
 

1 

Ensemble Learning Based Convolutional Neural Networks for 
Remaining Useful Life Prediction of Aircraft Engines 

Thambirajah Ravichandran1, Bolun Cui1, Yuan Liu2, Sri Namachchivaya1, Amar Kumar2, and Alka Srivatsava2 

1 University of Waterloo, Waterloo, ON, N2L 3G1, Canada 
travicha@uwaterloo.ca 

2 Tecsis Corporation, 201-203 Colonnade Road, Ottawa, ON, K2E 7K3, Canada 
yliu@tecsis.edu 

 
ABSTRACT 

Remaining useful life (RUL) prediction is an essential task of 
Prognostics and Health Management (PHM) of aircraft 
engines performed utilizing the data collected from multiple 
sensors to ensure their safety. While many studies have been 
reported on RUL prediction for aircraft engines, only a few 
of them focus on ensemble learning based convolution neural 
network (CNN) models for RUL prediction. This paper 
proposes a new data-driven approach based on a multistage 
ensemble learning strategy for developing CNN models for 
RUL prediction of aircraft engines. The proposed approach 
places a major emphasis on generating diverse CNN models 
by exploring 2D CNN models and 1D CNN models with 
multiple channels and developing a multistage ensemble 
approach employing sparsity promoting model selection and 
weight learning methods to utilize only a subset of available 
models thus improving the RUL prediction performance. The 
effectiveness of the proposed approach is validated using the 
NASA C-MAPSS dataset for aircraft engines. 

1. INTRODUCTION 

In Prognostics, the goal is to estimate the Remaining Useful 
Life (RUL) of a component or subsystem, indicating the time 
remaining before failure (Kalgren et al., 2006). Accurate 
RUL prediction is essential for ensuring reliability, safety, 
and cost-effective maintenance scheduling in areas like 
aircraft engines. Recent literature categorizes RUL prediction 
approaches into three types: model-based, data-driven, and 
hybrid approaches (Pecht & Jie Gu, 2009; Heimes, 2008; 
Heng et al., 2009). 

Model-based approaches construct degradation process 
models based on physical principles of the target system, 

such as particle filters (Jouin et al., 2015) and Weibull 
distribution (Ali et al., 2015). While these approaches can 
achieve high accuracy if the system's degradation process is 
precisely modeled, they often require unrealistic prior 
knowledge of the target system. 

Data-driven approaches rely on large amounts of sensor data 
and include machine learning (ML) techniques like neural 
networks (Gebraeel et al., 2004) support vector regression 
(SVR) (Khelif et al., 2017), and Bayes networks (Mosallam 
et al., 2016). Although these models are easier and less costly 
to develop, they may not consistently meet real-world 
performance requirements. Hybrid approaches combine 
model-based and data-driven techniques, leveraging physical 
models and updating parameters using data-driven methods. 

Deep learning (DL) methods have emerged as effective tools 
for pattern recognition and predictive modeling tasks 
(Krizhevsky et al., 2017; Hinton et al., 2012). DL excels at 
capturing representative information from raw input data by 
utilizing complex deep structures and extracting high-level 
abstractions efficiently compared to shallow networks. 
Convolutional neural networks (CNNs), in particular, have 
achieved significant success in image and speech processing 
applications due to their ability to handle scale, shift, and 
distortion invariance, and their use of local receptive fields, 
shared weights, and spatial sub-sampling. During the recent 
past, CNNs have also been successfully introduced to the 
field of PHM for mechanical systems. 

Recently, various studies have successfully demonstrated the 
application of CNNs for RUL estimation mainly taking 
advantage of their excellent automatic feature extracting 
capabilities for building regression models. Babu et al. (2016) 
introduced CNNs for RUL prediction by incorporating 
automated feature learning from the raw sensor data in a 
systematic way. Li et al. (2018) proposed a data-driven 
approach for prognostics using deep CNNs with a time 
window approach for sample preparation, allowing better 
feature extraction by CNNs. Yang et al. (2019) introduced 
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further enhancements to the feature extraction ability of 
CNNs by incorporating a new kernel module for RUL 
prediction where the kernels are selected automatically. 
Lately, there has been a surge in research activities focusing 
on RUL prediction for turbofan engines using Long Short-
Term Memory (LSTM) networks  (Kong et al., 2019), 
modified CNNs incorporating temporal aspects (Yu et al., 
2021), and hybrid formulations of LSTMs and CNNs (Li et 
al., 2019b; Mo et al., 2020; Peng et al., 2021). Vollert and 
Theissler (2021) provides an excellent review of the state-of-
the-art ML and DL techniques including LSTMs and CNNs 
for RUL prediction using C-MAPSS datasets (Saxena & 
Goebel, 2008).  

There have been increased interest in applying ensemble 
learning techniques for data-driven PHM applications in 
general, and RUL prediction in particular (Hu et al., 2012; Li 
et al., 2019a; Zeng & Cheng, 2020). The performance of a 
data-driven RUL prediction method could be influenced by 
various factors such as varying operational conditions and 
environmental uncertainties, varying linear or nonlinear 
degradation patterns of different system units, and the 
variability in the available number of sensors and the number 
of data samples. To effectively handle these varied scenarios, 
ensemble learning approaches have been investigated 
demonstrating superior generalization performance over 
single-model-based methods(Zhang et al., 2017; Shi et al., 
2021). Wen et al. (2019) proposed a new residual CNN 
(ResCNN) in combination with a simple k-fold ensemble 
learning approach for RUL prediction turbofan engines. An 
ensemble learning finds or learns an appropriate combination 
multiple models (aka base models or base learners) by taking 
advantage of each base model so as to improve the 
generalization performance of the final ensemble model. The 
success of ensemble learning, developed using either same or 
different ML or DL algorithms, critically depends on the 
diversity among the base models generated. Increasing 
diversity among base models and finding an appropriate 
combination of diversified base models are the two key tasks 
in ensemble learning. 

