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ABSTRACT 

Blurring in Electro-Optic (EO) images is a significant issue 

that can arise due to the payload and platform operations.  It 

would be advantageous for unmanned platforms to determine 

if significant blurring is present within captured images 

before the images are observed and the collection sequence 

has ended.  In this way, the degradation can be identified and 

remedied in operation in real-time.  In this paper, we 

demonstrate that a statistical algorithm called Symbolic 

Analysis (SA) is suitable for detecting blurring in the output 

images of EO systems.  The SA algorithm adapted from 

previous work is described and demonstrated on an example 

image with artificial Gaussian-based blurring induced. 

1. INTRODUCTION 

The first thoughts that come to mind when one talks about 

diagnostics tends to either be in the medical mindset or 

perhaps the current state of an operating machine or system.  

Diagnostics means the “practice or technique of diagnosing” 

which can be applied to many systems in many situations.  

Systems that generally wear out can be diagnosed and tracked 

though time in order to achieve a prognostic measure of sorts 

in order to determine when maintenance or repair to a system 

is deemed necessary. A diagnostic measure does not 

necessarily represent a wear out mechanism in the system but 

instead a measure of when the system is not operating as 

intended an example of which is when a system is improperly 

setup. 

In this paper, we apply a diagnostic algorithm to an electro-

optic (EO) system.  EO systems are typically employed in 

surveillance or reconnaissance platforms and are used to keep 

track of scenes or targets.  In general, an EO system does not 

typically wear out as would mechanical or other electrical 

systems.  Indeed, it is the case that these EO systems tend to 

employ a DSLR type of camera which after a certain amount 

of shutter actuations, the shutter itself can fail.  This type of 

failure does not typically induce a signature within an image; 

instead it is simply tracked by total number of exposures 

taken by the camera.  Once this limit is reached, the camera 

is replaced or shutter is replaced.   

All is not lost in the application of diagnostic algorithms to 

EO systems.  Indeed, the quality of the photo can be used as 

the diagnosis target.  A critical feature of photos that must be 

maintained in high resolution EO images is sharpness 

meaning blurring within the image must be minimized.  An 

image with minimal blurring provides the highest possible 

feature resolution.  Burring within an image cannot be 

determine until the image is processed either onboard or by 

downloading the image from the platform.  Otherwise, the 

degraded images are not identified until after all the images 

have been downloaded from the DSLR or another camera 

payload.  Image blurring can be a result from either platform 

motion blur and/or by focusing blur.  Focusing blur is due to 

the camera having an improper focal setting and motion blur 

is due to the camera movement.   

In this regard, in order to produce the best possible image, it 

would be ideal to identify blurring in images during image 

capture so that actions can be taken in order to improve the 

quality of the captured images.  In this scenario, an algorithm 

or process is needed that can quickly and efficiently process 

an image and identify if blurring is present in the image.  The 

issue is determining what constitutes blurring in an image 

taken when the scenery is unknown from an image processing 

standpoint.  This is the so-called blind identification (Abed-

Meraim, 1997).  Blind identification is obtaining relevant 

information from a system utilizing only its output data.   

Blind blur detection has been a recent research topic and is 

gaining interest as more payloads and systems become 

autonomous.  A general overview of blur detection 

algorithms can be found in (Koik, 2013).  The approaches 

covered in this paper include edge detection algorithms, 

Bayes approaches, and wavelet methods (Tong, 2004).  

Wavelet methods allow for separation of ‘image frequency’ 

so that detailed analysis can be carried out on the image.   

Once decomposed, the data can be processed to determine if 

certain high frequency edges are contained in the image.  

Image blurring is likely if these edges are missing.  In general, 

the idea is to form some measure on the amount of high (or 

low) frequency content within a digital image. 
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Our approach utilizes statistics in order to determine the 

blurring contained in the image.  A similar approach to blind 

blur detection is given in (Tiwari, 2014).  In (Tiwari, 2014), 

the authors propose using statistics of image phase 

congruency and the magnitude information of the image in 

order to detect blurring.  The phase congruency information 

is extracted from Fourier analysis of the image and this is 

coupled with the image’s magnitude information. 

The objective is to be able to quantify some extent of blurring 

in an image irrespective of the scenery in which the EO 

system operates.  This is challenging as a uniform scene such 

as a field or airport can produce drastically different measures 

then those obtained from scenes containing trees and foliage.  

