, with the recent advances in cheaper, more 

effective biosensors in everyday life and the improvement of 

data-driven models in machine learning algorithms, new 

opportunities have emerged to model and evaluate a human’s 

condition and performance, from the workplace to the 

physical therapy room. Patel, Tiwari, Pandey, and Nikam 

(2020) utilized a computer vision-based method to assess 

driver fatigue and drowsiness. Dindorf, Bartaguiz, Dully, 

Sprenger, Becker, Fröhlich  and Ludwig (2023), which 

measured in real-time the muscle’s oxygen saturation level 

via a near-infrared biosensor to assess the fatigue of climbers 

over a period of consecutive dead hangs. Zhang, Lockhart, 

and Soangra (2013) utilized support vector machines to 

classify the participant’s gait cycle as “normal” or fatigued. 

Finally, Ou, Gates, Johnson, and Djurdjanovic (2022) 

captured the ever-changing muscle dynamics during a cyclic 

upper extremity task by building a Growing Structure 
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Multiple Model System (GSMMS) during the participants’ 

“fresh” state and monitoring the participants’ fatigue via the 

model’s predicted muscle force error. Their findings showed 

a significantly less noisy fatigue metric relative to traditional 

sEMG-based methods allowing for analysis of individual 

muscle recovery and fatigue. It should be noted that this 

method does require the external forces of the participant be 

measured for muscle force estimation. While this 

requirement does increase the data acquisition complexity, 

the methodology has shown a less-noisy fatigue metric and 

the advancement and proliferation of smart force sensors in 

health and industry have made this requirement much more 

achievable.  

However, this method has not been applied to nor verified on 

lower extremities during dynamic activities. Additionally, the 

recovering/fatiguing trends identified via the system-based 

fatigue monitoring methodology requires further 

investigation in their inter-muscle relationships.  

In this paper, we apply a data-driven dynamic model to 

characterize the peripheral fatigue of the lower extremities in 

a cycling endurance task. This paper furthers the realm of 

applications for a system-based fatigue monitoring 

methodology to include movements of lower extremities, 

which has not been addressed in the literature thus far. 

Additionally, patterns of fatigue and recovery of individual 

muscles are analyzed to further validate the effectiveness of 

this methodology by assessing muscle pairs with similar 

biomechanical function. In Section 2, we review constituent 

components that embody this system-based methodology. In 

Section 3, we describe the pilot cycling trail and experimental 

setup. In Section 4, we describe and analyze the findings of 

the trial. In Section 5, we dive into a discussion of the results 

and planned future work. 

2. METHODS 

The system-based monitoring paradigm has seen numerous 

successful applications in the recent years, including 

monitoring of automotive engine systems (Cholette & 

Djurdjanovic, 2012), semiconductor manufacturing tools 

(Bleakie & Djurdjanovic, 2016), and human muscle 

performance (Musselman, Gates, & Djurdjanovic, 2017 and 

Madden, Djurdjanovic, & Deshpande, 2021). This 

methodology’s success can be attributed to its ability to 

capture not only the anomalies in the input and output signals 

emitted by a system, but also any anomalous relationships 

between the inputs and outputs. By modeling the dynamic 

relationship between the entity’s inputs and outputs, one can 

analyze how this relationship changes over time, as well as 

adapt said dynamic model to ensure accurate prediction 

capabilities, as seen in Bleakie and Djurdjanovic (2016). 

In order to best characterize the complexity of sEMG signals, 

we applied Cohen’s class of time-frequency distributions 

(Cohen, 1995) to adequately represent patterns of energy 

fluctuations in those signals in both the time- and frequency-

domain. In particular, the binomial time-frequency kernel 

was utilized because of its computational efficiency, which 

allows for real-time signal processing, while at the same time, 

binomial kernels minimize non-intuitive cross terms within 

the time-frequency representation of the signal (Choi & 

Williams, 1989) 

Using the binomial kernel, we were able to extract temporal 

evolutions of the instantaneous means, intensities, and 

entropies from each muscle’s sEMG signal over the length of 

the exercise. Time-series of these features were then used as 

inputs for both fatigue monitoring methodologies. Figure X 

shows the raw sEMG signal and the time-frequency extracted 

features from the tibialis anterior muscle of the right leg 

during the first 30 seconds of the trial. 