While many of the above studies resulted in very promising 
results for RUL prediction for various mechanical systems, 
only a few of them focus on ensemble learning of CNN 
models for RUL prediction for aircraft engines. Additionally, 
most of these studies work with a limited number of pre-
selected diverse base models. In a typical ML or DL based 
RUL prediction model development process, many model 
candidates are explored through the use of K-fold or repeated 
holdout cross-validation combined with hyperparameter 
optimization of ML/DL models. These resulting multiple 
models provide an ample opportunity to construct a robust 
and high-performance ensemble model for RUL prediction. 
Hence, the major objectives of this study are: (i) to generate 
diverse RUL prediction models by exploring two different 
CNN model architectures, namely 2D CNN and 1D CNN 
with multiple channels and using time window approach for 

handling time-series data for better feature extraction by 
CNNs, (ii) to develop a multistage ensemble learning of CNN 
models for RUL prediction employing sparsity promoting 
model selection and weight learning methods in sequential 
and/or simultaneous manner to systematically and effectively 
utilize many base models available for ensemble model 
formation, and (iii) to demonstrate the proposed multistage 
ensemble learning of CNN models for RUL prediction of 
aircraft engines using the NASA C-MAPSS dataset. 

The remainder of this paper is outlined as follows. Section 2 
of this paper presents a brief introduction to convolutional 
neural networks (CNN) followed by two CNN model 
architectures combined with a time-window approach. 
Section 3 describes a multistage ensemble learning-based 
approach for CNN model development for RUL prediction. 
The effectiveness of the proposed method is demonstrated 
using the C-MAPSS dataset in Section 4. Section 5 provides 
the conclusion of this study. 

2. CNN BASED RUL PREDICTION 

In this study, our focus is on the investigation of ensemble 
learning techniques combined with convolutional neural 
networks by exploiting their individual strengths for the 
development of better performing RUL prediction models for 
aircraft engines. Before presenting the details on the proposed 
ensemble learning based CNN models for RUL prediction, 
the CNN based RUL prediction method is outlined in this 
section by describing first a brief background in CNN 
regression followed by two CNN model architectures along 
with the time-window approach adopted to handle time-
series input data. 

2.1. Convolutional Neural Network Regression Models 

Convolutional neural networks belong to feed-forward types 
of neural networks because the information flows forward 
directly through the layers of the model (Schmidhuber, 2015) 
and there are no feedback connections involved in this type 
of models. The perceptual field of a convolutional unit with 
a given weight vector (filter) is moved step by step over a 
two-dimensional array of input values, such as pixels of an 
image (usually with several such filters). The resulting two-
dimensional array of subsequent activation events for this 
unit can provide input to higher-level units, and so on. 
Among the many deep neural network models, CNNs are 
commonly applied to analyze imagery data and have 
achieved great success in computer vision applications (Wu 
et al., 2019). 

The typical CNN architecture shown in Figure 1 contains a 
set of elementary consecutive blocks, namely, one input 
layer, multiple convolutional and pooling layers, several fully 
connected layers and one output layer. The input layer 
defines the data structure of the input used. A convolutional 
layer follows the input layer and performs the convolution 
operation over the input data. The size of the filters (also 
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known as kernels) depends on the input data structure. Two-
dimensional filters are used for grid-like inputs such as 
imagery data, whereas one-dimensional filters are used for 
time-series data. The size of each filter defines its receptive 
field. As part of the convolutional layer, a point-wise 
nonlinear activation function (such as sigmoid or ReLU) is 
applied. The convolutional layer is then followed by a so-
called pooling layer, whose role is to reduce the number of 
parameters by sub-sampling the filtered signals. One 
common strategy to perform this operation is called max-
pooling and consists of extracting only the maximum value 
of a fixed-sized batch of consecutive inputs. The CNN 
architecture is formed by stacking several instances of 
convolutional and pooling layers alternately through the 
network. The final filtered signals are then flattened and fed 
into a sequence of fully connected (FC) layers that map them 
into the output layer. 

 

Figure 1. Typical convolutional neural network architecture. 
 

In this study, a direct approach for RUL prediction is 
investigated by exploring CNN regression models to map the 
relationship between a set of input features and the associated 
target RUL value extracted from the run-to-failure 
trajectories of aircraft engines. For on-line prediction, RUL 
is estimated using the trained CNN model and the features 
extracted online. This direct approach for RUL prediction has 
the advantage of avoiding the setting of a failure threshold.  

CNNs are able to extract representation information from raw 
input signals through multiple nonlinear transformations and 
approximate complex nonlinear functions and are used as the 
main architecture in this study. For RUL prediction, the 
adapted CNN regression models consist of multiple 
convolution and pooling layers followed by a fully connected 
layer. After identifying relevant input features, we employ 
the following two distinct CNN model architectures for RUL 
prediction: 2D CNN and 1D CNN with multiple channels as 
described below. 