Our approach is to model these differences statistically and 

use the statistical information to infer the amount of blurring 

in an image.  The algorithm implemented was called the 

Symbolic Analysis (SA) algorithm (Bower, 2015).   

The SA algorithm was investigated to determine if it is an 

appropriate and feasible approach to detecting blurring in an 

EO image.  The algorithm, adapted from (Bower 2015), was 

slightly modified in order to enable it to detect this 

degradation.  The work presented in the previous paper did 

not require a preprocessing step for the data.  In this work, a 

data preprocessing step was found to be necessary in order to 

accomplish image blurring detection.  The application of SA 

to this problem was chosen because 1) the algorithm could be 

used in a platform utilizing radar and EO systems for 

combined degradation detection and 2) the implementation of 

the algorithm does not overly impact the Size, Weight, and 

Power (SWaP) of the payload.  The ability of the algorithm 

to run in real-time also allows for operation modification to 

the platform in order to mitigate any detected degradation.  

The objective of this work was to determine if the SA 

algorithm could be adapted in this sense. 

Expanding upon this introduction, the paper is broken down 

into sections as follows.  Section 2 reviews the SA algorithm 

and with Section 3 detailing the preprocessing and approach 

implemented in diagnosing image blurring.  Section 4 

investigates EO examples of blurring and the results from the 

algorithm.  Section 5 concludes the paper with suggestions 

and future work. 

2. SYMBOLIC ANALYSIS ALGORITHM 

Expanding upon the work originally presented in (Bower, 

2011), the objective was to design a system that was capable 

of integrating the developed software into the radar system. 

The software, Symbolic Analysis (SA), is briefly reviewed 

here. 

2.1. Symbolic Analysis 

Symbolic Analysis is a statistical pattern recognition tool 

based upon symbolic theory.  Most work in the symbolic 

realm deals with the development of optimal models to 

determine the trajectory of modeled system states (Daw, 

Finney & Tracy, 2003).  These methods are used to model 

complex and chaotic systems.  The resultant optimal model, 

known as the ε machine (epsilon machine), has a variable 

dimensional structure whose dimensions were constantly 

adjusted depending on the data collected over time in order 

to maintain optimality.  This variation in dimensionality 

made it difficult to determine deviations between models 

developed through system usage.  In order to make 

meaningful comparisons between models, a machine was 

developed with a-priori fixed dimensional structure (Ray, 

2004).  This fixed dimensional machine allows for 

meaningful comparisons between statistical models defined 

at different temporal points in the system’s life at the cost of 

model optimality.  The process of SA is shown in the block 

diagram of Figure 1.  Each process will be briefly described. 

 

 
Figure 1. Symbolic analysis of time series data block 

diagram. 

2.2. Data Capture 

The data capture is an important step as it identifies data 

sources that are related to underlying degradation signatures.  

In addition to identifying relevant observables, the SA 

approach requires two assumptions: 1) the system does not 

undergo ‘self-healing’, and 2) that the underlying degradation 

dynamics can be separated from the system dynamics.  

Assumption 1 forces the system to undergo a monotonically 

increasing degradation state, which assists in predicting 

future failure.  Assumption 2 is far more stringent in that the 

data captures must be sufficiently long enough to develop 

statistics but also not capture changes in the underlying 

dynamics of the system.  In other words, it is assumed that 

the degradation dynamics evolve at different rates then the 

system operates.  For the EO platform, the image in of itself 
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is a static representation of its environment and operating 

conditions.  In this case, the operating conditions include the 

camera settings and the current conditions of the camera 

platform.   

2.3. Symbolization 

The next step involves transforming the image data into the 

symbolic domain.  This step can be thought of as a general 

re-quantization of the original data resulting in a coarser 

distribution.  Symbolization requires the determination of the 

number of partitions to be used as well as the type of 

partitioning.  The two most common types of partitioning 

include uniform partitioning (UP) and maximum entropy 

(ME) partitioning.  QorTek has devised a new partitioning 

approach which combines the advantages of both UP and ME 

which is called Mixed (MX) partitioning.  MX partitioning 

was implemented in the analysis of image degradation.   

2.3.1. Partitioning 

That partitioning scheme of the algorithm allows for the 

collected data to be converted into the symbolic space.  As 

stated previously, there are three main approaches utilized for 

partitioning including UP, ME, and MX although the 

majority of this write-up will focus on MX partitioning. 