 

Figure 1. Raw sEMG and time-frequency extracted features 

for tibialis anterior during the first 5 seconds of the trial. 

In order to apply a system-based monitoring paradigm, one 

must provide time-series of input and output variables for 

each muscle that is being monitored. Nevertheless, muscle 

forces, which can be seen as outputs of a muscle as a dynamic 

system at any given time, cannot be measured directly, 

especially during a complex dynamic task, such as cycling. 

Following a simplified Hill-type model (Hill, 1938), forces 

generated by a muscle depend on multiple variables: muscle 

pennation angle, muscle length, muscle velocity, and 

previous muscle activations. Furthermore, the relationship 

between electrical muscle activations and force generation is 

highly nonlinear (Millard, Uchida, Seth & Delp, 2013). 

Hence, in order to build and track an adequate data-driven 

model of each muscle’s dynamics, it is necessary to extract 

the aforementioned muscle parameters, along with estimated 

muscle forces and feed these features into a nonlinear 

dynamics model that could predict the forces generated by 

that muscle within a reasonable accuracy. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023 

3 

Rather than directly measuring muscle forces, which is 

unfeasible in our dynamic use case, this paper follows Ou et. 

al (2022) and pursues indirect estimation of muscle generated 

forces using first-principle physics and available external 

measurements. For this reason, OpenSim commercial 

software was employed (Delp, Anderson, Arnold, Loan, 

Habib, John, Guendelman & Thelen, 2007). OpenSim is a 

biomechanical simulation software widely used in the 

kinesiology, sports science, and medical fields. Due to its 

utilization and validation in a wide array of applications 

fields, OpenSim 4.3 was selected as the framework for 

estimating muscle lengths, velocities and generated forces 

from the available EMG measurements, movement 

trajectories and external forces. The flowchart in Figure 1 

illustrates how OpenSim was used to estimate the relevant 

variables.  

  

Figure 2. Flowchart showing the conversion from raw data to 

biomechanical values using OpenSim.First, reflective 

markers are placed on the participant to estimate the 

participant’s body geometries and track body motions 

throughout the exercise, while the external forces applied to 

the participant during the exercise are collected 

simultaneously. Before the beginning of the trial, the 

participant was asked to sit at rest on the bike. These motion 

capture frames were used to scale a generic OpenSim model 

to fit the anthropometric properties to the participant. In this 

work, a 3-DOF single-legged musculoskeletal model with 8 

Hill-type musculotendon actuators was employed with the 

contact between the participant and bicycle seat modeled as 

a pin joint at the pelvis. Then, the scaled model is fit to the 

resulting dynamic motion capture frames resulting in the 

model’s joint position, velocity and acceleration. Finally, 

following Ou et al. (2022) static optimization utilized the 

external forces on the model (e.g., pedal forces) and the 

model’s motion to solve for the generated muscle forces and 

muscle parameters for each instant in time.  

With the sEMG features from time-frequency analysis and 

the muscle parameters and forces from OpenSim, we have the 

inputs and outputs necessary for the model. Following Ou et 

al. (2022), a Growing Structure Multiple Model System 

(GSMMS) was utilized to model the relations between inputs 

and outputs of each muscle. These divide-and-conquer type 

models have local model tractability and interpretability, 

while at the same time being capable of modeling the well-

documented nonlinearities in muscle dynamics (Millard et 

al., 2013) to within an arbitrary accuracy. Furthermore, any 

anomalous, or previously never seen inputs to the model, can 

easily be identified, enabling model growth and adaptation to 

this newly observed behavior, or alarming the user of 

uncertain, or untrustworthy, predictions. In summary, 

GSMMS models are sufficiently complex, while being 

interpretable and adaptable for the given use case. For more 

details regarding the GSMMS models, please refer to Liu, 

Djurdjanovic, Marko, and Ni, 2009 and/or Cholette  

Djurdjanovic, 2012. 

With the time-series of inputs and outputs of the data-driven 

model, we can train and track the dynamic models of each 

muscle based on the data emitted during one’s exercise. 

Training of each muscle model was done using data observed 

in the initial stages of the exercise – when the muscles were 

least fatigued. During the training period, distributions of 

errors between the muscle force predictions of the data-

driven dynamic model and the participant’s muscle forces 

estimated via OpenSim are generated and characterized using 

Gaussian Mixture Models (GMMs). 

