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ABSTRACT 

Firstly, the dynamics model with unbalance parameters of the 

large inertia rotating component is established. Then, based 

on the principle of parameter separation and decoupling, a 

modified two-stage exogenous Kalman filter (TSXKF) 

algorithm is proposed. This method works directly on a 

nonlinear system, estimates the centroid position, the 

centroid velocity, attitude angular, and attitude angular 

velocity, and identifies the nonlinear unknown static 

unbalance parameter, which is the centroid offset. Finally, 

the simulation results verify the effectiveness of the method. 

1. INTRODUCTION 

In recent years, the structure of spacecraft has shown 

diversity. One of the satellites is a type of rotating parts with 

large moments of inertia, as shown in Figure 1 (Niu, 2021). 

The characteristic of this kind of satellite is that the body is 

composed of two parts: the satellite platform and the rotating 

load component. 

During onboard normal operation, the satellite platform 

maintains three-axis stability, and the rotating component 

moves around the satellite platform at high angular speed 

under the action of the control torque. When the rotating 

component rotates at high speed, its dynamic and static 

unbalances will disturb the satellite platform. During the orbit 

of the satellite, due to various special environments, such as 

temperature, magnetic field, etc., the centroid of the rotating 

component will deviate from the standard position, which is 

the static unbalance. Therefore, it is necessary to identify the 

static unbalance parameter while identifying the attitude 

information of the rotating component. 

 

Fig. 1 Schematic diagram of satellite structure 

In terms of parameter identification, the methods and 

applications at present are relatively mature. Parameter 

identification methods are not only applied to linear systems 

(Pan et al., 2017; Xu, 2016; Pan et al., 2018) but also to 

dynamic systems (Gu et al., 2019; Ma et al., 2019) and 

nonlinear systems (Ding et al., 2011).  Parameter 

identification methods include particle filtering method 

(Ding et al., 2019), multi-information stochastic gradient 

method (Ding et al., 2011), etc. For the characteristics of 

nonlinear systems, parameter identification methods also 

include over-parameterized identification method (Chen et 

al.,2020), maximum likelihood identification method (Zhao 

et al., 2018), auxiliary model identification method (Ding et 

al., 2011; Wang et al., 2018), etc.  

The parameter identification method adopted in this paper is 

based on the two-stage Kalman filter (TSKF) method. TSKF 

differs from the conventional algorithm in parameter 

separation and decoupling, which can reduce the amount of 
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calculation and improve the stability of calculation. However, 

for a long time, the two-stage Kalman filter is usually applied 

in linear systems or weak nonlinear systems. In practical 

application, nonlinear system accounts for a large proportion 

of systems. For traditional Kalman filter algorithm, there are 

many ways to deal with nonlinear systems: Extended Kalman 

filter (EKF), unscented Kalman filter (UKF) and so on. All 

these methods can be applied to the second stage Kalman 

filter to obtain an algorithm that has the advantages of both 

nonlinear and parameter separation.  

The two-stage extended Kalman filter (TSEKF) based on 

EKF principle can deal with nonlinear systems (Hsieh & 

Chen, 1995), but Taylor's formula retaining the first order 

will result in large errors of the results and poor processing 

effect for highly nonlinear systems. The two-stage unscented 

Kalman filter (TSUKF) based on UKF principle has higher 

accuracy than TSEKF, but the accuracy and stability of 

sampling points sometimes have problems. Especially for 

low-dimensional nonlinear systems, the TSUKF has a better 

effect than general methods (Xu & Jing, 2008).  

The filtering method used in this paper is the two-stage 

exogenous Kalman filter (TSXKF). TSXKF introduces a 

nonlinear observer on the basis of TSEKF's method, which 

can make up for TSEKF's shortcomings in accuracy (Chen, 

2020). Taylor series expansion is performed at the observed 

value of the nonlinear observer to perform local linearization 

of the model.  The observed value converges to the state 

value, and the error corresponding to Taylor expansion 

converges to zero.  

In section 2, the dynamic model of the large moment of 

inertia rotating component is given. Section 3 introduces the 

modified TSXKF algorithm. Finally, simulation analysis is 

carried out to prove the feasibility of the algorithm.  