Uniform partitioning divides the range of the collected data 

into equal sized regions where the total number of determined 

partitions are defined as the set P.  Given the range of the data 

as U, the partition sizes are defined as 𝑈
𝑃⁄  and the 

boundaries developed from the range U.  Each partition 

region Pi was mutually exclusive and exhaustive over the 

range of the data. The probabilities of the partition occurrence 

in the uniform case are not necessarily equal; however, the 

partitioning structure was equal.   

The maximum entropy (ME) partitioning scheme was 

defined by the principle of entropy in determining the 

partition structures.  Recall entropy as described in Eq. 1. 

 𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

 (1) 

The entropy can be maximized by setting  𝑝(𝑥𝑖) =

𝑝(𝑥𝑗), ∀𝑖, 𝑗.  The logarithm to base 2 was used so that the unit 

of entropy is in bits.  In the data, accomplishing maximization 

of entropy in the baseline case was necessary to make sure all 

partitions (or symbols) have equal probability of occurrence.  

The partition structure resulting from ME does not 

necessitate equal partitions as in the uniform case but does 

guarantee equal prior probabilities for the partitions in the 

baseline case.  A feature of the ME partitioning scheme is that 

the partitions boundaries are closer in regions of the data 

where there are a dense number of data points.  In regions 

where there are fewer data points, fewer partitions are 

generated in these areas. 

Mixed partitioning was developed at QorTek to combined the 

sensitivity of the ME approach with the equal area 

distribution of the UP approach.  In the work completed, the 

MX approach takes the desired number of partitions and 

divides them equally between those to be developed through 

ME and those to be developed under UP.  The resultant MX 

partitioning approach very finely models regions of dense 

data and uniformly divides other regions to allow for 

evolution of the system.  This also enables the algorithm to 

model slight changes in the data-dense regions while 

allowing for more significant system deviations through the 

UP partitions.   

Once the partitions are defined each partition was labeled 

with a symbol from the alphabet S.  Given a data series X of 

length M, if 𝑥𝑖 ∈ 𝑃𝑖 , 0 ≤ 𝑖 ≤ 𝑀, then assign 𝑠𝑖 → 𝑥𝑖 , ∀𝑖;  𝑠𝑖 ∈
𝑆.  By implementing the partition structure and assigning a 

unique symbol to each time series data point, the end result 

was called the symbol stream.  This is the re-quantized time 

series data that is now transformed into the symbolic domain. 

2.4. Statistical Analysis 

Once the partitions have been developed and symbols 

assigned to each partition, the next step is to construct the 

statistical model based on the resultant symbol stream.  This 

step is controlled by another parameter for the SA 

methodology, the depth parameter D.  The depth parameter 

controls the definition of model states from the symbol 

stream.  States in the model are formed from D-length subsets 

of symbols.  Therefore, the total number of states in the 

algorithm given the number of partitions P and the depth D 

is shown in Eq. (2). 

 𝑁𝑠 = 𝑃𝐷 (2) 

Equation (2) holds true independent of the partitioning 

scheme utilized.  As an example, assume a ternary partition 

scheme is implemented that results in three symbols; labeling 

them -1, 0, and 1.  The methodology’s resultant statistical 

states depend on the number of symbols in the algorithm as 

well as the chosen depth.  The parameter depth adjusts the 

memory of the resultant symbolic model, that is, the 

parameter controls the groupings of symbols into states.  For 

instance, if D was unity, the resultant states are 0, 1, and -1.  

If D was two, the resultant states would be 00, 01, 10, 11, 0-

1, (-1)0, (-1)(-1), 1(-1), and (-1)1. Therefore, the total number 

of states follows (2). 

Shown in Figure 2 is an example model formation with the 

three-partition symbolic system and with D being equal to 

two applied to a recorded sine wave of arbitrary amplitude.  

These parameter choices result in a model with three states.  

The example sine wave in the figure is divided into zero (0), 

one (1) or minus one (-1) by a set threshold (partition 

boundary, uniform in this example).  The symbol sequence is 

the square wave in the figure.   
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Figure 2.  Example symbolization using three symbols with 

d=2 resulting in nine possible states. 