With the training error distribution characterized, the 

evaluation period began, and the data-driven dynamic model 

was fed the participant’s subsequent inputs, based on which 

it predicted the participant’s generated muscle forces. The 

prediction error distributions for each muscle were updated 

iteratively, using the aforementioned Gaussian Mixture 

Model framework.  

The extent to which a given muscle of the participant is 

fatigued was assessed by evaluating the overlaps between the 

current (most recently observed) distribution of model 

prediction errors, and the one observed during training for the 

relevant data-drive muscle model. The overlaps, or 

similarities between the two distributions were evaluated at 

each time step using Matusita’s coefficient (1967). If the 

participant is fresh, or unfatigued, the relevant distributions 

will match well, and the similarity index will be close to one. 

As the participant becomes more fatigued, the muscle 

dynamics change, thus altering the distribution of predicted 

muscle force errors and causing the similarity index to 

decrease towards zero. Following Ou et al. (2022), this metric 

will be referred to as the System-based Freshness Index 

(SFI). 

To fairly compare the SFI metric with purely signal-based 

fatigue metrics, the same distribution similarity concept was 

applied to the instantaneous sEMG frequencies of the 

participant. This purely signal based metric is a well-

established measure of muscle fatigue (Arendt-Nielsen & 

Mills, 1985; Georgakis, Stergioulas and Giakas, 2003; 

McDonald, Mulla, and Keir, 2019). Namely, distributions of 

the instantaneous sEMG frequencies of the participant are 
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generated for each muscle during the training period. As the 

exercise progressed, these distributions described using the 

GMM framework are updated and compared with those 

observed during the training process. 

 

Figure 3. Diagram showing the system-based fatigue 

monitoring (SFI) methodology. 

Following Ou et al. (2022), the resulting fatigue metrics will 

be referred to as the EMG-based Freshness Index (EFI). A 

flowchart of the System-based Freshness Index is shown in 

Figure 2. 

3. EXPERIMENTAL SETUP 

For this pilot trial, one participant elected to perform the 

cycling task until complete exhaustion (defined by the 

inability to maintain power output). According to Neptune 

and Hull (1998), the major muscles that contribute to cycling 

are the tibialis anterior, vastus medialis, semitendinosus, 

soleus, gastrocnemius, biceps femoris, gluteus maximus, and 

rectus femoris as shown in Figure 3 and listed in Table 1. 

 

Figure 4. Illustration of the eight muscles monitored during 

the cycling trial. Graphic obtained using OpenSim (Delp et 

al. 2007) 

 

These eight muscles of the right leg were monitored via 

Delsys bilateral electrodes at a sampling rate of 2000 Hz. 21 

reflective markers were placed from the hip of the participant 

to the pedals of the bike according to the recommendations 

of OpenSim (Delp et al., 2007) to ensure the accuracy of the 

simulation. A 10-camera motion capture system recorded the 

participant’s motion at a sampling rate of 100 Hz (Vicon, 

Oxford, UK). The reflective marker trajectories were low-

pass filtered at a frequency of 6 Hz to ensure stable 

differentiation during the numerical calculation of the 

participant’s velocity and acceleration as recommended by 

Delp et al. (2007). The pedal forces in the normal and 

tangential planes were recorded at 2000 Hz using a pedal 

dynamometer (Newmiller, Hull, & Zajac, 1988).  

Due to the memory limitations of the motion capture system, 

we were not able to collect motion capture data for a period 

longer than 30 seconds. Thus, all plots will have 

discontinuities between each segment of the data. To avoid 

confusion, the periods without data are replaced with thick 

black vertical bars in between recorded periods for all plots. 

Finally, the participant’s resistance was calibrated prior to the 

beginning of the trial by brief periods of various resistances. 

To ensure complete exhaustion at a cycling rate of 75 RPM, 

a resistance of 250W was selected for this participant’s trial. 

Throughout the trial, the participant was shown the current 

pedaling rate and instructed to maintain a rate of 75 RPM for 

as long as possible.  

The GSMMS model was trained on the participant’s “fresh” 

state, so the first 5 seconds of the trail were utilized. The 

remainder of the trial (205 seconds) were utilized as the test 

dataset. The error distribution of the “fresh” state/training 

dataset were compared with the error distribution of the 

current state/test dataset utilizing Matusita’s coefficient 

(1967) as in Ou et al. (2022). 