2.2. 2D CNN Models for RUL Prediction 

For 2D CNN models, the time-series input data sample is 
prepared in 2D format, that facilitates the application of 
convolution operation. The dimension of the 2D input is Ltw 
x nf where Ltw denotes the length of time sequence window 
and nf is the number of selected features. This input data 
preparation involves grouping of sensor measurements from 
time t-Ltw+1 to t  to create Ltw x nf dimensional matrices as 
inputs for training. The raw features are usually obtained 

from multiple sensor measurements. The target value for each 
matrix was determined by the remaining useful life at the last 
time instance in the window. More details of this 2D input 
data preparation for 2D CNN models will be discussed in 
Section 4. 

Various 2D CNN model architectures for RUL prediction can 
be experimented using the flexibility provided by the 
hyperparameters such as type and number of layers, neurons, 
and activation functions, etc. as described above in Section 
2.1. 

For these 2D CNN models, a 1D array is used as the kernel 
or filter. This choice is made to avoid filtering along the 
dimension that contains various features in the input matrices. 
CNNs are particularly effective in processing time-series 
data. Left plot of Figure 2 (left) illustrates the shape of the 
inputs and the kernels applied to the 2D CNN models. 

     

Figure 2. 2D input with 1D kernel applied to 2D CNN 
model (left) and 1D input with 1D kernel applied to 1D 

CNN model  (right). 

2.3. 1D CNN Models for RUL Prediction 

An issue with the 2D CNN model is its use of the same kernel 
for all the features, disregarding their unique patterns. To 
address this, we propose a 1D CNN model with multiple 
channels for RUL prediction. This architecture treats 
different features independently by assigning them to 
separate channels available with CNN. 

In the 1D CNN model with multiple channels, the input 
consists of nf number of different Ltf x 1 dimensional vectors, 
each representing the time window of a feature and assigned 
to an individual channel. Right plot of Figure 2 (right) depicts 
the shape of the 1D input data and their assignment to 
separate channels along with the application of a 1D kernel 
in the 1D CNN model. 

2.4. Performance Metrics and Model Validation 

After building the CNN models for RUL prediction, it is 
important to evaluate their prediction performance on the test 
dataset. In this study, two performance metrics, namely 
RMSE and score function are used to evaluate the 
performance of the CNN models. Root mean square error 
(RMSE) is a very common metric widely used to evaluate the 
performance of regression models. The expression for 
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computing RMSE of RUL models can be given in (1), where 
N is the total number of engines in the test dataset. 

ℎ௜ = (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑈𝐿௜ − 𝑇𝑟𝑢𝑒 𝑅𝑈𝐿௜) 

 

         

(1) 

Score function is a metric that is particularly suitable for 
evaluating RUL models in PHM context as suggested in 
(Saxena & Goebel, 2008). This score function (S) can be 
computed using (2), where N is the total number of engines 
in the test dataset and S is the score. 

ℎ௜ = (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑈𝐿௜ − 𝑇𝑟𝑢𝑒 𝑅𝑈𝐿௜) 

 𝑆 𝑜𝑟 𝑠𝑐𝑜𝑟𝑒 =

⎩
⎪
⎨

⎪
⎧෍ ൬𝑒ି

௛೔
ଵଷ − 1൰  𝑓𝑜𝑟 ℎ௜  < 0

ே

௜ୀଵ

෍ ൬𝑒
௛೔
ଵ଴ − 1൰  𝑓𝑜𝑟 ℎ௜  > 0

ே

௜ୀଵ

 

   
(2) 

The desirable characteristic of this score metric is that it 
penalizes late predictions harder than the early prediction. 
This aligns with the risk adverse mindset because late 
predictions could possibly result in catastrophes while early 
predictions can only lead to the wastage of resources. 

For validating CNN based RUL prediction models, data can 
be split  three ways as a training set, a validation set, and a 
test set. In this study, a bootstrapping-like approach is 
adopted for holdout cross-validation (CV) by selecting 
randomly a small percentage of the overall training dataset as 
validation data samples without replacement. The remaining 
data samples will be used as the training dataset. This 
provides us with a non-overlapping division of the original 
training dataset into training and validation datasets. This 
procedure is also known as a holdout CV. To reduce the 
influence of randomness introduced by the data split this 
bootstrapping procedure is repeated q times. Over these q 
times repeated runs, model performance measures are 
computed using the validation dataset and the average of 
these performance measures are outputted as the model 
performance measures based on the holdout CV. 

3. ENSEMBLE LEARNING BASED RUL PREDICTION 

Ensemble learning is a process of combining multiple models 
using some model combination strategies to form a final 
ensemble model. Typical ML/DL approaches try to generate 
a single best model from given training data, whereas 
ensemble learning methods try to generate multiple models 
to solve the same problem. Ensemble learning generally 
provides ensemble models with improved accuracy and/or 
robustness in most applications due to the availability of 
accurate and diverse multiple models for combining them 
into a single ensemble model. Well known ensemble learning 

algorithms studied in the literature include stacking (Wolpert, 
1992; Breiman, 1996a), bagging (Breiman, 1996b), and 
boosting (Freund & Schapire, 1996) algorithms. 

3.1. Parallel Ensemble Learning Methods 

In parallel ensemble learning methods, the base models are 
generated in parallel. The basic motivation of parallel 
ensemble methods is to exploit the independence between the 
base models since the error can be reduced dramatically by 
combining independent base models. After generating a set 
of base models, rather than trying to find the best single best 
model, ensemble learning resorts to model combination to 
achieve a better generalization ability, where the combination 
method plays a crucial role. 