 

With the symbol sequence 𝑠𝑖 completed, the next step is to 

form states out of the symbols or groups of symbols.  The 

probabilities of the state occurrences can be calculated and 

tracked across each data capture.  Counting state occurrences 

can then be converted into probabilities to generate what is 

known as the State Probability Vector (SPV):  the 

probabilities are arranged in a 𝑁𝑠𝑥1 vector, where 𝑁𝑠 

represents the total number of states in the algorithm given 

by Eq. (2).  In the case where depth of the algorithm is equal 

to unity, as it is in most cases, the total number of states is 

equal to the number of symbols used.  Choosing D equal to 

unity results in the smallest possible model for a given 

number of symbols, thereby reducing computational 

complexity of the approach.  For this study in applying SA to 

image blurring analysis, the depth parameter is chosen as 

unity. 

In addition to tracking the probability of the model states, the 

transition probabilities can also be calculated.  The transition 

matrix captures the dynamics of the symbolic model and it is 

possible to calculate the SPV given the state transition matrix 

as shown in Eq. (3). 

 𝑣𝑖Π = 𝜆𝑖𝑣𝑖  (3) 

In Eq. (3), Π is the state transition matrix, λi is the ith 

eigenvalue equal to unity, and vi is the left eigenvector of Π 

associated with the unity eigenvalue.  This state transition 

matrix model of the underlying data is leveraged in this paper 

in order to determine the ‘degradation’ or blurring within the 

image.   

Once the probabilities or counts are known, a metric can be 

applied to the statistical model, SPV or state transition matrix 

of which the latter is used in this paper, and a measure of the 

image degradation can be identified.     

2.5. Anomaly Quantification 

Anomalies inherent to degradation in the system can be 

generated from the use of the SPV between the data captures.  

The metric quantifies the deviation between the known 

baseline, commonly known as the healthy state of the system, 

and a future system state.  A previously used measure to 

quantify an anomaly between captures is based on the 

Euclidean distance given in Eq. (3) for pulse j. 

 

𝐴𝑗 = √∑(𝑧𝑖,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − 𝑧𝑖,𝑗)
2

𝑁𝑆

𝑖=1

2

 (4) 

In Eq. (4), 𝑧𝑖,𝑛𝑜𝑚𝑖𝑛𝑎𝑙  is the nominal (baseline) SPV state 𝑧𝑖 

and 𝑧𝑖,𝑗 is the corresponding SPV state at iteration j.  Since 

our current work is focused on a single image or single 

snapshot in time, this measure is not quite applicable as was 

in our previous work (Bower, 2015).  However, a new 

measure can be quantified based on the total number of state 

transitions on the main diagonal compared to those on the off 

diagonal.     

The anomaly can be used as a diagnostic measure to 

determine the amount of degradation the system has incurred 

over its lifetime or to be used as a prognostic measure.  If 

training data exists for the system, the anomaly measure can 

then be used in a prognostic application to predict the 

remaining useful life of the system.  In this paper, the 

anomaly itself is a measurement of the estimated amount of 

blurring in the image.   

In previous work with the SA algorithm, the algorithm was 

applied to multi-dimensional data (two-dimensional data).  

Although this approach would seem appropriate for images 

analysis, this is not the case.  For image processing, it was not 

required to process the image as in a two-dimensional 

manner.  The data from the image is processed in a one-

dimensional manner utilizing the columns of an image and 

moving down through the rows reshaping the image data into 

a one-dimensional vector. 

3. PRE-PROCESSING OF THE IMAGE 

A critical aspect of the algorithm application is to pre-process 

the data before implementation into the SA algorithm.  In 

terms of Figure 1, the pre-processing occurs before 

symbolization.  The SA algorithm analyzes the data and 

measures the total amount of high frequency information 

contained in the image.  An image that contains blurring 

would thus contain smaller amounts of high frequency 

information compared to an image that has minimal blurring. 

In order to assist in the determination of the image’s high 

frequency content, a high pass filter is applied to the image.  

The filtering approach implemented is called the Sobel 

operator and is given as (for the X direction): 
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 1 0 1

2 0 2

1 0 1

XG

− 
 

= −
 
 − 

  
 

(5) 

The Y dimension of the operator is simply given as 
T

Y XG G= , which is the transpose of the X operator.  More 

explicitly, the operator can be broken down into simply as a 

product of an averaging and differentiation filter: 

 

 

1

2 1 0 1

1

XG

 
 

= −
 
  

  (6) 

An example of the operation is as follows using the image 

shown in Figure 3.  The image is a picture of a cat (Alton) 

which can be used to demonstrate the frequency content.  The 

image size is 2256x3380 pixels (7.6 megapixels).  Notice that 

the image, in terms of color contains very little significant 

deviation which will results in lower high frequency content.  