2. DYNAMICAL MODEL 

Under normal circumstances, the rotating component rotates 

around the satellite platform under the constraint of the 5 

degrees of freedom magnetic levitation bearing. To calculate 

the air gap of magnetic suspension bearing, the corresponding 

coordinate system between satellite platform and rotating 

component should be established firstly, and the relative 

position relationship should be defined. Consider the 

magnetic levitation bearing rotor model shown in Fig.2 (Niu, 

2021). 

 

(a) Initial state 

 

(b) Spinning state 

Fig.2 Definition of position relation of magnetic bearing rotor 

Three coordinates are established in Fig.2: platform 

coordinate S, rotating component center coordinate G, and 

rotating component centroid coordinate C.  

Define the attitude angle of the rotating component 

  (1) 

where,  then the direction cosine matrix of 

coordinate G relative to the coordinate S can be written as 

  (2) 

The translational dynamic equation of the magnetic 

suspension rotor with the nominal centroid G as the reference 

point can be obtained as 

    (3) 

where, is the centroid velocity of the rotating 

component, is the attitude angular velocity of the 

rotating component, is the vector from the origin 

center coordinate to the origin of the load centroid coordinate, 

and describes the centroid offset of the rotating component. 

m is the mass of the rotating component. fA, fB, fZ are the 

forces exerted by bearings A, B and Z and 

 

The rotational dynamics equation of the rotating component 

is 

    (4) 

where,  is the moment of inertia of the rotating 

component. ρG is the  centroid position, ρAB  is the 

vector pointing from the center of radial bearing A to the 

center of bearing B. Tc stands for the torque on the 

rotating component which is divided into Tm and Tw; Tm

stands for the combined torque of magnetic bearing on the 
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rotating component center of mass; Tw stands for the 

control torque generated by the actuators on the rotating 

component. 

Define the system state vector of the rotating component is 

         (5) 

Define the bias parameter 

 

The system state-space equation can be written as 

                   (6) 

where 

            (7) 

where 

             (8) 

   (9) 

3. IMPROVED TWO-STAGE EXOGENOUS KALMAN FILTER 

ALGORITHM 

For the satellite with large inertia rotating component, the 

system state-space equation (6) is complex, the state variables 

and the bias parameter are not conducive to be estimated and 

identified directly. In order to avoid the complexity of the 

system model and the corresponding filtering algorithm 

increased by the conventional augmented processing 

methods of state variables and unknown parameters, based on 

the principle of parameter separation and decoupling, an improved 

TSXKF was proposed.  

Firstly, considering the nonlinearity of the system model, the 

accuracy of the system model will be reduced if directly 

linearized and simplified. A nonlinear variable structure 

observer is proposed to observe the state variables and bias 

parameter in the system model.  

Then, through the proper transformation, the system model is 

linearized by using the principle of deviation separation, and 

are estimated independently as different deviation terms in 

the state equation, so as to facilitate the design and extended 

application of the filtering algorithm.  

Finally, the optimal estimation of the improved TSXKF 

algorithm is obtained through the unbiased estimation of state 

variables, the optimal estimation of bias parameter, and the 

coupling of state variables and unbiased estimation, as shown 

in Fig.3.  

Using the observed value of the 

angular velocity channel obtain 

the approximate linearized 

system equation

Nonlinear 

observer

Two-stage extented Kalman 

filter based on the locally 

linearized model

Control torque Tc

Measurement ω,ψ  

Centroid position

Centroid offset

Centroid velocity

Angular velocity  ω  

Angle                   ψ  

 

Fig.3 The improved TSXKF algorithm 

3.1. Design of nonlinear variable structure observe 

Design a nonlinear observer for the attitude angular velocity 

channel of the rotating component. The observed value of 

angular velocity, the bias and its first derivative can be 

obtained.  

Locally linearize the state-space equation for the angular 

velocity part. The model of angular velocity channel with the 

unknown bias influence can be written as 

    (10) 

where,  represents the locally linearized 

coefficient, where, the superscript ‘ˆ’ represents the 

estimation results of the filter algorithm. 

Rearrange the formula (10) 

         (11) 

where， 

        (12) 

represents the unknown interference caused by the bias 

parameter and define 

        (13) 

and 

 

Then the angular velocity channel subsystem model can be 

written as 

    (14) 

javascript:;
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where, , . 

For the system model (14), the sliding mode observer can be 

designed as  

  (15) 

where, the superscript ‘ˇ’ represents the output of the 

observer. , sgn(·) is a normal sign function, and the 

superscript represents the observed value of the 

corresponding variable. 