The parallel ensemble learning process studied in this paper 
for developing ensemble CNN models can be implemented 
in three phases as shown in Figure 3: 1) generation of base 
CNN models, 2) selection of base CNN models, and 3) 
aggregation of the selected base CNN models using some 
combination methods. In the first phase, a pool of base CNN 
models is generated. In the second phase, a subset of base 
CNN models is selected. Finally, an ensemble CNN model is 
formed by combining the selected base CNN models using a 
model combination method. To get a final ensemble model 
with improved generalization, it is essential that the base 
CNN models should be as accurate as possible, and as diverse 
as possible. 

It is worth noting here that generally the computational cost 
of developing an ensemble of models is not much larger than 
generating a single model. This is because typically one need 
to generate multiple models when developing a single model 
using ML/DL techniques due to the requirement of multiple 
cross-validation and hyperparameter optimization, and this is 
comparable to generating base models in ensemble learning, 
while the computational cost for combining base models is 
often small. 

 

Figure 3. Proposed ensemble learning of CNN models. 
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3.2. Generation of Diverse Base Models 

As stated before, diversity among base models is a very 
important factor contributing to the success of ensemble 
learning in general and the multistage ensemble formulation 
adopted here in particular. Generating diverse base models is 
not easy due to the fact that the individual models are trained 
for the same task from the same training data, and thus they 
are usually highly correlated. 

There is no generally accepted formal definitions and 
measures for ensemble diversity, however, there are few 
effective heuristic mechanisms one can use to generate base 
model candidates with diversity for multistage ensemble 
construction. Most widely used diversity generation 
mechanism include: (i) data sample manipulation, (ii) input 
feature manipulation, and (iii) learning parameter 
manipulation among other things. In this study, to generate 
diverse CNN models in Section 2, all of these three diversity 
generation mechanisms are used together. Data sample 
manipulation is used in repeated holdout CV. Input feature 
manipulation is utilized in devising 2D and 1D input layers, 
and learning parameter manipulation is used in optimizing 
both 2D and 1D CNN model architectures. 

3.3. Ensemble Model Combination 

In this section, three different model combination methods, 
namely simple average, weighted average, and the stacking 
scheme implemented using the nonnegative least squares 
(NNLS) method, are described. 

 Simple Average (SA) 

Due to its simplicity and effectiveness, simple average (SA) 
method is the most popular model combination method for 
regression problems. SA obtains the combined output by 
averaging the outputs of individual learners directly. Suppose 
we are given a set of m individual learners {h1, . . . , hM} and 
the output of individual base model hi for the data instance x 
(of CV data) is hi(x) ∈ R, then the final prediction is given as 

ℎ௘௡(𝒙) =
1

𝑚
෍ ℎ௜(𝒙)

௠

௜ୀଵ

                                                              (3) 

 

 Weighted Average (WA) 

Weighted average (WA) method obtains the combined output 
by averaging the outputs of individual models with different 
weights implying different importance. Specifically, WA 
gives the combined output hen(x) as 
 

ℎ௘௡(𝒙) = ෍ 𝑤௜ℎ௜(𝒙)

௠

௜ୀଵ

                                                              (4) 

 

where 𝑤௜ ≥ 0 is the non-negative weight for hi, and these 
weights are usually assumed to be constrained by 
 

෍ 𝑤௜

௠

௜ୀଵ

= 1                                                                                    (5) 

 
In this study, we adopted the following accuracy-based 
weighting (AW) method as the weighted average (WA) 
method. In this accuracy-based weighting method, the weight 
wi of ith base model in (4) can be defined as the normalization 
of the corresponding inverse of cross-validation RMSE: 
 

𝑤௜ =
(𝑅𝑀𝑆𝐸௜

஼௏)ିଵ

∑ (𝑅𝑀𝑆𝐸௜
஼௏)ିଵ௠

௜ୀଵ

                                                           (6) 

 
It can be noted from (6) that a base model with better 
accuracy has more influence on the predicted output of the 
ensemble model. 

 Ensemble Model Combination by Learning: 
Stacking 

The parallel ensemble learning process shown in Figure 3 can 
use the stacked regression method (Breiman, 1996a) for 
determining model combination weights. Stacked regression 
is a model combination strategy using linear combinations of 
base models (also known as level-1 models) to give improved 
prediction accuracy. Here, the model combiner is called a 
level-2 model. In other words, stacked regression performs a 
weighted average (WA) type model combination as given (4) 
for parallel ensemble learning-based regression applications. 
In stacked regression, the basic idea is to train the base (level-
1) models using the original training data, and then use CV 
data and any typical regression method to determine the 
coefficients for the level-2 model. However, for training the 
level-2 model, generally least squares methods under non-
negativity constraints are used. The non-negativity constraint 
is needed to guarantee that the generalization performance of 
the stacked ensemble will be better than selecting the single 
best model (Breiman, 1996a). It can be noted here that the SA 
strategy for model combination can be considered as a special 
case of the stacked regression which is a WA strategy with 
specific constraints on the weights.  

 Nonnegative Least Squares (NNLS) Method for 
Model Combination Learning 

To efficiently implement the training of the level-2 model 
with the least squares algorithm under non-negativity 
constraints, there is one dedicated algorithm available. This 
algorithm is called the nonnegative least squares (NNLS) 
method (Lawson & Hanson, 1974) which is briefly described 
here as a technique for model combination learning. 
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The problem of nonnegative least squares (NNLS) can be 
formulated as a constrained least squares problem where the 
coefficients are not allowed to become negative. That is, 
given a data matrix X and a target (output) y vector, the goal 
is to solve the following nonnegative least squares problem 
to determine the nonnegative parameter or weight vector b: 
 
 

Nonnegative Least Squares (NNLS) 
 

Minimize || Xb – y ||2  subject to b ≥ 0 
 
 
Here b ≥ 0 means that each component of the parameter 
vector b should be non-negative, and ||.||2 denotes the 
Euclidean norm of a real vector. In the context of the 
multistage ensemble learning, the data matrix X refers to the 
CV data generated by base models/learners, and the target y 
vector is approximated by the final output of the ensemble 
model which is the combined output of all the base 
models/learners. This algorithm can be readily implemented 
using the Matlab function lsqnonneg.  