This can be demonstrated with the Sobel operator.   

 

Figure 3.  Example image, Alton’s Monday face. 

 

The first step with processing the image is to produce the 

magnitude image which is simple the red, green, and blue 

components averaged together into a single image.  The 

grayscale image is shown in Figure 4. 

 

 
Figure 4.  Grayscale image of example image.   

 

The result of the Sobel operator applied to Figure 4 is shown 

in Figure 5.  The figure shows regions where contrasts and 

edges are present which represent the high frequency 

information contained in the image.   

 
Figure 5.  Gradient magnitude of example image. 

 

The high frequency image information is thus utilized in the 

SA algorithm symbolization process.  The objective would 

be to use the state transition matrix to determine the total 

amount of high frequency information.  In essence, we are 

tracking the total number of occurrences of state transitions 

from one state to a state non-adjacent to the original state in 

the matrix.   In other words, we are observing and tracking 

the total weight of transitions contained in the extreme off 

diagonal entries of the state transition matrix.  This can be 

observed in the example matrix shown in Figure 6. 
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Figure 6.  Distribution of high frequency content in State 

Transition Matrix 

It is shown that if the current state in the image is ,i jp  and 

the image transitions to , , ,  for i, k >1i j i n j kp p + +→  where 

0 , si j N  and 1n  , that represents a transition to a 

non-adjacent state.  sN  represents the total number of states 

formed in the state transition matrix.  The key is observing 

states 1, sNp  and ,1sNp  as well as states local to these 

extreme states.  The higher the counts in these states indicate 

greater portions of high frequency information content in the 

image.  Note that in this case, the symbolized image is 

mapped into a vector from a matrix for the statistical analysis.  

That is for an image of size M-by-N, the resultant vector size 

is thus MxN-by-1 and the statistical analysis carried out on 

this vector.  To create the vectors, the columns N, are 

consecutively stacked to create the vector.   

In general, in order to determine a threshold in which blurring 

is detected can be determined through training although an ad 

hoc method could be determined by thresholding the entire 

weight of the off diagonal entries versus the weight contained 

in the main diagonal.  The general procedure is thus: 

1. Filter the image under test utilizing a high pass 2D 

filter. 

2. Utilizing the high frequency processed image, use 

this data in the symbolization portion of the SA 

algorithm. 

3. Once the symbolization is complete, calculate the 

statistics of the ‘symbolized image’ using depth 

equal to unity. 

4. Once the state transition matrix has been calculated, 

analyze the complete transitions contained in the 

extreme off diagonal entries and determine blurring 

probability, 

Reiterating, step 4 above requires some intuition in 

determining a proper threshold for blurring detection.  This 

process will be demonstrated utilizing the example image. 

4. SA APPLIED TO BLURRING DETECTION 

Utilizing the approach described in the previous section, the 

SA algorithm will be applied to the original (minimal blur) 

images and then applied to an artificially blurred image 

produced by Gaussian filtering of the original example 

image.  We proceed first with the minimally blurred example.   

4.1. Minimal Blur Example 

In the previous section, the example image was processed and 

the image with the high frequency content remaining was 

shown in Figure 5.  This image concluded the preprocessing 

step and the next step is symbolization of the high frequency 

image. 

Before symbolization, the total number of partitions needed 

to be determined.  Previous work has shown that the total 

number of pixels contained in the image can assist in 

determining the number of partitions.  In order for the 

statistics of the state transition matrix to converge, there 

should to be enough samples per partition.  In this work, it 

was experimentally found that if each partition contained at 

least 100,000 samples the algorithm results were positive.   

Running the symbolization algorithm on the example image 

utilizing seven total partitions results in the image shown in 

Figure 7. 

 

Figure 7.  Symbolized results of the example image.  

  

Comparing Figure 5 to Figure 7 shows the results between 

the raw high frequency image and symbolized image data.  

The total number of partitions used was adequate as the 

original image is still discernable meaning information loss 

is minimized between the original high frequency image and 

the symbolized image.  This acts as a quick verification of the 

total number of partitions utilized 

With the symbolization complete, the next step is to process 

the statistics of the symbolized image.  Since the total number 

of partitions utilized in the example is seven and the depth is  
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unity, the total number of statistical model states is thus also 

seven.  This means that the state transition matrix will be of 
7 7x

. 

The state transition matrix obtained from the original image 

is shown in Table 1.  Note that the diagonal within the matrix 

is strong compared to the remaining off diagonal entries.  