3.2. Model preparation 

Substitute the observer results as Taylor expansion points 

into two-stage extended Kalman filter (TSEKF) 's method.  

Using the observed value and of the angular velocity 

channel, the observed value of the state is obtained as 

       (16) 

By discretizing the system state-space equation (6), we can 

obtain 

       (17) 

where, is the process noise sequence. 

From (12) and (15), the Taylor series expansion of the 

nonlinear function  with the expansion points ,  

can be obtained 

     (18) 

Define that 

      (19) 

Ignoring the remaining the remainder of Taylor expansion 

terms , equations (18) can be approximately 

abbreviated as: 

     (20) 

where 

    (21) 

Then, we can obtain the approximate linearized system 

equation:  

   (22) 

where,  and are process noise sequences,  is the 

measurement noise sequence. The corresponding noise 

covariance matrices are , , and 

respectively. is the output matrix. 

3.3. Filter algorithm 

Combined with the exogenous signals from the nonlinear 

observer, a filtering algorithm is derived to estimate the state 

x and unknown bias parameter b of the system.  

For nonlinear discrete stochastic systems (22), there is the 

following two-stage Kalman filter: 

   (23) 

         (24) 

where and  are the state optimal estimation 

and its estimation error covariance matrix respectively, 

 and  are the unbiased state estimation and 

its estimation error covariance matrix, respectively 

The unbiased state estimator is 

  (25) 

  (26) 

      (27) 

  (28) 

     (29) 

  (30) 
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      (31) 

where,  and  are the unknown bias 

estimation and its estimation error covariance matrix 

respectively, and the corresponding bias estimator is 

     (32) 

   (33) 

  (34) 

      (35) 

               (36) 

           (37) 

The coupling relationship between the two is 

   (38) 

         (39) 

      (40) 

           (41) 

4. SIMULATION EXPERIMENTS AND RESULTS 

The corresponding simulation parameters are shown follows. 

The mass of the rotating component is 900kg, the moment of 

inertia is 

 

The initial state is 

 

Setting the desired rotation angular velocity to 

 and the initial estimation states to 

 

 

 

 

The initial value of the offset of the rotating component 

centroid position is zero. The set values are 

 

 

The mean square errors of the corresponding noise 

covariance matrices are shown in Table 1. 

Table 1 Simulation parameter setting 

Name of parameter  Sign Value 

Mean square error of 

position prediction(m) 
 1e-4 

Mean square error of 

velocity prediction(m/s) 
 1e-2 

Mean square error of 

centroid offset(m) 
 1e-2 

Mean square error of 

angular velocity(deg/s) 
 1e-4 

Mean square error of 

angular(deg) 
 1e-4 

The simulation results are shown in the following figures. 

 

Fig.4 Centroid position estimation results 

 

Fig.5 Centroid velocity estimation results 
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Fig.6 Attitude angular velocity estimation results 

 

Fig.7 Attitude angle estimation results 

Fig.4 is the centroid position estimation results. It can be seen 

from the figure that the estimation position converges to the 

set value rapidly in almost 5s and the estimation error is better 

than 8×10-4m. The constant offset is 0.5m, indicating that the 

centroid position is affected by a static unbalance with x-axis. 

Fig.5 is the centroid velocity estimation results. It can be seen 

from the figure that the estimation velocity converges to the 

set value rapidly in almost 5s and the estimation error is better 

than 2×10-4m/s.  

Fig.6 and Fig.7 are the attitude angular velocity estimation 

results and the attitude angle estimation results. The analysis 

of images in Fig.4~Fig.7 shows that the estimation process 

converges to the set value rapidly in almost 3s. The attitude 

angular velocity estimation error is better than 10-3deg/s and 

the attitude angle estimation error is better than 2×10-4deg. 

Fig.8 is the centroid offset estimation results. It can be seen 

from the figure that the estimation offset converges to the set 

value rapidly in almost 10s and the improved TSXKF 

algorithm can effectively identify the centroid offset vector 

of the rotating component.  

 

Fig.8 Centroid offset identification results 

5. CONCLUSION 

The improved TSXKF has been designed to solve the 

estimation and identification problem of the satellite rotating 

component, including the attitude angle, attitude angular 

velocity, center of mass position, center of mass velocity and 

the offset of the centroid position. Simulation results show 

that the improved TSXKF algorithm can realize the states and 

bias estimating accurately and rapidly. 
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