3.4. Ensemble Model Selection 

Given a pool of base models, rather than combining all of 
them, ensemble model selection tries to select a subset of 
these base models to form the final ensemble model. Hence, 
this ensemble model selection process will promote sparsity 
of base models contributing to the final ensemble model thus 
improving the overall generalization performance. In this 
section, three different ensemble model selection methods, 
namely all possible subsets of combinations (APS), NNLS, 
and ordering-based selection (OBS), are described. 

 Ensemble Model Selection using All Possible 
Subsets of Combinations (APS) 

For this ensemble model selection approach, a method similar 
to the all possible subsets regression technique is adopted by 
exhaustively exploring all the possible combinations of 
subsets of m base models (Miller, 2002). It is well known that 
for the case when m is more than 40 or 50, it is 
computationally very challenging to apply this approach 
without making special arrangements in terms of algorithm 
modification and parallel implementation. Accordingly, we 
limit the model subset search to generate model combinations 
each having at the most p < m diverse models given the total 
number of diverse base models (m). 

 Ensemble Model Selection using Nonnegative 
Least Squares (NNLS) 

For the purpose of model selection, this method uses the 
above-described nonnegative least squares method by 
exploiting its biggest strength in choosing zero coefficients 
for the model terms not required for ensemble formulation. 

This is possible due to the fact that the NNLS method is 
known to have a sparsity promoting attribute (Foucart & 
Koslicki, 2014), and hence it can be used simultaneously for 
model selection and weight learning tasks of the proposed 
multistage ensemble learning of CNN models resulting in the 
selection of fewer models as the base models when forming 
the final ensemble CNN model. This is  demonstrated later in 
Section 4.3.  

 Ordering-Based Selection (OBS) 

In this base model selection method, the base models are 
ordered according to some performance criterion, and only 
the base models in the front part are selected for the ensemble 
formation. In this study, we choose RMSE as the criterion to 
order the base models and select the top 50% of these models 
to form the final ensemble. 

3.5. Multistage Ensemble Learning Procedure 

Using the above major components of the ensemble learning 
process, we outline below the proposed multistage ensemble 
learning procedure required for developing the ensemble of 
CNN based RUL prediction models. Here, to effectively form 
the ensemble of many CNN models generated during the 
process of deep learning based RUL prediction model 
development, a multistage ensemble learning as described 
below is utilized. In STAGE 1, CNN models with different 
architectures but trained using the same division of training 
and validation data, are combined using various weight 
learning and model selection techniques described above. In 
STAGE 2, ensemble models formed during STAGE 1 are 
combined using SA and WA weight learning methods 
(without model selection), and SA with ordering-based 
selection. The workflow of this multistage ensemble learning 
process is given in Figure 4. 
 
STAGE 0: 
Step 1: Generate diverse CNN models using both 2D and 1D 
model architectures employing offline training and holdout 
CV procedures as described in Section 2. If we train M 
different CNN model architectures with K times repeat of 
holdout CV, we will have M x K  diverse CNN base models 
from this step. 
 
STAGE 1: 
Step 2: From each holdout CV (for k = 1:K), collect M CNN 
base models and perform the following steps: 
Step 2a: Determine STAGE 1 ensemble model weights using 
(i) SA and (ii) WA weight learning methods but without 
applying any ensemble model selection. 
Step 2b: Perform ensemble model selection and determine 
STAGE 1 ensemble model weights using (iii) all possible 
subsets selection (APS) with SA weight learning, (iv) 
ordering-based selection (OBS) with SA weight learning, and 
(v) NNLS based ensemble model selection and weight 
learning. 
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Step 2c: Collect the selected models and their ensemble 
weights from each holdout CV. 
 
 
STAGE 2: 
Step 3: Form K ensemble outputs using selected models and 
their ensemble weights from STAGE 1 (Step 2c) and perform 
the following steps: 
Step 3a: Determine STAGE 2 ensemble model weights using 
SA and WA weight learning methods but without using any 
ensemble model selection. 
Step 3b: Perform ensemble model selection and determine 
STAGE 2 ensemble model weights using ordering-based 
selection (OBS) with SA weight learning. 
Step 3c: Form the final multistage ensemble output on the test 
data using selected models and their ensemble weights from 
STAGE 2 (Step 3a and Step 3b). 
 

 
Figure 4. Multistage ensemble learning workflow 

 

4. CASE STUDY AND EXPERIMENTAL RESULTS 

4.1. NASA C-MAPSS Dataset and Data Preprocessing 

 NASA C-MAPSS Dataset 

In this study, a simulated dataset of run-to-failure trajectories 
for a small fleet of aircraft engines under realistic flight 
conditions issued by the NASA Ames Prognostics Center of 
Excellence (PCoE) (Saxena & Goebel, 2008) is considered 
for developing RUL prediction models. This dataset was 
generated using the Commercial Modular Aero-Propulsion 
System Simulation (C-MAPSS) dynamic model (Saxena et 
al., 2008) and is referred to as the NASA C-MAPSS dataset 
which is widely used for studying prognostics problems in 
aircraft engines. 