This image presents an interesting aspect as there is not a  

significant amount of strong high frequency content.  This 

can be observed in the original images (Figure 4) as there is 

not a significant amount of contrast in the magnitude image 

of the picture. 

4.2. Blurred Image Example 

With the original minimally blurred example shown, we now 

proceed to the purposely blurred images utilizing Gaussian 

filtering techniques (Trucco, 1998).  The Gaussian isotropic 

two-dimensional filter is generally given as 

 

( )

2 2

22
2

1
,

2

x y

G x y e 



+
−

=   (7) 

 

Utilizing this filter structure, Gaussian blurring filters of 

dimension 9 x 9 with varying sigma were generated.  The 

filters used are summarized in Table 2. 

Table 2.  Gaussian Filter Parameters 

Filter Dimension Sigma ( ) 

#1 9x9 1 

#2 9x9 2 

#3 9x9 3 

 

The Gaussian response is nearly infinite, but since after about 

three standard deviations the Gaussian response is nearly 

zero, the filter can be truncated.  In this case, the truncation 

is approximately after nine sample points.  The Gaussian 

filter response is shown in Figure 8 for filter #1.  Note that 

with a small standard deviation, most of the filtering occurs 

within the nearest neighbor of image pixels.  It is prudent to 

note that the filter had to complete dimension of 20 (as seen 

in the figure).  The filter was also normalized in order to not 

affect the intensity of the filtered image.   

 

 
Figure 8.  Gaussian filter response for filter #1. 

 

Utilizing blurring filter #1, the image shown in Figure 9 is 

generated.  Compare this image to that of the original image 

shown in Figure 4.  There is some noticeable blurring around 

the edges of fur that can be seen.  Pixel ranges of 1200 < y < 

1800 and 400 < x < 600 is a good area to compare to observe 

this blurring.  This range represents the edge of Alton’s fur 

and comparisons between the two images shows an increase 

in blurring due to the filtering.   

Table 1.  State transition matrix formed from minimally blurred example image. 

 

State 0p  1p  2p  3p  4p  5p  6p  

0p   835385 437883 246945 101073 1190 97 531 

1p   438418 590979 467638 227526 2804 225 754 

2p   246716 467327 614078 483993 7434 577 1115 

3p   100679 228135 483386 1343092 76192 5544 2777 

4p   1217 2863 7548 76100 30762 5454 2022 

5p   93 199 502 5596 5482 3583 2094 

6p   597 958 1143 2425 2102 2069 5898 
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Figure 9.  Blurred version of example image using filter #1. 

 

To emphasize the increase in blurring, Figure 10 shows the 

Sobel filtered image.  The reduction in high frequency lines 

can be concretely observed in this image.   And finally, the 

resultant symbolized image of the Sobel filtered image is 

shown in Figure 11 which can be compared to Figure 7.  The 

change between the minimally blurred image and the blurred 

image resulting from filter #1 is not as noticeable in the 

symbolized image.   

 
Figure 10.  Sobel filtered, blurred example image utilizing 

filter #1. 

 

The next set of figures increases the spread of the blur filter 

thereby increasing the amount of blurring in the image.  The 

resultant image of filter #2 is shown in Figure 12.   

 

 
Figure 11.  Symbolized image of filtered example image 

utilizing filter #1. 

 

The Gaussian filter shown in the figure demonstrates the 

spreading of the filtering function from the increase in the 

sigma parameters.  This will in turn increase the amount of 

blurring completed to the image which can be observed in 

Figure 13. 

 
Figure 12.  Gaussian filter response for filter #2. 

 

Utilizing filter #2, the example image was filtered and the 

resultant blurred image is shown in Figure 13.  Note that 

compared to the previous images (lesser filtered and 

original), facial details are more blurred in this result.  To 

further emphasize the filtering effects, the Sobel filtered 

images is shown in Figure 14 which shows a decreased 

amount of high frequency content. 
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Figure 13.  Blurred version of example image using filter 

#2. 

 

 
Figure 14.  Sobel filtered, blurred example image utilizing 

filter #2. 

 

The SA algorithm was applied to this Sobel filtered data and 

the resultant symbolic-based image is shown in Figure 15.  