4. RESULTS 

The participant cycled for a period of 6.5 (six and a half) 

minutes before they were completely fatigued. This resulted 

in seven full periods of data collection of the participant’s 

sEMG signal and reflective markers.  

Table 1. Muscles monitored during the cycling trial. 

 

Abbreviation Muscle 

TA Tibialis Anterior 

SOL Soleus 

GAS Gastrocnemius 

VM Vastus Medialis 

RF Rectus Femoris 

GMAX Gluteus Maximus 

BF Biceps Femoris 

ST Semitendinosus 
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4.1. Signal-to-Noise Ratio 

Following Ou et al. (2022), we compare the relative noise of 

each fatigue metric over the duration of the trial. Figure 4 

displays the relative noise for each index. 

 

Figure 5. Relative noise of the sEMG-based freshness index 

(EFI) and system-based freshness index (SFI) metrics 

during the entire trial for all eight muscles. 

As seen in Figure 4, the system-based freshness index (SFI) 

has a lower signal-to-noise ratio for all eight muscles during 

the entire trial. Furthermore, in Figure 5, one can that the SFI 

was significantly less noisy than the EMG-based freshness 

index (EFI), as evaluated using a one-sided t-test (p < 0.05) 

of the EFI and SFI relative noise distributions over the entire 

trial. This finding agrees with what was found in Ou et al. 

(2022) in their upper-extremity task, further validating the 

usefulness of this fatigue metric. 

 

Figure 6. Results of T-test indicating whether the system-

based freshness index (SFI) was less noisy than the sEMG-

based freshness index (EFI), with statistical significance 

(p<0.05). 

4.2. Participant Fatiguing/Recovering Trends 

4.2.1. All Trial 

Previous studies have determined that all eight muscles 

evaluated in this paper are important contributors to cycling 

(Neptune & Hull 1998), and the participant biked until 

complete exhaustion. Hence, a decreasing trend should be 

expected in each muscle’s fatigue metric across the entire 

trial (EFI/SFI). To confirm, we applied a Mann-Kendall 

statistical trend test (Mann, 1945; Kendall, 1975) to both the 

EFI and SFI metrics. The relevant results are shown in Figure 

6, with metrics that have a statistically decreasing first-order 

trend being denoted in red. 

For the EFI, all but the gastrocnemius (GAS) and soleus 

(SOL) muscle show a statistically significant decreasing 

trend. However, the SFI shows a statistically significant 

decreasing trend across all eight muscles. The fact that the 

EFI failed to show trial-long fatigue in both plantar flexor 

muscles (GAS and SOL) indicate potential lack of sensitivity 

when it comes to monitoring based on only the sEMG signals 

from the muscle. This can be explained by the fact that, while 

the central nervous system may send almost the same 

electrical stimuli to a muscle (as seen in the GAS muscle in 

segment 4), factors such as blood-oxygen levels, duration of 

activity, and body temperature (Enoka & Duchateau, 2008) 

reduce the muscle’s ability to produce the same output force. 

Consequently, given the same inputs in segment 1 and 4, the 

data-driven model will predict the same output force. Yet, the 

error distribution in segment 4 will have been different than 

in segment 1 due to the aforementioned factors that occur 

during fatigue which are not captured by the sEMG signal. 

On the other hand, since the SFI was built on the relationship 

between the muscle inputs (sEMG) and muscle outputs 

(force), the SFI was more sensitive and was able to capture 

the peripheral fatigue of each muscle.  

4.2.2. Intersegment Trends 

During exhaustive cyclic tasks like cycling, the human body 

can exploit its muscle redundancy to stave off fatigue by 

recruiting functionally similar muscles, while resting those 

muscles that were previously enacted and became fatigued. 

In other words, participants can rest one group of muscles, 

while working a different group of muscles and alternate 

these groups until one or both groups of muscles are 

exhausted. Such synergies (d’Avella, Saltiel, & Bizzi, 2003), 

or motor modules (Clark, Ting, Zajac, Neptune & Kautz, 

2010), have been defined as groups of muscles that coactivate 

during a certain motor task are well known. For example, to 

increase the torsional stiffness of the ankle joint, the 

soleus/gastrocnemius and tibialis anterior are coactivated. As 

these muscle pairs are enacted in unison, they will be referred 

to as synergistic muscle pairs. We seek to analyze the muscle 

synergies of the muscles during this cycling trail for two 

reasons: 1) to further validate the SFI metric and 2) to 

evaluate other possible uses for the SFI metric.  