The NASA C-MAPSS dataset consists of four sub-datasets, 
and for demonstrating the proposed ensemble learning based 
CNN models for RUL prediction aircraft engines, we 
consider the first sub-dataset, namely FD001 which consists 
of 26 columns, including trajectory number (or engine #), 
time (number of cycles already completed), 3 operational 
conditions, and 21 sensor measurements. However, some 
sensor readings have constant values during the lifetime of 
the engine, and they do not provide valuable information for 
RUL prediction. Therefore, in this study, only 14 sensor 
measurements with indices 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 
17, 20 and 21 are used as the raw input features as suggested 
in the literature (Zhang et al., 2017). 

 Data Preprocessing 

Data preprocessing involves preparing raw data to make it 
suitable for a machine-learning model. Before we can feed 
the NASA C-MAPSS dataset into our deep learning models, 
it is crucial to clean up and transform the data into an 
appropriate format employing two essential aspects of data 
preprocessing: smoothing and normalization. 

Normalization is the procedure of adjusting feature columns 
to have a similar scale when different features vary 
significantly in their scales. There are two commonly used 
normalization techniques in machine learning: Min-Max 
normalization and Standardization (Z-score) normalization. 
For this research, the Min-Max scaling method has been 
utilized. 

Smoothing plays a crucial role in reducing the noise present 
in the dataset, thereby enhancing the potential accuracy of 
RUL predictions. The smoothing technique employed in this 
research is the Savitzky-Golay filter (Schafer, 2011). By 
considering 2M + 1 inputs (M previous adjacent data points, 
the current data point, and M future adjacent data points), the 
filter calculates the smoothed data by fitting an N-degree 
polynomial. For this research, M has been set to 10, and N 
has been set to 3 to obtain the desired smoothing results. 

STAGE 0: Generate M x K diverse CNN models using both 
2D and 1D model architectures employing and holdout CV. 

STAGE 1: From each holdout CV (for k = 1:K), collect M
CNN base models and perform the following steps: 
(a) Determine STAGE 1 ensemble weights using (i) SA and 

(ii) WA methods without ensemble model selection. 
(b) Perform model selection and weight learning using (iii) 

APS with SA, (iv) OBS with SA, and (v) NNLS. 

STAGE 2: Using STAGE 1 K ensemble outputs, perform the 
following steps: 
(a) Determine STAGE 2 ensemble weights using (i) SA and 

(ii) WA methods without ensemble model selection. 
(b) Perform model selection and weight learning using (iii) 

OBS with SA. 

 C-MAPSS Training and Test Datasets 

Form final multistage ensemble output on the test data 
using selected models and their weights from STAGE 1 
and  STAGE 2. 

K sets of M base CNN 
model outputs generated 
on validation & test data

K ensemble model 
outputs generated on 
validation & test data

Selected base CNN models 
and their ensemble weights 
from STAGE 1 & STAGE 2 
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 Target RUL Calculation 

Since the NASA C-MAPSS dataset doesn’t provide target 
RUL values for the training data, we have to calculate the 
target RUL for each row to obtain complete training and 
testing datasets for developing RUL prediction models using 
the supervised learning procedure. The piecewise linear 
degradation model approach is adopted in this research to 
calculate the target RUL. In this method, the RUL for the 
early phase is set to a constant value 125 (all RUL values 
larger than 125 is set to 125 in this method). Compared to the 
method based on the linear degradation model, this method is 
more likely to generate more realistic RUL target values for 
developing RUL prediction models using supervised 
learning.  

4.2. CNN Based RUL Prediction Results 

The NASA C-MAPSS dataset was prepared for 2D CNN by 
applying the sliding time-windowing approach as discussed 
in Section 2.2. This involved grouping sensor measurements 
from time t-Ltw+1 to t (where t >= Ltw = 30) to create 30x14 
dimensional matrices as inputs for training. The target value 
for each matrix was determined by the remaining useful life 
at the last time instance in the window. This 2D input data 
preparation yielded 17,731 input matrices from the training 
FD001 file, consisting of 20,631 rows and 100 engines. 
Figure 5 illustrates two 2D input matrices, with the red box 
representing the first matrix and its target value at t = 30, and 
the green box representing the second matrix with its target 
value at t = 31. 

 

Figure 5. Sliding time-windowing approach 

 

For training CNN models for RUL prediction, the training 
file was divided into a training dataset of 80 randomly 
selected engines and a validation dataset of the remaining 20 
engines. The maximum number of epochs was set to 300, and 
the batch size was chosen as 32. 

 2D CNN Model Experiments 

Given the numerous hyperparameters available for tuning 
CNN models and the difficulty of pre-identifying the optimal 
model, we conducted various experiments on 2D CNN 
models, and the following four 2D CNN architectures yielded 
better performance among those multiple experiments. To 
reduce the influence of randomness introduced by the train-
validation data split, we ran each 2D CNN model 
architecture10 times using different random seeds. 

For the description of 2D CNN model architectures in this 
section, we use the following notation to give the parameters 
associated with each type of layers: the parameters for the 
convolutional layer are given by (# of filters, filter size, 
activation function), the max pooling layer parameter is the 
pool size, and the parameters for the dense layers are given 
by (# of nodes, activation function). 