Recall that a total of seven symbols were used in the SA 

algorithm.  The image thereby scales these seven symbols 

evenly across the greyscale range of 256.  It is visible in the 

image that there is a different probability spread of the 

symbols in the figure as observed in the background with 

reduced white areas.  As the filtering becomes more intense, 

these white regions will continue to reduce because of 

blurring. 

 
Figure 15. Symbolized image of filtered example image 

utilizing filter #2. 

 

 

The next set of figures shows the results with utilizing filter 

#3.  The filter’s response is shown in Figure 16. 

 

Figure 16.  Gaussian filter response for filter #3 

 

Note again the increase in the total number of pixels involved 

in the smoothing process.  This in effect will further increase 

image blurring.  Utilizing filter #3, a blurred version of the 

example image was again created.  The blurred image is 

shown in Figure 17. 
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Figure 17.  Blurred version of example image using filter 

#3. 

As was completed previously, the image was high pass 

filtered in order to extract the high frequency information 

within of the image.  The resultant image is shown in Figure 

18. 

 

Figure 18.  Sobel filtered, blurred example image utilizing 

filter #3. 

 

Comparing Figure 18 with Figure 5 shows the amount of loss 

of high frequency content in the image due to the filtering 

operation.  This Gaussian filter has removed a significant 

amount of the high frequency content.   

The filtered image was thus used as the input into the SA 

algorithm and as previously, the symbolized image was also 

generated.  This is shown in Figure 19. 

 
Figure 19.  Symbolized image of filtered example image 

utilizing filter #3. 

 

Comparing Figure 19 to the results of Figure 7 and the other 

symbolized images highlights the differences between them.  

The smoothing of the image creates a different probabilistic 

data set as compared to the original image and the state 

transition matrix is used to capture this difference.   

4.3. State Transition Matrix Results 

The means to deduce the amount of blurring in an image 

using the SA algorithm rests with analysis of the state 

transition matrix as observed in Table 1.  By observing the 

total number of states transitions between the states, blurring 

can therefore be deduced.  We now compare the results 

shown in Table 1, to the results obtained from blurring the 

image with filters #1, #2, and #3 which are shown in Table 3, 

Table 4, and Table 5 respectively.  For all the tables below, 

the off diagonal entries are shaded. 

The state transition matrices shown in Table 3, Table 4, and 

Table 5 show interesting results from the filtering operations.  

The different magnitude of blurring results in stark changes 

in the state transition matrix for each case.  Comparisons of 

each of the above tables to Table 1 will highlight the changes 

to the state transition matrices that indicate blurring

.
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Table 3.  State transition matrix formed from filter #1 blurred example image. 

 

State 0p  1p  2p  3p  4p  5p  6p  

0p   929242 505161 126248 7317 17 1 601 

1p   504896 1164391 574705 30311 69 6 1252 

2p   126682 574370 1606389 283828 501 18 1216 

3p   7748 31638 285199 744786 13191 696 515 

4p   18 69 440 13377 14301 2124 472 

5p   1 1 15 2228 2200 4122 853 

6p   1 0 8 1926 522 2453 5075 

Table 4.  State transition matrix formed from filter #2 blurred example image. 

 

State 0p  1p  2p  3p  4p  5p  6p  

0p   1885161 332664 12885 444 1 4 1205 

1p   333474 1697836 228889 2013 0 4 1450 

2p   13281 231025 2149183 83996 18 2 691 

3p   448 2141 87226 473715 2797 48 19 

4p   1 0 13 5943 10527 828 16 

5p   0 0 0 282 2877 3060 129 

6p   0 0 0 1 1108 2402 3393 

Table 5.  State transition matrix formed from filter #3 blurred example image. 

 

State 0p  1p  2p  3p  4p  5p  6p  

0p   827131 148649 1035 4 0 3 349 

1p   148840 2917580 139263 104 0 13 2294 

2p   1197 141763 2745969 41962 3 1 696 

3p   4 102 45324 379467 1382 0 17 

4p   0 0 0 4732 14010 70 2 

5p   0 0 0 17 2825 1331 19 

6p   0 0 0 10 594 2774 1664 
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The first significant change is that a large region of the off 

diagonal matrix is less than that compared to the original 

matrix shown in Table 1.  Specifically, the lower triangular 

portion of the matrix shows a decreasing amount of 

transitions.  The upper triangular portion also shows a 

decreasing trend but not as significantly as the lower triangle 

portion of the matrix.  A possible reason for more counts in 

the upper triangle region of the matrix could be due to the 

ordering of the columns of the matrix for the one-dimensional 

processing of the data.   