To demonstrate this, we split the SFI metric into its respective 

segments and performed the same Mann-Kendall trend test to 

identify if the muscle was fatiguing (decreasing SFI) or 

recovering (increasing SFI). In Figure 7, the segmental trends 

are shown with fatiguing trends in red and recovering trends 

in green. Let us first note that there are two sets muscle pairs 

that have similar biomechanical functions in this exercise: the 

soleus (SOL) and gastrocnemius (GAS) muscles, and the 

bicep femoris (BF) and semitendinosus (ST) muscles. 
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Figure 7. Monotonically decreasing (red/fatigue) trends of the sEMG-based freshness index (EFI) and system-based 

freshness index (SFI) across the entire trial. 

 



 7 

 

Figure 8. Monotonically decreasing (red/fatigue) and 

increasing (green/recovery) trends of the system-based 

freshness index (SFI) across the entire trial. 

The bicep femoris and semitendinosus muscles are enacted 

during knee flexion, and thus one muscle can compensate for 

its partner and vice versa. This relationship can be seen in 

segment four when the semitendinosus (ST) muscle recovers 

while the biceps femoris (BF) muscle continues to fatigue 

with a steeper slope than the previous segment. The same 

relationship can be seen in our other functionally similar 

muscle pair. In segment two, the gastrocnemius (GAS) 

muscle fatigues while the soleus (SOL) muscle recovers.  

An interesting phenomenon occurred in segment five. During 

that period, all eight muscles demonstrated a recovering 

period in FSI, despite almost all other segments 

demonstrating a fatiguing trend. If one’s attention is directed 

to the EFI of segment five, five of the eight muscles showed 

a recovering period in the EMG inputs, while the remaining 

three showed a fatiguing period. A possible explanation for 

this period would be a sharp increase in the recruitment of 

additional motor units and/or fast twitch muscle fibers. This 

would help explain the relative return of the sEMG signal and 

the steep recovery of the generated muscle force. Namely, it 

has been demonstrated that slow-twitch fibers are recruited 

first, while fast-twitch muscles fibers are recruited later and 

only when necessary (Petrofsky, Phillips, Sawka, Hanpeter, 

Lind, & Stafford, 1981). Potentially, the inability of the user’s 

slow-twitch muscle fibers to maintain the required force just 

prior to segment 5 necessitated the recruitment of fast-twitch 

muscle fibers in the near-completely fatigued muscle. This 

was, obviously, followed by a consistent decrease in 

performance for all muscles in segments 6 and 7 until 

complete exhaustion. 

5. CONCLUSIONS AND FUTURE WORK 

This paper was the first one to apply a system-based fatigue 

monitoring paradigm to the lower extremities during a 

dynamic endurance task and validate the efficacy of the 

paradigm utilizing muscle synergies and the SFI. It was 

observed that the system-based approach to monitoring of 

muscle performance has a lower signal-to-noise ratio than the 

traditional sEMG-based approach. Additionally, unlike the 

purely signal-based approach, the novel system-based 

approach consistently detected fatigue in all muscles 

analyzed during this trial. Finally, the intersegmental trends 

seen using the system-based approach agree with each 

muscle’s biomechanical function and their synergies with 

other muscles. These findings further validate the 

effectiveness of this methodology to assess fatigue, while 

extending its applicability to the lower extremities and 

identifying muscle synergies. 

While these results reinforce the effectiveness of the system-

based methodology relative to the traditional sEMG-based 

methodology, one should seek to use other fatigue 

assessment methodologies for further comparison and 

validation. In particular, the pulmonary O2 intake (V̇O2) and 

blood glucose level could help isolate certain factors related 

to increased fatigue. Jones, Grassi, Christensen, Krustrup, 

Bangsbo and Poole (2011) found that the slow component of 

V̇O2 to be closely related to muscle fatigue, while Nybo 

(2003) found that available glucose in the bloodstream 

correlated to the amount of neural drive (“central fatigue”). 

Additionally, San-Millán, Hill, and Calleja-González (2020) 

utilized sonomyography to assess pre- and post-game fatigue 
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of individual muscles via estimation of glycogen content. 

Using these metrics as benchmarks of fatigue and an 

increased number of participants in the trial, we can further 

test the validity of the system-based framework.  
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