2D-CNN-Architecture 1: In the initial  2D CNN architecture 
using the 2D input data and 1D kernel, we used three Conv2D 
layers with parameters (64, (10, 1), relu), (32, (8, 1), relu), 
and (16, (5, 1), relu), respectively, and two MaxPooling2D 
layers with a pool size of 2 for down-sampling, followed by 
a flatten layer and two dense layers with parameters (32, relu) 
and (1, linear), respectively. 

2D-CNN-Architecture 2: In this 2D CNN architecture, we 
utilized a higher number of kernels in the convolutional 
layers compared to the 2D CNN architecture 1. Specifically, 
we used three Conv2D layers with parameters (128, (10, 1), 
relu), (64, (8, 1), relu), and (32, (5, 1), relu), respectively, and 
two MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers 
with parameters (32, relu) and (1, linear), respectively. 

2D-CNN-Architecture 3: This 2D CNN model architecture 
is similar to the 2D CNN model architecture 1 except it 
includes an additional convolutional layer just after the third 
convolutional layer. It consists of four Conv2D layers with 
parameters (64, (10, 1), relu), (32, (8, 1), relu), (16, (5, 1), 
relu), and (8, (5, 1), relu), respectively, and two 
MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers 
with parameters (16, relu) and (1, linear), respectively. 

2D-CNN-Architecture 4:  In this 2D CNN architecture, an 
additional convolutional layer was added after the third 
convolutional layer, making it similar to the 2D CNN model 
architecture 2. It consists of four Conv2D layers with 
parameters (128, (10, 1), relu), (64, (8, 1), relu), (32, (5, 1), 
relu), and (16, (5, 1), relu), respectively, and two 
MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers 
with parameters (16, relu) and (1, linear), respectively. 
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 1D CNN Model Experiments 

Similarly in the case of 2D CNN models, we conducted 
various experiments on 1D CNN models, and the following 
four 1D CNN model architectures yielded better performance 
among those multiple experiments. 

1D-CNN-Architecture 1: In the initial 1D CNN architecture 
using the 1D input data with multiple channels and 1D kernel, 
we used three Conv1D layers with parameters (64, (10, 1), 
relu), (32, (5, 1), relu), and (16, (5, 1), relu), respectively, and 
two MaxPooling1D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers 
with parameters (32, relu) and (1, linear), respectively. 

1D-CNN-Architecture 2: This 1D CNN model architecture 
is similar to the 1D CNN architecture 1, but with additional 
kernels in the convolutional layers and more nodes in the 
dense layers. We used three Conv1D layers with parameters 
(256, (10, 1), relu), (64, (5, 1), relu), and (16, (5, 1), relu) 
respectively, and two MaxPooling1D layers with a pool size 
of 2 for down-sampling, followed by a flatten layer and two 
dense layers with parameters (64, relu) and (1, linear), 
respectively. 

1D-CNN-Architecture 3: This 1D CNN model architecture 
is similar to the 1D CNN model architecture 1, but with two 
additional convolutional layers just after the third 
convolutional layer. It consists of five Conv2D layers with 
parameters (64, (10, 1), relu), (32, (8, 1), relu), (16, (5, 1), 
relu), (8, (5, 1), relu), and (4, (5, 1), relu), respectively, and 
two MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers 
with parameters (32, relu) and (1, linear), respectively. 

1D-CNN-Architecture 4:  This 1D CNN model architecture 
4 is comparable to the 1D CNN model architecture 2, as it 
incorporates an additional convolutional layer after the third 
convolutional layer. It includes four Conv2D layers with 
parameters (128, (10, 1), relu), (64, (8, 1), relu), (32, (5, 1), 
relu), and (16, (5, 1), relu), respectively, and two 
MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers 
with parameters (16, relu) and (1, linear), respectively. 

 Results of CNN Models 

Table 1 presents the performance comparison of CNN model 
architectures with varying numbers of kernels and layers on 
test dataset using the average values from 10 CV runs. Figure 
6 shows the box-plot performance comparison of the same. 
These results indicate that increasing the number of kernels 
in the CNN model architecture enhances performance for 
both 2D and 1D CNN models. However, when it comes to 
adding more layers, it only improves the results for 2D CNN 
models, not for 1D CNN models. These findings suggest that 
the number of kernels plays a crucial role in improving 
performance across both model types, while the impact of 
additional layers is limited to 2D CNN models. 

 

 

Figure 6. Performance comparison of CNN models. 

4.3. Ensemble Learning Based RUL Prediction 

Based on 80 diverse CNN base models generated using 8 
different CNN model architectures with 10 times repeat for 
cross-validation in Section 4.2 (see Table 1 and Figure 6), we 
conducted various ensemble learning experiments using the 
multistage ensemble learning procedure given in Section 3.5. 
In STAGE 1, using validation data from 20 engines randomly 
selected during each run, ensemble learning was performed 
using five different combinations of weight learning (WL1) 
and model selection (MS1) methods as outlined in Section 
3.5. Each of these WL1 and MS1 combination yields 10 
ensemble models (one from each CV run) and their RMSE 
and score performance values obtained using validation data. 
In STAGE 2, these 10 ensemble models are further combined 
using three different combinations of weight learning (WL2) 
and model selection (MS2) methods as outlined in Section 
3.5. It should be noted here that no data are used during 
STAGE 2 weight learning and model selection. 

The test data RMSE and score results from these multistage 
ensemble learning experiments on CNN models are given in 
Table 2 utilizing the abbreviations used for weight learning 
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Table 1. Performance comparison of CNN models with 
different architectures. 