With this shift in the distribution of transition probabilities, 

the state transition matrix of the filtered image has lost its 

weak symmetry along the main diagonal as transition counts 

are moved towards the diagonal.  The filtered matrix still 

contains some transition counts in the upper triangle portion 

but these are significantly reduced as well. 

Observing the changes in the other two example cases with 

the increased filtering further demonstrates the algorithm’s 

application.  As the amount of filtering increases, the total 

amount of counts in the off-diagonal entries further 

decreases.  The results obtained from filter #3 shown in Table 

5show a significant portion of zeroes in the off diagonal as 

well as the reduced counts in these entries.     

From this example, it is easy to see how this approach can be 

used for image blur detection.  A simplified analysis was 

carried out using the example image and this image was also 

significantly filtered to demonstrate the approach.  A typical 

implementation could first analyze example images of terrain 

(urban, rural, water, etc.) in order to train the algorithm to 

determine a proper threshold of blur detection.  For the 

example above, a significant loss of transitions in the off 

diagonal entries represented the loss of high frequency 

information.   

Once these counts are calculated in the matrix, a threshold 

approach can be utilized in order to determine if blurring is 

present in an image.  The determination of this threshold is 

key to the proper operation of the algorithm.   

One means to generate a threshold is to sum all the transitions 

off of the main diagonal (shaded cells in the tables).  This 

calculated value can also represent the amount of blurring in 

the image due the applied filtering. 

Using this total sum of transitions, the percentage of these 

transitions is calculated over the entire state transition matrix.  

The figure of merit for Table 1 was calculated as 15.87%.  

The figures of merit for the other cases are shown in Table 6 

as well as for the original image.  These figures demonstrate 

or quantify loosely the total amount of blurring added to the 

image due to the Gaussian filtering.  Additional figures of 

merit could be identified with additional research.   

As can be seen in the figure, as the amount of filtering 

increases, the total number of counts in the off-diagonal 

entries (shaded) decreases significantly.  The end results are 

that with filter #3, the total percentage of off-diagonal entries 

is 0.085% which is significantly less than the original 15.87% 

of the original image.   

Table 6.  Figures of merit for filtered cases 

 Non-

Shaded 

Shaded Percentage 

Original 6,369,813 1,201,387 15.868% 

Filter #1 7,230,663 340,537 4.497% 

Filter #2 7,535,125 36,075 0.476% 

Filter #3 7,564,755 6,445 0.085% 

 

Also, note that as the total amount of blurring is increased by 

the filtering operation, the percentage of off diagonal entries 

further decreases.  This behavior was expected as blurring 

increases, high frequency content decreases thereby 

decreasing the probability of a state transitioning to a non-

adjacent state.  This in turn reduces the total amount of off 

diagonal transitions as observed in the state transition 

matrices for each of the filtered results.   

5. CONCLUSION 

In this paper, we have demonstrated a means to identify 

blurring within an image without necessarily observing the 

image.  The challenge with any blind approach is to 

appropriately train or learn patterns that will indicate the 

desired response without knowing the input to the system.  In 

this case, a certain percentage of transition outliers in the state 

transition matrix can be used as the indicator of blurring in 

the image.  The SA algorithm,  

adapted from previous work, has shown promise in this 

regard and also can be implemented with a limited amount of 

available platform resources. 

Future work would include further investigations on metrics 

that can be used to identify blurring in the image.  This paper 

presented a straightforward approach simply counting the 

total number of off diagonal transitions and comparing that 

to the total transitions contained in the state transition matrix.  

Other metrics that could be implemented could focus on the 

strength of the main diagonal or even utilize the state 

probability vector.   

From our previous work, we understand the difficulty that 

different terrain can have on data driven algorithms utilizing 

terrain-based data.  Future work would investigate the effect 

terrain has on the results of the algorithm.   

Finally, a simplistic method was presented on how to choose 

the total number of partitions for the algorithm.  A more 

thorough analysis on partitioning type and perhaps depth may 

lead to improved results. 
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NOMENCLATURE 

A = anomaly 

D = symbolic depth 

H(·) = entropy 

M = time series data length 

Ns = number of states 

p(·) = probability 

Pi = ith partition 

si = ith symbol 

U = time series data amplitude range 

X = time series data 

z = state probability vector 

𝑣𝑖 = ith eigenvector 

𝜆𝑖 = ith eigenvalue 

Π = state transition matrix 
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