 
Models RMSE Score 
2D-CNN-Architecture 1 12.76 285.2 

2D-CNN-Architecture 2 12.61 269.4 

2D-CNN-Architecture 3 12.63 272.6 

2D-CNN-Architecture 4 12.51 254.3 

1D-CNN-Architecture 1 12.91 287.3 

1D-CNN-Architecture 2 12.78 274.0 

1D-CNN-Architecture 3 13.23 314.4 

1D-CNN-Architecture 4 12.95 277.9 
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(WL1 & WL2) and model selection (MS1 & MS2) methods 
in STAGE 1 and STAGE 2 as described in Section 3.5. The 
last column of Table 2 indicates the overall number (#) of 
base models that took part in each of the multistage ensemble 
model learning experiments. Figure 7 shows the percentage 
improvement in RMSE and score values of the best ensemble 
CNN model (obtained with WL1-SA, MS1-APS, WL2-SA 
and MS2-OBS yielding RMSE and score values of 11.28 and 
207.6, respectively) compared to the base models used for 
multistage ensemble learning illustrating an average 
improvement of 11.7% and 23.6% for RMSE and score 
values, respectively. It can be noted further from Table 2 that 
when model selection is used in STAGE 1 and/or STAGE 2, 
the resulting final ensemble model uses fewer base models 
(sparse model selection) and at the same time improving the 
generalization performance of the final ensemble CNN 
model for RUL prediction. This finding is also in line with 
the well-known observation in the ensemble learning 
literature that ensemble pruning to avoid overfitting improves 
generalization performance (Zhou et al., 2002) of ensemble 
models.  Figure 8 shows the relationship between the number 
of base models used and the resulting accuracy of the 
ensemble CNN models by displaying three clusters of 
models. It is interesting to observe that in Figure 8 the best 
performing Cluster 3 is obtained when both MS1 and MS2 
model selections are used. Using model selection only in 
either STAGE 1 or STAGE 2 results in moderately 
performing Cluster 2 and not using any model selection in 
both stages results in the least performing Cluster 1. 

 

 

Figure 7. Performance improvement of the best ensemble 
CNN model compared to 80 base CNN models. 

 

Figure 8. Ensemble CNN model RMSE (left) and score 
(right) performance versus number of base models. 

 

Finally, the comparison of our proposed ensemble CNN with 
other popular deep learning methods published in the last few 
years is given in Table 3 which shows the RMSE and score 
function values generated on the C-MAPSS FD001 test sub-
dataset. The proposed multistage ensemble learning based 
CNN has achieved promising performance comparable to the 
state-of-the-art results. Further improvements to the proposed 
method can be made by making enhancements to diverse base 
CNN models and also considering other deep learning 
models as base models along with CNN models for RUL 
prediction. Future work will consider these enhancements 
and the evaluation of the proposed method on the other C-
MAPSS sub-datasets. 
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Table 2. Performance comparison of ensemble learning 
based CNN models for RUL prediction. 

 
WL1 MS1 WL2 MS2 RMSE Score # 
SA - SA - 11.85 230.9 80 
WA - SA - 11.85 230.7 80 
SA OBS SA - 11.58 215.2 40 
SA APS SA - 11.55 218.7 35 
NNLS NNLS SA - 11.58 221.1 48 
SA - WA - 11.85 230.7 80 
WA - WA - 11.84 230.4 80 
SA OBS WA - 11.57 215.1 40 
SA APS WA - 11.54 218.4 35 
NNLS NNLS WA - 11.57 220.9 48 
SA - SA OBS 11.72 226.3 40 
WA - SA OBS 11.71 225.9 40 
SA OBS SA OBS 11.37 208.6 20 
SA APS SA OBS 11.28 207.6 15 
NNLS NNLS SA OBS 11.31 209.8 23 
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5. CONCLUSION AND FUTURE WORK 

In this paper, a new data-driven approach for RUL prediction 
of aircraft engines has been investigated using multistage 
ensemble learning based convolutional neural networks. To 
generate diverse base models, two CNN model architectures, 
namely 2D CNN and 1D CNN with multiple channels, were 
explored. Various CNN model experiments were performed 
to optimize their model architectures and hyperparameters, 
and using these resulting optimal CNN models, a multistage 
ensemble approach was investigated employing sparsity 
promoting model selection and weight learning methods to 
utilize only a subset of available models. The key findings of 
this work along with future directions can be summarized as 
follows: 

 The effectiveness of the proposed approach was 
validated using the NASA C-MAPSS dataset for aircraft 
engines. The results showed that the average percentage 
improvement of 11.7% and 23.6% for RMSE and score 
values, respectively, of the best ensemble CNN model 
compared to the base models used for ensemble learning. 
Furthermore, the proposed multistage ensemble learning 
based CNN has achieved promising performance 
comparable to the state-of-the-art results. These results 
demonstrate the effectiveness of the proposed ensemble 
learning based CNN models in accurately predicting 
RUL based on sensor data. 

 It can also be observed from this study that when model 
selection is used in both stages of the proposed 
multistage ensemble learning process, the resulting final 
ensemble CNN model uses fewer base models (sparse 
model selection) and at the same time improving the 

generalization performance of the ensemble CNN model 
for RUL prediction. 

 For future work, we will consider the evaluation of the 
proposed method on the other C-MAPSS sub-datasets  
and other PHM datasets. More weight learning and 
model selection methods will be investigated to further 
improve the proposed multistage ensemble learning 
approach Also, further improvements to the proposed 
method can be made by making enhancements to diverse 
base CNN models and considering other deep learning 
models as base models along with CNN models for RUL 
prediction.  
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